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Abstract. Studying the two-body problem associated to an anisotropic Schwarzschild-type
field, Mioc et al. (2003) did not succeed in proving the existence or non-existence of periodic
orbits. Here we answer this question in the affirmative. To do this, we start from two basic

facts: (1) the potential generates a strong force in Gordon’s sense; (2) the vector field of the
problem exhibits the symmetries Si, i ¼ 1; 7, which form, along with the identity, an Abelian
group of order 8 with three generators of order 2. Resorting to S2 and S3, in connection with

variational methods (particularly the classical lower-semicontinuity method), we prove the
existence of infinitely many S2- or S3-symmetric periodic solutions. The symmetries S2 and S3

constitute an indicator of the robustness of the classical isotropic Schwarzschild-type system to
perturbations (as the anisotropy may be considered).
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orbits, variational methods

1. Introduction

Astronomy provides a lot of concrete situations that can be tackled via
anisotropic mathematical models. The anisotropy of the gravitational
constant was discussed by many authors (e.g. Will, 1971, Vinti, 1972). The
two-dimensional galactic models also join this class of problems. We further
mention: motions around a luminous accretion disk, far orbits around binary
stars, orbits around stars with unequal luminosity over surface (pulsars, stars
with spots), orbits in proto-stellar systems (and in the proto-solar, too),
motion of bodies (from dust to satellites) around planets, in the field of
radiation re-emitted by these ones (Saslaw, 1978; Mioc and Radu, 1992). Even
the celebrated model of Hénon and Heiles (1964) involves anisotropy.

Gutzwiller (1971, 1973, 1977) defined the anisotropic Kepler problem
(namely the anisotropic two-body problem associated to the Newtonian
potential) with an essential goal: to identify links between classical and
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quantum mechanics. Devaney (1978, 1981) and Casasayas and Llibre (1984)
went deeper into this problem.

According to a suggestion formulated by Diacu (1996), the anisotropic
Manev problem (associated to a classic potential of the form a=rþ b=r2) was
tackled with a more ambitious purpose: to find connections between classical,
quantum, and relativistic mechanics. Important results in this problem were
obtained by Craig et al. (1999), Diacu and Santoprete (2001, 2002),
Santoprete (2002).

Combining Gutzwiller’s anisotropy with Schwarzschild’s (1916) potential
(of the form a=rþ b=r3), Mioc et al. (2003; hereafter Paper I) considered the
anisotropic Schwarzschild-type problem. They used the powerful tools of the
theory of dynamical systems to depict the main features of the global flow.

However, Paper I did not offer an answer to a crucial question for all
dynamical systems: does the model admit periodic solutions? In this paper we
solve this problem in the affirmative.

In Section 2 we recall the basic equations of the problem in configuration-
momentum coordinates. We show that the anisotropic Schwarzschild-type
potential generates a strong force in Gordon’s (1975) sense. We also show
that the corresponding vector field benefits of seven symmetries Si, i ¼ 1; 7;
which form, along with the identity, an Abelian group of order 8 with three
generators of order 2.

In Section 3 we expose some basic notions related to Sobolev spaces,
which are the natural frame for finding periodic solutions by variational
methods. To get certain families of periodic orbits, we resort to the sym-
metries S2, S3 in connection with variational methods. The subspaces of
symmetric periodic paths R2 and R3 will be divided into homotopy classes by
their winding number (rotation index). The action integral AT will be the
functional whose critical points will be the periodic solutions of the
Schwarzschild-type problem.

Section 4 contains auxiliary results, which allow us to prove the existence
of critical points on some subsets with symmetry and topological constraints,
which will be critical points for AT on the whole space.

Section 5 presents the main results of our endeavours. Following the
methods used by Gordon (1975), Ambrosetti and Coti Zelati (1993), and Coti
Zelati (1994) for general strong force fields, and by Diacu and Santoprete
(2002) for the anisotropic Manev problem, we resort to the classical lower-
semicontinuity method (Tonelli, 1915) to find a minimizer of the action
integral in each class, avoiding the collision-type or escape-type minimizers.
We prove that, for any pre-assigned period, the action integral has a critical
point in each homotopy class with nonnull winding number in R2 and R3.
This implies the existence of infinitely many Si-symmetric (i ¼ 2; 3) periodic
solutions of the anisotropic Schwarzschild-type problem.
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Some remarks are to be formulated here. Even if the idea of using
variational methods to find periodic orbits in the planar three-body problem
for a potential force of the type 1=rn with nP 2 goes as far back as the end of
the 19th century (Poincaré, 1896), effective results appeared only relatively
recently. The most celebrated result in this context was obtained by
Chenciner and Montgomery (2000), who connected symmetries to varia-
tional principles to find a new periodic solution of the three-body problem
with equal masses. As it was mentioned by Anisiu (1998) for the Manev
problem, and it is obviously true for the Schwarzschild one, in these cases
(unlike in the Newtonian case), the force field is ‘strong’ (according to
Gordon’s (1975) definition), which makes variational methods easier to
apply. Interesting results of this type were obtained by Bertotti (1991) for the
restricted three-body problem.

