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Abstract

We study the local convergence of some Aitken-Steffensen-Hermite

type methods of order three. We obtain that under some reasonable

conditions on the monotony and convexity of the nonlinear function,

the iterations offer bilateral approximations for the solution, which

can be efficiently used as a posteriori estimations.
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1 Introduction

As it is well known, the Steffensen, Aitken and Aitken-Steffensen methods
are interpolatory methods, with controlled nodes. More precisely, they can
be obtained from the first degree Lagrange inverse interpolatory polynomial,
for which the two interpolation nodes are controlled by one or two auxiliary
functions suitably chosen [1]–[6], [9]–[12], [17].

Some generalizations of these methods have been obtained in [12], [15],
[16], by controlling the interpolation nodes in the Lagrange, respectively
Hermite inverse interpolatory polynomials of degree 2; the resulted methods
have convergence order 3.
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Moreover, in [13], [15], [16], were obtained conditions under which the
Steffensen, Aitken or Aitken-Steffensen type methods lead to sequences which
approximate bilaterally the solution.

In this paper we propose two iterative methods of Aitken-Steffensen type,
which are obtained from the inverse interpolatory Hermite polynomial of
degree 2, and which have the q-convergence order 3. The interpolation nodes
are obtained using two auxiliary functions.

In the first section we present the two methods and we show that they
have the convergence order 3. In Section 2 we obtain convergence results
depending on the monotony of the function (increasing/decreasing) and on
its convexity (convex/concave). In Section 3 we show how the auxiliary
functions may be constructed such that they verify the convergence results
obtained in Section 2, while the last section contains some numerical example
which illustrate the results.

Consider the equation

(1) f(x) = 0,

where f : [a, b] → R, a, b ∈ R, a < b, and the additional two equations,
equivalent to the above one:

x− p(x) = 0(2)

x− q(x) = 0

where p, q : [a, b] → [a, b]. Denote h : [a, b] → [a, b] given by

(3) h(x) = q(p(x)).

Here we shall study the method obtained when the nodes are controlled by
p and h.

Denote F = f([a, b]) and let s, k ∈ N and n = s + k. We shall make the
following hypotheses on f :

α) f ∈ Cn([a, b])
β) f ′(x) 6= 0, ∀x ∈ [a, b].
It can be easily seen that α) and β) imply that f is continuous on [a, b]

and is invertible, therefore there exists the inverse f−1 : F → [a, b] and the
following result holds.
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Theorem 1.1 [10], [12], [18] If f obeys α) and β) then f−1 ∈ Cn(F ) and

for all x ∈ [a, b] and j ∈ N, 1 ≤ j ≤ n we have

[

f−1(y)
](j)

=(4)

=
∑ (2j − i1 − 2)(−1)j+i1−1

i2!i3!...ij ![f ′(x)]2j−1
.

(

f ′(x)

1!

)i1
(

f ′′(x)

2!

)i2

...

(

f (j)(x)

j!

)ij

where y = f(x), and the above sum extends over all nonnegative integer

solutions of the system

i2 + 2i3 + ...+ (j − 1)ij = j − 1;

i1 + i2 + ...+ ij = j − 1.

We recall below some particular cases of (4), which will be subsequently
used, i.e., j = 1, 2, 3:

[

f−1(y)
]′
=

1

f ′(x)
;

[

f−1(y)
]′′

= − f ′′(x)

[f ′(x)]3
;

[

f−1(y)
]′′′

=
3 [f ′′(x)]2 − f ′(x)f ′′′(x)

[f ′(x)]5
,(5)

where y = f(x).
Let x1, x2 ∈ [a, b] be two interpolation nodes and y1 = f(x1), y2 = f(x2).

Obviously f−1(y1) = x1 and f−1(y2) = x2. Moreover under the hypotheses
of Theorem 1.1 we can compute the successive derivatives of f−1 at y1, y2:
(f−1(y1))

′
, (f−1(y1))

′′
, ..., (f−1(y1))

(s−1) resp. (f−1(y2))
′, (f−1(y2))

′′, ..., (f−1(y2))
(k−1).

These values determine the unique Hermite polynomial of degree n− 1, de-
noted by H(y), satisfying

H(i)(y1) =
[

f−1(y1)
](i)

, i = 0, s− 1;

H(i)(y2) =
[

f−1(y2)
](i)

, i = 0, k − 1,

We denote this polynomial by H(y1, s; y2, k; f
−1 |y ).