Another remark concerns the existence of Si-symmetric (i ¼ 2; 3) periodic
solutions. Such solutions exist in the isotropic Schwarzschild-type problem
(see Stoica and Mioc, 1997; Mioc, 2002). Their persistence (even deformed) in
the anisotropic case (regarded as a perturbation of the isotropic case) makes
the symmetries S2, S3 constitute an indicator of the robustness of the system
to perturbations.

We tried to expose in some detail the necessary mathematical tools,
in connection with which we must not forget two issues: (a) almost all
such mathematical methods were born from and intended to tackle
concrete astronomical situations; (b) our present results add new, impor-
tant features to the dynamics of the anisotropic Schwarzschild-type
problem.

2. Basic Equations and Properties

The 2D anisotropic Schwarzschild-type problem is described by the
two-degrees-of-freedom system of ODE

_q ¼ @Hðq; pÞ=@p; _p ¼ �@Hðq; pÞ=@q; ð1Þ
where

q ¼ ðq1; q2Þ 2 R2 n fð0; 0Þg; pð¼ _qÞ ¼ ðp1; p2Þ 2 R2

stand, respectively, for the configuration and momentum of a two-particle
system originated in one of the particles. The Hamiltonian H has the form

Hðq; pÞ ¼ jpj2=2�WðqÞ ð2Þ
in which the potential function W : R2nfð0; 0Þg ! R has the expression
(Paper I):

Wðq1; q2Þ ¼ ðlq21 þ q22Þ
�1=2 þ bðlq21 þ q22Þ

�3=2; ð3Þ
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where l > 0 and b > 0 are parameters.
We mention that the Lagrangian Lðq; pÞ ¼ jpj2=2þWðqÞ of the aniso-

tropic Schwarzschild-type problem (1) is

Lðq1; q2; p1; p2Þ ¼ ðp21 þ p22Þ=2þ ðlq21 þ q22Þ
�1=2 þ bðlq21 þ q22Þ

�3=2 ð4Þ

and has the property that Lðq; pÞ > 0.
Equations (1) define the motion of a unit-mass particle with respect to

another unit-mass particle in an anisotropic plane, namely a plane in which
the attraction forces act differently in every direction. The force function
WðqÞ characterizes the anisotropy of the plane as a function of the parameter
l. For l > 1 the attraction is the strongest in the q1-direction and the weakest
in the q2-direction; for l < 1 the situation is reversed. For l ¼ 1 we retrieve
the classical Schwarzschild-type two-body problem, whose global flow was
fully depicted by Stoica and Mioc (1997). We shall consider, without loss of
generality, that l > 1.

One sees that the Hamiltonian (2) is the sum of the kinetic
ðKðpðtÞÞ ¼ jpðtÞj2=2Þ and potential ð�WðqðtÞÞÞ energies. It provides the first
integral of energy

HðqðtÞ; pðtÞÞ ¼ ~h; t 2 R; ð5Þ

where ~h stands for the energy constant.
Notice that, unlike in the classical Schwarzschild model, the force

derived from the potential function W is not central; the anisotropy of
the plane destroys the rotational invariance. Consequently, the angular
momentum CðtÞ ¼ pðtÞ � qðtÞ is not conserved; it does not provide a first
integral.

A basic property of system (1) with W given by (3) is that it satisfies the
strong force condition.

DEFINITION 1 (Gordon, 1975). A potential function W : R2nfð0; 0Þg ! R

generates a strong force if there exist a neighbourhood N of (0, 0) and a
C2-class function U : N n fð0; 0Þg ! R such that

(i) Uðq1; q2Þ ! �1 as ðq1; q2Þ ! ð0; 0Þ;
(ii) Wðq1; q2ÞPð@U=@q1Þ2 þ ð@U=@q2Þ2 ¼ jrUj2 for all ðq2; q2Þ in

Nnfð0; 0Þg.
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Remark 2. If there exist the constants c;R > 0 such that the potential
function W : R2nfð0; 0Þg ! R verifies the inequality

WðqÞP c

jqj2
; 0 < jqj < R; ð6Þ

then W generates a strong force, with UðqÞ ¼
ffiffiffi

c
p

lnðjqjÞ and N ¼ fq : jqj<Rg.
Condition (6), which is easier to be verified, appears as the definition of
strong forces in many papers.

THEOREM 3. The potential function W given by (3) generates a strong force.

Proof. From the expression (3) of the potential functionW and from l > 1
it is obvious that Wðq1; q2ÞPbðlq21 þ q22Þ

�3=2Pbl�3=2ðq21 þ q22Þ
�3=2Pbl�3=2

jqj2 for 0 < jqj < 1, hence W satisfies (6) with c ¼ bl�3=2 and R ¼ 1: (

By (2) and (3), the motion Equations (1) explicitly read.

_q1 ¼ p1;

_q2 ¼ p2;

_p1 ¼ �lðlq21 þ q22Þ
�3=2ð1þ 3bðlq21 þ q22Þ

�1Þq1;
_p2 ¼ �ðlq21 þ q22Þ

�3=2ð1þ 3bðlq21 þ q22Þ
�1Þq2:

ð7Þ

An important property of these equations can be stated as

THEOREM 4. The vector field (7) benefits of seven symmetries Si ¼
Siðq1; q2; p1; p2; tÞ; i ¼ 1; 7, as follows:

S1 ¼ ðq1; q2;�p1;�p2;�tÞ;
S2 ¼ ðq1;�q2;�p1; p2;�tÞ;
S3 ¼ ð�q1; q2; p1;�p2;�tÞ;
S4 ¼ ðq1;�q2; p1;�p2; tÞ;
S5 ¼ ð�q1; q2;�p1; p2; tÞ;
S6 ¼ ð�q1;�q2;�p1;�p2; tÞ;
S7 ¼ ð�q1;�q2; p1; p2;�tÞ:

ð8Þ

The set G ¼ fIg [ fSi j i ¼ 1; 7g, endowed with the usual composition law ‘‘�’’,
forms a symmetric Abelian group with an idempotent structure, isomorphic to
Z2 � Z2 � Z2; where I denotes the identity. This group owns seven proper
subgroups isomorphic to Klein’s group.
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Proof. It is easy to check that Equations (7) are invariant to the trans-
formations (8). As regards the Abelian group structure of G, it suffices to
construct and examine the following composition table:

� I S1 S2 S3 S4 S5 S6 S7

I I S1 S2 S3 S4 S5 S6 S7

S1 S1 I S4 S5 S2 S3 S7 S6

S2 S2 S4 I S6 S1 S7 S3 S5

S3 S3 S5 S6 I S7 S1 S2 S4

S4 S4 S2 S1 S7 I S6 S5 S3

S5 S5 S3 S7 S1 S6 I S4 S2

S6 S6 S7 S3 S2 S5 S4 I S1

S7 S7 S6 S5 S4 S3 S2 S1 I

Since every element is its own inverse, the idempotent structure is obvious.
Observe that, among the symmetries (8), only three are independent.

Consider, for instance, that these ones are S1;S2;S3. The relations
S1 � S2 ¼ S4; S1 � S3 ¼ S5; S2 � S3 ¼ S6; S1 � S2 � S3 ¼ S7 are immediate.
Every other three independent symmetries generate the remaining four ones.
This means that G is an Abelian group of order eight with three generators of
order two. By the Fundamental Theorem of Abelian Groups, G is isomorphic
to Z2 � Z2 � Z2.

As to the proper subgroups of G, let us denote them by Gijk ¼ fI;Si;
Sj;Sk j i 6¼ j 6¼ k 6¼ i;Si � Sj ¼ Skg. We can immediately check that the
only sets fi; j; kg that fulfil this condition lead to the subgroups
~G124; ~G135; ~G167; ~G236; ~G257; ~G347; ~G456. All these subgroups are of order four
with two generators of order two, hence isomorphic to Klein’s subgroup.
This completes the proof. (

In Paper I we have shown that Theorem 4 also holds for the motion
equations expressed in collision-blow-up or infinity-blow-up McGehee-type
coordinates (McGehee, 1973, 1974). The respective groups of 4 symmetries,
G0 and G1, are isomorphic to G. This is not a trivial result, because the
phase spaces corresponding to G0 and to G1 contain the supplementary
boundary manifolds of collision and infinity, respectively.

As mentioned in the introductory section, in Paper I the important ques-
tion about the existence or not of periodic orbits remained open. This
question will be answered in the affirmative in what follows, where the sym-
metries (8) and the strong force property of the potential will play a premier
role.
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3. The Functional Background

In order to get certain families of periodic orbits, we shall use some symmetry
and topological constraints in connection with a variational principle, finding
periodic orbits not as minimizers, but as extremal values of the action inte-
gral. To this end we shall resort to results concerning periodic solutions of
fixed period for symmetric, singular, Lagrangian systems (see Gordon 1975;
Ambrosetti and Coti Zelati, 1993; Coti Zelati, 1994), as the system (7) is.

We first need some notations. Given a number T > 0, let us denote by
C1ð½0;T�;R2) the space of T-periodic C1 cycles (loops) f : ½0;T� ! R2. We
define the inner products

hf; giL2 ¼
Z T

0

fðtÞgðtÞdt; ð9Þ

hf; giH1 ¼
Z T

0

ð _f _gþ fgÞdt ¼ h _f; _giL2 þ hf; giL2 ; ð10Þ

and let k f kL2 ¼ ð
R T

0 j f j
2dtÞ1=2 and k f kH1 ¼ ð

R T

0 ðj _f j2 þ j f j2ÞdtÞ1=2 be the
corresponding norms. Then the completion of C1ð½0;T�;R2Þ with respect to
k � kL2 is denoted by L2 and is the space of square integrable functions. The
completion with respect to k � kH1 is denoted by H1 and is the Sobolev space
of all absolutely continuous T-periodic functions that have L2 derivatives
defined almost everywhere. The spaceH1 is compactly embedded in the space
of continuous functions on ½0;T�;C 0ð½0;T�;R2Þ with k f k ¼ maxfjfðtÞj : t 2
½0;T�g (Gordon, 1975).