It can be easily seen that under the hypotheses of Theorem 1.1 we have
that

(6) f−1(y) = H(y1, s; y2, k; f
−1 |y ) + [f−1(η)]

(n)

n!
(y − y1)

s(y − y2)
k,
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where η ∈ int(F ).
If x∗ ∈ [a, b] is a solution of (1), then x∗ = f−1(0) and by (6) we get

(7) x∗ = H(y1, s; y2, k; f
−1 |0) + (−1)n

[f−1(η0)]
(n)

n!
ys1y

k
2 ,

where η0 is an interior point of the smallest interval containing 0, y1, y2.
If in (7) we neglect the remainder, we obtain for x∗ an approximation x3

given by
x3 = H(y1, s; y2, k; f

−1 |0) .
If x3 ∈ [a, b], then we can take y2 = f(x2) and y3 = f(x3) as the new
interpolation nodes, and continue the process.

In general, if xm−1, xm ∈ [a, b] and ym−1 = f(xm−1), ym = f(xm) then
we take

(8) xm+1 = H(ym−1, s; ym; k; f
−1 |0), m = 2, 3, ....

By (7) we have that

(9) x∗ − xm+1 = (−1)n
[f−1(ηm)]

(n)

n!
ysm−1y

k
m.

The above relation shows that if all the elements of the sequence (xm)m≥1

generated by (8) remain in [a, b] and converge to x∗, then the r-convergence
order ω is given by the positive root of the following equation [7], [8], [12],
[14]:

t2 − kt− s = 0,

i.e.

ω =
k +

√
k2 + 4s

2
.

The convergence order can be higher than ω if the interpolation nodes in (8)
are controlled with the aid of p and h.

If, given xm ∈ [a, b], we take as interpolation nodes the values ym =
f(p(xm)), ȳm = f(h(xm)), m ≥ 1, then we obtain the iterations

(10) xm+1 = H(ym, s; ȳm, k; f
−1 |0), m = 1, 2, ...

with error

(11) x∗ − xm+1 = (−1)n
[f−1(η̄m)]

(n)ysmȳ
k
m

n!
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where η̄m ∈ int(F ).We call (10) as an Aitken-Steffensen-Hermite type method
with two steps.

In the following result we show that under some reasonable assumptions
on functions f, p and q, the sequence (10) has the q-convergence order at
least n.

Proposition 1.2 Let M = supy∈F

∣

∣(f−1(y))(n)
∣

∣ , m1 = supx∈[a,b] |f ′(x)| and
assume there exist `1, `2 ∈ R, `1 > 0, `2 > 0 such that p and q obey the center

Lipschitz conditions

|p(x)− p(x∗)| ≤ `1 |x− x∗| , ∀x ∈ [a, b];(12)

|q(x)− q(x∗)| ≤ `2 |x− x∗| , ∀x ∈ [a, b].

Then

(13) |x∗ − xm+1| ≤
Mmn

1 `
n
1`

k
2

n!
|x∗ − xm|n , m = 1, 2, ...,

whence the q-convergence order of the sequence is at least n.

The proof is immediately obtained from (11).
Next we shall study the convergence of the method (10) in the particular

cases s = 1, k = 2 resp. s = 2, k = 1, which both lead by (13) to q-
convergence orders at least 3.

Under reasonable assumptions regarding mainly the monotony and con-
vexity of f on [a, b], we shall show that the functions p and q may be deter-
mined such that the convergence order of (10) is 3 and, moreover, we obtain
sequences which approximate bilaterally the solution.

If x, y, z ∈ [a, b] and u = f(x), v = f(y), w = f(z) then it is known that
the following relations hold for the divided differences of f and f−1

[u, v; f−1] =
1

[x, y; f ]
;(14)

[u, v, w; f−1] = − [x, y, z; f ]

[x, y; f ][x, z; f ][y, z; f ]

where

[x, y; f ] :=
f(y)− f(x)

y − x
, [x, y, z; f ] :=

[y, z; f ]− [x, y; f ]

z − x
,
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and [x, x; f ] := f ′(x).
Using the divided differences for the Hermite polynomial in the case s = 1

and k = 2, from (10) we get for xm+1 the following expression

xm+1 = p(xm)−
f(p(xm))

[p(xm), h(xm); f ]
−(15)

− [p(xm), h(xm), h(xm); f ]

[p(xm), h(xm); f ]2f ′(h(xm))
f(p(xm))f(h(xm))

x1 ∈ [a, b], m = 1, 2, ....
In this case, the error verifies

x∗ − xm+1 =(16)

= −[0, f(p(xm)), f(h(xm)), f(h(xm)); f
−1]f(p(xm))f

2(h(xm)).