The Schwarzschild potential (3) has a singularity at the origin of R2, hence
we shall denote by

K ¼ ff 2 H1j fðtÞ 6¼ ð0; 0Þ for all t 2 ½0;T�g ð11Þ

the open subset of the cycles in H1 which do not pass through the origin
(noncollisional cycles). For the noncollisional cycles in K it makes sense to
define the angle function #f 2 C 0ð½0;T�;RÞ by

cos#fðtÞ ¼ f1ðtÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 21ðtÞ þ f 22ðtÞ
q

; sin#fðtÞ ¼ f2ðtÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 21ðtÞ þ f 22ðtÞ
q

;

which measures the angle between the positive q1-axis and the vector fðtÞ in
the mathematically positive direction. The rotation index (or winding number)
wð f Þ will represent the growth of the angle function during a period, mea-
sured in units of full rotations of f, that is

wð f Þ ¼ #f ð0Þ � #f ðTÞ
T
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The rotation index is always an integer which shows how many times the
continuous cycle f : ½0;T� ! R2nfð0; 0Þg ‘winds around’ the origin, having
positive values for counterclockwise rotations and negative for clockwise ones.
Identifying S1 withR=½0;T� one haswð f Þ ¼ degð f Þ, where degð f Þ is the degree
of the circle map F : S1 ! S1;FðtÞ ¼ fðtÞ= j fðtÞj (Amann, 1990). It follows

K ¼
[

k2Z
Kk;

where Kk ¼ ff 2 Kjwð f Þ ¼ kg. We mention that K0 contains the loops which
are homothetic in R2nfð0; 0Þg to a point.

We shall use some of the ‘natural’ symmetries Si; i ¼ 1; 7 of the system (7).
Let us denote by Ri; i ¼ 1; 7 the subsets of H1 formed by Si-symmetric

cycles, namely those which satisfy SiðfðtÞÞ ¼ fðtÞ. It is clear that each Ri is a
subspace of H1. In the sequel we shall provide orthogonal decompositions of
H1 in terms of its subspaces Ri with i 2 f2; 3g and i 2 f1; 7g, respectively.

LEMMA 5. The subspaces Ri with i 2 f1; 2; 3; 7g are closed, weakly closed,
and complete with respect to k � kH1 , hence they are Sobolev spaces. Moreover,

H1 ¼ R2 � R3 ¼ R1 � R7: ð12Þ

Proof. Consider a function f ¼ ð f1; f2Þ; it is well known that f1 and f2 can
be written as sums of an even absolutely continuous function and an odd one,
namely fj ¼ fj;e þ fj;o, where fj;eðtÞ ¼ ðfjðtÞ þ fjð�tÞÞ=2 and fj;oðtÞ ¼ ðfjðtÞ�
fjð�tÞÞ=2; j ¼ 1; 2. By virtue of this fact, we can write f as the sum of an
S2-symmetric function, fS2

¼ ð f1;e; f2;oÞ and an S3-symmetric one, fS3
¼

ð f1;o; f2;eÞ.
Now, let us consider an element f 2 R2. Then hf; giH1 ¼ 0 for every g 2 R3.

This is due to the fact that, by (9) and (10),

hf; giH1 ¼
Z T

0

ð _f1 _g1 þ _f2 _g2Þdtþ
Z T

0

ð f1g1 þ f2g2Þdt; ð13Þ

where the second integrand is an odd function, whereas the first one is an odd
function almost everywhere. Thus the above inner product is zero for every
g 2 R3.

Denote by R?2 ¼ fg 2 R2jhf; giH1
¼ 0; 8g 2 R2g the space orthogonal to R2.

It is easy to see that R?2 is closed and that R3 � R?2 . To prove that R3 ¼ R?2 ,
suppose that there exists u 2 R?2 such that u 6¼ 0 and u j2R3. Then write
u ¼ us2 þ us3 and compute hus2;uiH1

¼ hus2;us2 þ us3iH1 ¼ hus2;us2iH1 ¼
kus2kH1 ¼ d > 0. But this contradicts the hypothesis that u 2 R?2 , therefore
R3 ¼ R?2 . So R3 and, consequently, R2 are closed and such that
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H1 ¼ R2 � R3. In addition, since H1 is complete, R2 and R3 are complete.
Lastly, R2 and R3 are weakly closed because they are norm-closed subspaces.

The statements for R1 and R7 can be proved similarly, by writing
f ¼ fS1

þ fS7
, with fS1

¼ ðf1;e; f2;eÞ and fS7
¼ ðf1;o; f2;oÞ. This completes the

proof. (

Consider the sets ~Ri ¼ Ri \ K of symmetric noncollisional cycles, which
are open submanifolds of the spaces Ri. We shall say that a cycle in ~Ri is of
class Kk; k 2 Z, if its winding number about the origin of the coordinate
system is k, namely if it performs k loops around the origin. We remind that k
is positive for counterclockwise rotations and negative else. The family
ðKkÞk2Z provides a partition of ~Ri into homotopy classes (components).

We shall describe the geometric properties of the cycles in Ri; i ¼ 1; 7. A
cycle f is in R1 if and only if fjð�tÞ ¼ fjðtÞ; j ¼ 1; 2, hence the cycles in ~R1 will
have null winding number ð~R � K0). The cycles in R2 and R3 have mirror
symmetry with respect to the q1, respectively to the q2-axis. Those in R4 and
R5 are lying on the q1, respectively q2-axis, hence the cycles in ~R4 and ~R5 will
have again null winding number. The cycles in R6 reduce themselves to the
single point (0, 0). The cycles in R7 are symmetric with respect to the origin
(0, 0) and all of them pass through (0, 0), hence they are all collisional.

We are interested in noncollisional families of cycles with nonnull winding
numbers; R2 and R3 are the only subspaces of H1 among the seven subspaces
corresponding to the natural symmetries Si; i ¼ 1; 7, which satisfy those
requirements.

Remark 6. To be more clear for a nonmathematician reader, we summarize
what we have done so far. We fixed a period T and we defined the Sobolev
space H1 of all absolutely continuous T-periodic functions. We defined the
subsets Ri of H

1 formed by Si-symmetric cycles (characterized by the sym-
metries Si; i ¼ 1; 7, of the motion Equation (7)). Moreover, we have shown
that the couples (R2;R3), (R1;R7) cover – via direct sum – the whole spaceH1.
Being interested only in cycles that are noncollisional or nonescape type, or do
not represent quasiperiodic orbits, we showed that only R2 and R3 fulfil these
conditions. To continue our mathematical endeavours, we divided every
subset ~Ri in homotopy classes via the winding number k; this will be useful
further down.

We shall define now the action integral, whose extremal values will pro-
vide symmetric periodic orbits. The action integral AT : K! R between the
instants 0 and T, along a cycle f whose Euclidean coordinate representation is
q ¼ ðq1; q2Þ, has the expression

ATð f Þ ¼
Z T

0

LðqðtÞ; pðtÞÞdt; ð14Þ
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with the positive Lagrangian function given by (4). The appearance of the
quadratic terms p21 ¼ _q21 and p22 ¼ _q22 in the expression of the Lagrangian
function makes the Sobolev space H1 adequate for this problem. The
Schwarzschild potential belongs to a class of potentials (with WðqÞP0 for
q 6¼ ð0; 0Þ andWðqÞ ! 0 for jqj ! 1Þ for which it can be shown (Coti Zelati,
1994) that inff2KATð f Þ ¼ 0, and all minimizing sequences are unbounded.

In order to obtain periodic solutions of (7) we are forced to minimize the
functional AT on subsets Kk of K, chosen by using symmetry and topological
constraints. After selecting an adequate subset, we shall use a direct method
of the calculus of variation, i.e. the lower-semicontinuity method (e.g., Struwe
1996) and get a minimizer in that subset, which will be proved to be an
extremal value of the functional AT. Finally we show that the extremal val-
ues, which belong to the Sobolev space H1, are regular enough to constitute
classical periodic solutions of (7).

Remark 7. To sketch in physical terms the minimization of the action, recall
that the Lagrangian of our problem represents the sum of two positive terms:
the kinetic energy K and the force function W (the negative of the potential
energy). Also recall that K and W are not independent each other, they being
related by the energy integral (in which the constant of energy must be
negative, provided the positiveness of W). Since K;W > 0, any minimization
of their sum involves the minimization of both K and W; both push the
trajectory away from the field-generating centre. But the limit imposed by the
fixed energy-level and by the fixed value of T stops the orbit expansion to a
finite value, which can lead to a periodic orbit.

4. Auxiliary Results

The first statement establishes the connection between the solutions of the
Schwarzschild-type problem (7) and the extremals (critical points) of the
functional AT given by (14).