The mean value formula for the divided differences attracts the existence of
a point θm ∈ int(F ) such that:

(17) [0, f(p(xm)), f(h(xm)), f(h(xm)); f
−1] =

[f−1(θm)]
′′′

6
.

Since f is bijective there exists ξm ∈ [a, b] such that θm = f(ξm). Taking into
account (5), by (16) and (17) it follows
(18)

x∗ − xm+1 = −3[f ′′(ξm)]
2 − f ′(ξm)f

′′′(ξm)

6[f ′(ξm)]5
f(p(xm))f

2(h(xm)), m = 1, 2, ....

Analogously, for s = 2 and k = 1 we obtain the iterations

xm+1 = h(xm)−
f(h(xm))

[h(xm), p(xm); f ]
−(19)

− [h(xm), p(xm), p(xm); f ]

[h(xm), p(xm); f ]2f ′(p(xm))
f(p(xm))f(h(xm)),

m = 1, 2, ..., x1 ∈ [a, b].
In this case, for the error one holds an equality analogous to formula (18):

(20) x∗ − xm+1 = −3[f ′′(ξm)]
2 − f ′(ξm)f

′′′(ξm)

6[f ′(ξm)]5
f 2(p(xm))f(h(xm)),

m = 1, 2, ...
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2 The convergence of the iterations (15) and

(19)

In this section we shall provide some conditions under which methods (15)
and (19) generate sequences which approximate bilaterally the solution.

We consider the following assumptions on f, p and q :
(a) equation (1) has at least one solution x∗ ∈]a, b[;
(b) f ∈ C3([a, b]);
(c) equations (1) and (2) are equivalent;
(d) function p is derivable on ]a, b[ and 0 < p′(x) < 1, ∀x ∈]a, b[;
(e) function q is decreasing and continuous on [a, b];
Denote Ef : [a, b] → R,

(21) Ef (x) = 3[f ′′(x)]2 − f ′(x)f ′′′(x).

It can be easily seen that

(22) Ef (x) = E−f (x).

We obtain the following result when f is increasing and convex.

Theorem 2.1 If x1 ∈ [a, b] and f, p, q verify the following conditions

i1. assumptions (a)–(e) are verified;

ii1. f ′(x) > 0, ∀x ∈ [a, b];

iii1. f ′′(x) ≥ 0, ∀x ∈ [a, b];

iv1. x1 < x∗;

v1. h(x1) ≤ b;

vi1. Ef(x) ≥ 0, ∀x ∈]a, b[.

Then the elements of (xm)m≥1, (p(xm))m≥1 and (h(xm))m≥1 generated by

(15) remain in [a, b] and, moreover the following relations hold:

j1. xm < p(xm) < xm+1 < x∗ < h(xm+1) < h(xm), m = 1, 2, ...;

jj1. x∗ − xm+1 < h(xm+1)− xm+1;
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jjj1. limm→∞ xm = limm→∞ p(xm) = limm→∞ h(xm) = x∗.

Proof. By ii1 it follows that x∗ ∈]a, b[ is the unique solution of eq (1). Let
xm ∈ [a, b] be an approximation of x∗ such that xm < x∗ and h(xm) ≤ b. By
hypothesis (d) it follows that there exists cm ∈]a, b[ such that p(x∗)−p(xm) =
p′(cm)(x

∗ − xm) < x∗ − xm, whence p(xm) > xm. Since p is increasing, from
xm < x∗ it follows p(xm) < p(x∗) = x∗. This last relation, together with
(e) imply h(xm) = q(p(xm)) > q(x∗) = x∗, i.e., h(xm) > x∗. From relations
p(xm) < x∗ < h(xm) and ii1 we get f(p(xm)) < 0 and f(h(xm)) > 0. If in
relation (15) we take into account hypotheses ii1 and iii1 and we apply the
mean value formulas for the divided differences, we get xm+1 > p(xm). If in
(18) we take into account vi1, ii1 and the values of f at p(xm)and h(xm),
we get xm+1 < x∗. Finally, from hypotheses (d) and (e) for xm < xm+1 it
follows h(xm+1) < h(xm) and from xm+1 < x∗ we get h(xm+1) > x∗, such
that relation j1 is proved by induction. Relation jj1 is implied by j1.