PROPOSITION 8. The set of noncollisional cycles K given by (11) is an open
subset of H1 and the functional AT is in the class C1ðK;R) with

dATð f Þ½h� ¼
Z T

0

h _f; _hi þ hrWð f Þ; hi
� �

dt; ð15Þ

if a cycle f with coordinate expression q ¼ ðq1; q2Þ 2 K is a critical point of AT

on K, then f is a classical periodic solution of (7).
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Proof. The first affirmation is standard (see Struwe, 1990). Let us con-
sider f 2 K which is a critical point of AT on K. Then f is continuous, as well
as rWðfðtÞÞ. We take the scalar product of

rWðfðtÞÞ ¼ d

dt

Z t

0

rWð fðsÞÞds

with h 2 H1; hð0Þ 6¼ 0, then integrate on [0, T] and obtain

Z T

0

hrWðfðtÞÞ; hidt ¼ �
Z T

0

Z t

0

rWðfðsÞÞds; _h

� �

dt:

Because f is a critical point, from (15) we get

Z T

0

_f�
Z t

0

rWðfðsÞÞds; _h

� �

dt ¼ 0 ð16Þ

for each h 2 H1; hð0Þ 6¼ 0. It follows that

_f�
Z t

0

rWðfðsÞÞds ¼ const a.e: ð17Þ

Since f 2 K we obtain via Sobolev embedding that _f 2 C 0, and from (17) that
_f 2 C1. We integrate (16) by parts and get

h _fðTÞ; hðTÞi � h _fð0Þ; ð0Þi ¼
Z T

0

h €fðtÞ � rWðfðtÞÞ; hðtÞidt:

The right-hand side is null, and since hð0Þ 6¼ 0 it follows. _fðTÞ ¼ _fð0Þ. (

To an element f 2 K we associate a curve fU, with U given in Remark 2:

fUðtÞ ¼ ð fðtÞ;Uð fðtÞÞÞ 2 R3; 0OtOT: ð18Þ
The next two lemmas contain results from Gordon’s (1975) paper and rely

on the fact that the force is strong.

LEMMA 9. For each f 2 K, the following inequality holds:

arc lengthðfUÞOð2ATð f ÞÞ1=2 T1=2 þ ðATð f ÞÞ1=2
� �

:

Proof. We start from the definition of arc length ðfUÞ and make use of
Cauchy’s inequality to obtain
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arc lengthð fUÞ¼
Z T

0

d

dt
fUðtÞ

�

�

�

�

�

�

�

�

dtO
Z T

0

j _fðtÞjþjrUðfðtÞÞj � j _fðtÞj
� �

dtO

OT1=2

Z T

0

j _fðtÞj2dt
� 	1=2

þ
Z T

0

jrUðfðtÞÞj2dt
� 	1=2

�
Z T

0

j _fj2dt
� 	2

O

OT1=2

Z T

0

j _fðtÞj2dt
� 	1=2

þ
Z T

0

WðfðtÞÞdt
� 	1=2

�
Z T

0

j _fj2dt
� 	1=2

O

Oð2ATð f ÞÞ1=2ðT1=2þðATð f ÞÞ1=2Þ: (

Lemma 9 will allow us to prove the corresponding of Gordon’s geomet-
rical lemma for the anisotropic Schwarzschild potential.

LEMMA 10. The functional AT has the property that, for any a > 0, there
exists d ¼ dðaÞ > 0 such that if q 2 H1 and ATðqÞOa, then jqðtÞjPd for all
t 2 R; i:e: fq 2 H1 : ATðqÞOag is bounded away from zero.

Proof. Let us suppose that there is no such d; it means that for each
n 2 N there exist t�n 2 ½0;TÞ and fn 2 H1 for which ATðfnÞO a and
inffjfnðtÞj : t 2 ½0;T�g ¼ jfnðt�nÞj < 1=n: We have fn 2 C 0: If kfnk ! 0 it fol-
lows that

R T

0 WðfnðtÞÞdt!1 as n!1 , hence ATðfnÞ is unbounded,
contradiction. If kfnk 6! 0; there exist e > 0 and a subsequence of fn; denoted
also fn; and tn 2 ½0;T� such that jfnðtnÞj ¼ e; 8n 2 N: The arc length of fnU
between tn and t�n is greater than the length of the corresponding straight line,
hence

arc length ðfnUÞPjUðtn; fnðtÞÞ �Uðt�n; fnðt�nÞÞj ! 1 as n!1:
In view of Lemma 9, this contradicts the boundedness of AT ð fnÞ: (

Remark 11. As stated by Gordon(1975), the loops in KnK0 cannot be con-
tinuously moved off to infinity without either passing through (0,0) or having
its arc length become infinite (for every c1, there exists a compact subset Kc1

of R2 which contains every smooth cycle which is homotopic to f in
R2nfð0; 0Þg and has arc length O c1Þ:

The next result is a special case of Palais’ (1979) principle of symmetric
criticality, as it was presented by Chenciner (2002).

Let us consider an orthogonal (by isometries) representation q of a finite
group G in the real Hilbert space H1 such that, for any c in G,

ATðqðcÞ � f Þ ¼ ATð f Þ: ð19Þ
We denote by H1

q the linear subspace of H
1 formed by the elements which are

invariant under the representation q, and by AT;q the restriction of the action
AT to H1

q. The principle of symmetric criticality asserts that a critical point
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for the restriction of the action on the subspaceH1
q is a critical point of AT on

the whole loop space H1.

PROPOSITION 12. Any critical point of AT;q is a critical point of AT.