The fact that the elements of (xm)m≥1, (p(xm))m≥1 and (h(xm))m≥1 re-
main in [a, b] follows from j1. Moreover, these sequences are monotone and
bounded, and therefore they converge. Letting ` = lim xm, then by (15) we
have ` = x∗. Since p and q are continuous functions, we obtain jjj1.

The theorem is proved.
Next we consider the case when f is decreasing and concave. If instead

of equation (1) we consider equation

−f(x) = 0

and we take into account (22) and the fact that xm+1 given by (15) is the
same if we replace f by −f, then from Theorem 2.1 we deduce

Corollary 2.2 If x1 ∈ [a, b] and the functions f, p, q verify

i2. hypotheses (a)–(e) hold;

ii2 . f ′(x) < 0, ∀x ∈ [a, b];

iii2. f ′′(x) ≤ 0, ∀x ∈ [a, b];

iv2. x1 < x∗;

v2. h(x1) ≤ b;

vi2. Ef(x) ≥ 0, ∀x ∈]a, b[,
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then the elements of the sequences (xm)m≥1, (p(xm))m≥1 and (h(xm))m≥1 gen-

erated by (15) remain in [a, b] and the properties j1–jjj1 from Theorem 2.1
hold.

The following result refers to the case when f is increasing and concave.

Theorem 2.3 If x1 ∈ [a, b] and functions f, p, q verify

i3. hypotheses (a)–(e) hold;

ii3. f ′(x) > 0, ∀x ∈ [a, b];

iii3. f ′′(x) ≤ 0, ∀x ∈ [a, b];

iv3. x1 > x∗;

v3. h(x1) ≥ a;

vi3. Ef(x) ≥ 0 , ∀x ∈ [a, b],

then the elements of the sequences (xm)m≥1, (p(xm))m≥1, and (h(xm))m≥1,

generated by (15), remain in [a, b] and, moreover,

j3. xm > p(xm) > xm+1 > x∗ > h(xm+1) > h(xm), m = 1, 2, ...;

jj3. xm+1 − x∗ < xm+1 − h(xm+1);

jjj3. limm→∞ xm = limm→∞ p(xm) = limm→∞ h(xm) = x∗.

Proof. Hypotheses i3 and ii3 ensure that x∗ ∈]a, b[ is the unique solution
of (1). If xm ∈ [a, b], m ≥ 1, obeys xm > x∗ and h(xm) ≥ a then it can
be easily shown that hypotheses (d) and (e) lead to relations xm > p(xm) >
x∗ > h(xm). These inequalities, together with ii3 imply f(p(xm)) > 0 and
f(h(xm)) < 0. By (15), using the previous relations and assumptions ii3
and iii3 we get xm+1 < p(xm). From (18), ii3 and vi3 it follows xm+1 > x∗,

and therefore j3 is proved. Property jj3 is an immediate consequence of
j3. Property j3 also implies that the elements of (xm)m≥1, (p(xm))m≥1 and
h(xm)m≥1 remain in [a, b]. The proof of jjj3 is analogous to the corresponding
one in Theorem 2.1.

We obtain the following consequence of the above theorem, which is sim-
ilar to the one obtained for Theorem 2.1. Now f is decreasing and convex.

9



Corollary 2.4 If x1 ∈ [a, b] and functions f, p, q verify

i4. assumptions (a)–(e) hold;

ii4. f ′(x) < 0, ∀x ∈ [a, b];

iii4. f ′′(x) ≥ 0, ∀x ∈ [a, b];

iv4. x1 > x∗;

v4. h(x1) ≥ a;

vi4. Ef(x) ≥ 0, ∀x ∈]a, b[.

Then the elements of (xm)m≥1, (p(xm))m≥1 and (h(xm))m≥1, generated by

(15), remain in [a, b] and, moreover, properties j3–jjj3 of Theorem 2.3 hold.