Proof. Using the q-invariance of AT given in (19), we have that, for any
c 2 G

dATðqðcÞ � f Þ½h� ¼ dATð f Þ½qðcÞ�1 � h�:

Each f 2 H1
q satisfies dATð f Þ½ qðcÞ�1 � h� ¼ dATð f Þ½h�: The H1-gradient

rATð f Þ will satisfy hqðcÞ � rATð f Þ; hi ¼ hrATð f Þ;qðcÞ�1 � hi ¼
hrATð f Þ; hi: This means that rATð f Þ belongs to H1

q; hence each critical
point of AT;q is a critical point of AT� (

Remark 13. The symmetry S2 is given by the representation s2 of the group
Z2 acting as

ðs2 � f ÞðtÞ ¼ ðf1ð�tÞ;�f2ð�tÞÞ;

while S3 acts through the representation s3

ðs3 � f ÞðtÞ ¼ ð�f1ð�tÞ; f2ð�tÞÞ;

In these cases, a critical point of the action restricted to the invariant sub-
space with respect to the symmetry will be a critical point of AT on H1.

The fact that the elements for which the action is bounded are bounded
away from zero prevents the critical points from being collisional solutions of
the system (7). Another property of the action, namely its coercivity, avoids
the critical points at infinity. A real functional A defined on a Hilbert space
with the norm k � k is coercive if AðxnÞ ! þ1 for all sequences xn such that
kxk ! þ1.

To end, we still need to recall some definitions and issues. Let X be a
topological space, and consider W : X! R. Then W is lower-semicontinuous if
and only if W�1ð�1; a� is closed for every a 2 R, in which case W is bounded
from below and reaches its infimum on every compact subset of X. If X is a
Hausdorff space (thus compact subsets are necessarily closed), the following
result (known as Weierstrass’ theorem) holds:

PROPOSITION 14. Consider a real-valued function W : X! R; where X is a
Hausdorff space, such that W�1ð�1; a� is compact for every a 2 R: Then W is
lower-semicontinuous bounded from below and reaches its infimum on X.
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Remark 15. In physical terms, we have shown that the symmetric solutions
that lead to critical points of the action do not encounter either collision or
escape, thus being periodic orbits of the problem.

Now we have at our disposal all the necessary mathematical instruments
and results to prove the existence of periodic orbits in the anisotropic
Schwarzschild-type problem.

5. Main Results

We state now the central result of our paper.

THEOREM 16. For any T > 0 and any k 2 Znf0g, there exists at least one
Si-symmetric ði ¼ 2; 3Þ periodic solution of the anisotropic Schwarzschild-type
problem, with period T and winding number k.

Proof. Let i 2 f2; 3g be fixed and X a component of ~Ri that consists of
non-simple cycles. Endow X with the weak topology it inherits from Ri. We
intend to apply Proposition 14 with W ¼ AT, thus we shall show that
Ya ¼ X \ A�1T ð�1; a� is bounded and weakly closed in Ri, hence weakly
compact.

Let f 2 Ya; hence f 2 X and 0OATð f ÞOa: From Lemma 9 it follows
that the elements of Ya are bounded in arc length by the same constant,
and from Lemma 10 that they are bounded away from (0, 0). The elements of
X being tied to (0, 0), from Remark 11 it follows that X is bounded in C 0

norm, i.e. there exists c > 0 such that k f kO c for all f 2 X: Let f 2 Ya; we
have

k f k2H1 ¼ k f k2L2 þ k _fk2L2 O k f k2 þ 2ATðfÞO c 2 þ 2a;

hence Ya is bounded with respect to k � kH1 .
To show that Ya is weakly closed, we consider a sequence fn 2

X \ A�1T ð�1; a� which converges weakly to a cycle f 2 H1. The subspaces Ri

being weakly closed (as it was proved in Lemma 5), we have that f 2 Ri. As
stated above, the cycles fn are bounded in arc length and bounded away from
(0, 0). The weak convergence inH1 implies that limn!1 k fn � f k ¼ 0 with k � k
the C 0 norm. Because fn; n 2 N, are bounded away from (0, 0), there exists
d > 0 such that jfnðtÞjP d, for each t 2 ½0;T� and n 2 N. Then

dO j fnðtÞjO j fðtÞj þ j fnðtÞ � fðtÞjO j fðtÞj þ k fn � f k;

and making n!1 it follows that jfðtÞjP d; t 2 ½0;T�. Therefore f 2 ~Ri and it
is in the same component of ~Ri as fn; n 2 N, hence f 2 X.
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Because of the fact that jfnðtÞjP d; jfðtÞjPd for t 2 ½0;T�; it follows that we
may apply Fatou’s lemma to obtain

Z T

0

WðfðtÞÞdt ¼
Z T

0

lim infWðfnðtÞÞdtO lim inf

Z T

0

Wð fnðtÞÞdt:

The H1 norm is weakly sequentially lower-semicontinuous (see Struwe,
1996), thus

k _fk2L2 ¼ k f k2H1 � k f k2L2O lim inf kfnk2H1 � k f k2L2 ¼ lim inf k _fnk2L2 ;

where the last equality holds because ðfnÞ converges strongly in L2. We
evaluate now ATðfÞ ¼ k _fk2L2=2þ