Now we study the convergence of the sequences (xm)m≥1 given by (19).
We notice that in (19) xm+1 may also be written as:

xm+1 = p(xm)−
f(p(xm))

[p(xm), h(xm); f ]
−(23)

− [h(xm), p(xm), p(xm); f ]f(p(xm))f(h(xm))

[h(xm), p(xm); f ]2f ′(p(xm))
.

We have seen in the proof of the previous results that the hypothesis Ef(x) ≥
0, ∀x ∈ [a, b] was essential. The iterates (15) and the results concerning their
convergence cannot be applied if Ef (x) ≤ 0, ∀x ∈ [a, b]. We shall see in
the following that in the study of the convergence of iterations (19) or (23),
the hypothesis Ef(x) ≤ 0, ∀x ∈ [a, b] turns out to be essential. Therefore
the previous and the subsequent results allow us to choose in practice either
method (15) or method (19), (23) depending on the sign of Ef (x).

Theorem 2.5 If x1 ∈ [a, b] and functions f, p, q obey conditions i1–v1 of

Theorem 2.1 and, moreover,

Ef (x) ≤ 0, ∀x ∈ [a, b],

then the elements of sequences (xm)m≥1, (p(xm))m≥1 and (h(xm))m≥1 gen-

erated by (23) remain in [a, b] and, moreover, satisfy relations j1–jjj1 from

Theorem 2.1.
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Proof. By i1 and ii1 it follows that the solution x∗ is unique in ]a, b[. Let
xm ∈ [a, b] be an approximation for x∗, which satisfies iv1 and v1. From
the proof of Theorem 2.1 it follows that xm < p(xm) < x∗ < h(xm). These
relations, together with ii1 imply that f(p(xm)) < 0 and f(h(xm)) > 0.
Applying the mean value formulas for divided differences and using ii1 and
iii1, by (23) we get xm+1 > p(xm). Using Ef (x) ≤ 0, the signs of f at
p(xm) and h(xm) and assumption ii1, by (20) we get xm+1 < x∗. Inequality
xm < xm+1 implies h(xm+1) < h(xm), which shows that j1 is true. The proof
of Theorem 2.1 shows that properties jj1 and jjj1 are obvious.

The following result is similar to Corollary 2.2, we state it without proof.

Corollary 2.6 If x1 ∈ [a, b], f, p, q verify conditions i2–v2 from Corollary

2.2 and, moreover, Ef(x) ≤ 0 ∀x ∈ [a, b] then the elements of (p(xm))m≥1,

(xm)m≥1 and (h(xm))m≥1, generated by (23), remain in [a, b] and the conclu-

sions j1–jjj1 of Theorem 2.1 are true.

The next result is analogous to Theorem 2.3.

Theorem 2.7 If x1 ∈ [a, b], and functions f, p, q verify hypotheses i3–v3 of

Theorem 2.3 and moreover Ef (x) ≤ 0, ∀x ∈ [a, b], then (xm)m≥1, (p(xm))m≥1,

(h(xm))m≥1, generated by (23) remain in [a, b] and the conclusions j3–jjj3 of

Theorem 2.3 hold true.

Proof. The uniqueness of the solution x∗ is obvious by assumption ii3. If
xm ∈ [a, b], for some m ≥ 1, obeys iv3 then from the properties of functions
p and q one obtains xm > p(xm) > x∗ > h(xm), which, together with ii3 lead
to f(h(xm)) < 0 and f(p(xm)) > 0. By considerations analogous to those in
the proof of Theorem 2.3, by (23) we obtain xm+1 < p(xm). Using hypothesis
Ef(x) ≤ 0, by (20) it follows that x∗ − xm+1 < 0, i.e., xm+1 > x∗. Since
xm > xm+1 we get h(xm) < h(xm+1), which proves j3. The conclusions jj3
and jjj3 are immediately obtained as in the previous results. Conclusion j3
also attracts that (xm)m≥1, (p(xm))m≥1, (h(xm))m≥1 ⊂ [a, b].

The following result is analogously obtained as Corollary 2.4.

Corollary 2.8 If x1 ∈ [a, b] and the functions f, p, q verify hypotheses

i4–v4 of Corollary 2.4, and moreover Ef (x) ≤ 0 ∀x ∈ [a, b] then (xm)m≥1,

(p(xm))m≥1, (h(xm))m≥1, generated by (23), remain in [a, b] and conclusions

j3–jjj3 of Theorem 2.3 hold true.
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3 Determining the auxiliary functions

In this section we present a concrete way how one can construct the auxiliary
functions p and q such that hypotheses (c), (d), (e) as well as, depending on
the case, conditions h(x1) ≤ b or h(x1) ≥ a to be verified.

Let p and q be given by

p(x) = x− λ1f(x), λ1 > 0;(24)

q(x) = x− λ2f(x), λ2 > 0.

Obviously, p and q verify (c). We shall determine the parameters λ1 and λ2

such that the other conditions are verified.
Assume that f verifies the hypotheses of Theorem 2.1, i.e. f ′(x) > 0 and

f ′′(x) ≥ 0 ∀x ∈ [a, b]. This means that f ′ is increasing, i.e.

(25) f ′(a) ≤ f ′(x) ≤ f ′(b), ∀x ∈ [a, b].

The above relation, for λ1 > 0 implies

1− λ1f
′(b) ≤ 1− λ1f

′(x) ≤ 1− λ1f
′(a), ∀x ∈ [a, b].

In order that condition (d) is verified, it suffices that a < λ1 <
1

f ′(b)
.

Since 0 < p(x) < 1, it follows that for x ∈ [a, x∗], p(x) ∈]x, x∗[, while for
x ∈ [x∗, b], p(x) ∈]x∗, x[. Since p(x∗) = x∗, we have p(x) ∈ [a, b], ∀x ∈ [a, b].

In order that q verifies condition (e) it suffices that q′(x) < 0 ∀x ∈ [a, b] :

q′(x) = 1− λ2f
′(x) < 0.

Since q′′(x) ≤ 0 it follows that q′ is decreasing and therefore q′(x) ≤ q′(a).
From q′(a) < 0 we get λ2 > 1

f ′(a)
. From such a value of λ2 we have that

function q decreases: q(x) ≤ q(a), ∀x ∈ [a, b].
Since for x ∈ [a, b] we have p(x) ∈]a, b[, then h(x) = q(p(x)) < q(a).

Therefore, if q(a) ≤ b then for x1 < x∗ we have h(x1) ≤ b.

Relation q(a) ≤ b leads us to

a− λ2f(a) ≤ b

where f(a) < 0. The above relation implies in turn

λ2 ≤
a− b

f(a)
.

If 1
f ′(a)

< a−b
f(a)

then any value λ2 ∈] 1
f ′(a)

, a−b
f(a)

] can be taken such that function

q defined by (24) verifies hypothesis of Theorem 2.1.
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Theorem 3.1 If f obeys hypotheses of Theorem 2.1 and moreover,

f(b)− f(a) < f ′(a)(b− a)

then one can choose λ1 ∈]0, 1
f ′(b)

] and λ2 ∈] 1
f ′(a)

, a−b
f(a)

] such that functions

p and q defined in (24) verify the hypotheses of Theorem 2.1, respectively

Theorem 2.5.

We consider in the following the functions p, q given by

p(x) = x+ λ1f(x), λ1 > 0;(26)

q(x) = x+ λ2f(x), λ2 > 0.

If we take g(x) = −f(x) we obtain

p(x) = x− λ1g(x);

q(x) = x− λ2g(x).

The following consequence of Theorem 3.1 can be easily proved:

Corollary 3.2 If f obeys hypotheses of Corollary 3.2 and, moreover,

f(a) < −f ′(a)(b− a),

then there exist λ1 ∈]0, 1
−f ′(b)

], λ2 ∈ [ 1
−f ′(a)

, a−b
−f(a)

] such that functions p and

q given by (26) verify hypotheses of Corollary 2.2, resp. Corollary 2.6.

Similarly to Theorem 3.1, we can prove the following results.

Theorem 3.3 If f obeys hypotheses of Theorem 3.1 and, moreover,

f(b) < (b− a)f ′(b)

then there exist λ1 ∈]0, 1
f ′(a)

[ and λ2 ∈] 1
f ′(b)

, b−a
f(b)

] such that functions p, q

defined by (24) verify hypotheses of Theorem 2.3, respectively Theorem 2.7.