R T

0 WðfðtÞÞdt; with W given by (3):

ATðfÞO lim inf k _fnk2L2 þ lim inf

Z T

0

WðfnðtÞÞdtO lim infATðfnÞO a;

hence f 2 Ya.
Proposition 14 implies that AT attains its infimum on X; as a consequence

of Palais’ principle of symmetric criticality, and using Proposition 6, any �f
for which ATð �f Þ ¼ minfATðgÞ : g 2 Xg is a classical periodic solution of the
system (7). (

Remark 17. Even if it does not appear explicitly in the proof of Theorem 16,
the winding number k is present in X.

Remark 18. It is known that for each periodic solution of an autonomous
system (as the anisotropic Schwarzschild-problem is) there exists a minimal
period (see for example Amann, 1990). Let us consider a periodic solution f
of period T and winding number k, and let s ¼ T=m be its minimal period
(which leads to another value of the winding number). Applying one of the
existence theorems for the period s=2 we obtain the existence of a s=2 peri-
odic solution f1, which is of course also periodic of period T, and surely
different from f (which has the minimal period s). Continuing this process, we
obtain an infinite set of distinct T-periodic solutions (each one featured by its
own winding number).

6. Conclusions

To summarize, here are some of the properties of the anisotropic Schwarzs-
child-type problem revealed by applying abstract mathematical results:

6.1. The vector field associated to this anisotropic problem, expressed in
configuration-momentum coordinates, exhibits seven symmetries Si; i ¼ 1; 7;
which, along with the identity, form a groups isomorphic to Z2 � Z2 � Z2:

6.2. Using variational methods, we point out the existence of Si-symmetric
ði ¼ 2; 3Þ periodic orbits that may have any assigned period T and winding
number k 2 Znf0g:

SYMMETRIC PERIODIC ORBITS 283



6.3. Consider the anisotropic Schwarzschild-type problem to be a per-
turbation of the isotropic case (Stoica and Mioc, 1997) via the anisotropy
parameter l > 1: Observe that anisotropy, no matter how large its size, de-
forms the Si-symmetric ði ¼ 2; 3Þ periodic orbits of the isotropic problem
(whose symmetries were pointed out by (Mioc, 2002)). but does not destroy
them. This makes the symmetries Siði ¼ 2; 3Þ constitute an indicator of the
robustness of the system to perturbations.

These results add new, important features to the dynamics of the aniso-
tropic Schwarzschild-type problem.

Acknowledgements

The authors are grateful to Professors George Contopoulos and Martin C.
Gutzwiller for many suggestions intended to improve the paper.

References

Amann, H.: 1990, Ordinary Differential Equations: An Introduction to Nonlinear Analysis,
Walter de Gruyer, Berlin, New York.

Ambrosetti, A. and Coti Zelati, V.: 1993, Periodic Solutions of Singular Lagrangian Systems,

Progresses in Nonlinear Differential Equations and their Applications, No. 10, Birkhäuser,
Boston.

Anisiu, M.-C.: 1998, Methods of Nonlinear Analysis Applied to Celestial Mechanics, Cluj

University Press, Cluj-Napoca (Romanian).
Bertotti, M. L.: 1991, ‘Forced oscillations of singular dynamical systems with an application to

the restricted three-body problem’, J. Diff. Eq. 93, 102–141.
Casasayas, J. and Llibre, J.: 1984, ‘Qualitative analysis of the anisotropic Kepler problem’,

Mem. Amer. Math. Soc., Vol. 52, No. 312, AMS, Providence, RI.
Chenciner, A.: 2002, ‘Action minimizing periodic orbits in the Newtonian n-body problem’,

Celestial Mechanics (Evanston, IL, 1999), Contemporary Mathematics 292, Amer. Math.

Soc., Providence, RI, pp. 71–90.
Chenciner, A. and Montgomery, R.: 2000, ‘A remarkable periodic solution of the three-body

problem in the case of equal masses’, Ann. Math. 152, 881–901.

Coti Zelati, V.: 1994, Introduction to Variational Methods and Singular Lagrangian Systems,
School and Workshop on Variational and Local Methods in the Study of Hamiltonian
Systems, International Centre for Theoretical Physics, Trieste, Italy, 10–28 October 1994,
SMR 779/4.

Craig, S., Diacu, F. N., Lacomba, E. A. and Perez, E.: 1999, ‘On the anisotropic Manev
problem’, J. Math. Phys. 40, 1359–1375.

Devaney, R. L.: 1978, ‘Collision orbits in the anisotropic Kepler problem’, Invent. Math. 45,

221–251.
Devaney, R. L.: 1981, ‘Singularities in classical mechanical systems’, in Ergodic Theory and

Dynamical Systems, Vol. 1, Birkhäuser, Boston, pp. 211–333.
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