Corollary 3.4 If f verifies the hypotheses of Corollary 3.4 and, moreover,

f(b) ≥ (b− a)f ′(b)

then there exist λ1 ∈]0,− 1
f ′(a)

[ and λ2 ∈]− 1
f ′(b)

,− b−a
f(b)

] such that functions p

and q given by (26) obey hypotheses of Corollary 2.4 resp. Corollary 2.8.
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4 Numerical examples

Example 4.1 Consider

(27) f(x) = ex − 4x2 = 0, x ∈ [1
2
, 1].

One can easily see that f ′(x) < 0, f ′′(x) < 0, ∀ ∈ x[1
2
, 1]. Since f(1

2
) > 0

and f(1) < 0 if follows that equation (27) has a unique solution x∗ ∈]1
2
, 1[.

We also have that Ef(x) > 0, ∀x ∈ [1
2
, 1], and therefore the hypotheses of

Corollary 2.2 are verified. Corollary 3.2 shows that one can take λ1 =
1
4
and

λ2 = 1
2
, such that p(x) = x + 1

4
(ex − 4x2) and q(x) = x + 1

2
(ex − 4x2), with

0 < p′(x) < 1, q(1
2
) < 1 and q′(x) < 0 ∀x ∈ [1

2
, 1].

Taking x1 =
1
2
and using (15) we obtain the following values for xn, p(xn)

and q(xn).
Table 1

n xn p(xn) h(xn) h(xn) − xn

1 5.000000000000000e-1 6.621803176750321e-1 7.547224706745652e-1 2.547224706745652e-01
2 7.146918975140570e-1 7.147966292104280e-1 7.148136852840175e-1 1.217877699604131e-04
3 7.148059123627770e-1 7.148059123627778e-1 7.148059123627780e-1 9.992007221626409e-16

Example 4.2 Consider

(28) f(x) = x2 − 2 cos(x) = 0

x ∈ [π
6
, π
2
]. One can easily see that f ′(x) > 0, f ′′(x) > 0, Ef (x) > 0, ∀x ∈

[π
6
, π
2
], and therefore the hypotheses of Theorem 2.1 are verified. The auxiliary

functions p and q from (24) for x1 =
1
6
, λ2 =

1
2
, are given by

p(x) =
6x− x2 + 2 cos(x)

6

q(x) =
2x− x2 + 2 cos(x)

2
.

Since f ′(x) > 0 ∀x ∈ [π
6
, π
2
], f(π

6
) < 0, f(π

2
) > 0 it follows that equation (28)

has a unique solution x∗ ∈ [π
6
, π
2
].

Consider in (15) x1 =
π
6
and we obtain the values in Table 2.

n xn p(xn) h(xn) h(xn) − xn

1 5.235987755982988e-1 7.665812972251055e-1 1.193044203747889e+0 6.694454281495906e-01
2 1.018804247227570e+0 1.020605393992001e+0 1.022637703168053e+0 3.833455940482455e-03
3 1.021689953697528e+0 1.021689953944147e+0 1.021689954221672e+0 5.241440614867088e-10
4 1.021689954092185e+0 1.021689954092185e+0 1.021689954092185e+0 -2.220446049250313e-16
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Example 4.3 Consider

(29) f(x) := ex + 6x− 5 = 0

x ∈ [0, 1] , having a unique solution in ]0, 1[. Since f ′(x) > 0, f ′′(x) > 0 and
Ef(x) = 2ex(ex − 3) < 0, ∀x ∈ [0, 1], the hypotheses of Theorem 2.5 are
verified. Applying Theorem 3.1, we can take λ1 =

1
10
, λ2 =

1
5
and by (24) we

get

p(x) =
4x− ex + 5

10

q(x) =
5− x− ex

5
.

Let x1 = 0, which implies q(x1) = 4
5
< 1. By (23) we obtain the results

presented in Table 3.

n xn p(xn) h(xn) h(xn) − xn

1 0 4.000000000000000e-1 6.216350604717459e-1 6.216350604717459e-1
2 5.456771482503846e-1 5.456931999594989e-1 5.457005009495495e-1 2.335269916486915e-5
3 5.456979250249538e-1 5.456979250249538e-1 5.456979250249538e-1 0
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[5] E. Cătinaş, On some Steffensen-type iterative methods for a class of

nonlinear equations, Rev. Anal. Numér. Théor. Approx., 24 1995 nos.
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