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Abstract

We study the solving of nonlinear equations by an iterative method

of Aitken type, which has the interpolation nodes controlled by the New-

ton method. We obtain a local convergence result which shows that the

q-convergence order of this method is 6 and its efficiency index is
5
√

6,

which is higher than the efficiency index of the Aitken or Newton meth-

ods. Monotone sequences are obtained for initial approximations farther

from the solution, if they satisfy the Fourier condition and the nonlinear

mapping satisfies monotony and convexity assumptions on the domain.

1 Introduction

In this note we study an Aitken type method, for which the interpolation nodes
are given by two iterations of Newton type. We show that this method has the
q-convergence order 6 and it requires 5 function evaluations at each step. This
implies that the efficiency index of this method is 5

√
6, which is greater than

√
2

(the efficiency index of the Newton and of the Aitken method) [10], [14], [20].
Consider the equation

(1) f(x) = 0

where f : [a, b] → R, a < b and assume
α) this equation has a solution x∗ ∈]a, b[.
We consider two more equations

x− g1(x) = 0(2)

x− g2(x) = 0

g1, g2 : [a, b] → [a, b], and we assume they are equivalent to (1).
The Aitken method consists in constructing the sequence (xn)n≥0 given by

[1], [2], [3], [6], [7], [8], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],

(3) xn+1 = g1(xn)−
f(g1(xn))

[g1(xn), g2(xn); f ]
, n = 0, 1, ..., x0 ∈ [a, b].
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We suppose that f is derivable on [a, b] and we consider the function

(4) g1(x) = x− f(x)

f ′(x)
.

Denoting
g2(x) = g1(g1(x)),

we are lead to the following Aitken-type iterative method

yn = xn − f(xn)

f ′(xn)
,

zn = yn − f(yn)

f ′(yn)
,(5)

xn+1 = zn − f(zn)

[yn, zn; f ]
, n = 0, 1, ..., x0 ∈ [a, b],

which we call the Aitken-Newton method.
In Section 2 we provide a local convergence result for this method, and

we show a similar result holding for the Newton method: if f maintains its
monotony and convexity on a larger domain, and the initial approximation
obeys the Fourier condition, then the iterates converge monotonically to the
solution. These properties, together with the fact that the efficiency index of
this method is shown is higher than the efficiency index of the Newton or Aitken
methods, justify the study of this method.

2 Convergence of the method

We obtain the following local convergence result.

Theorem 1 Assume α) and
β) there exists an open interval I, x∗ ∈ I ⊆]a, b[ such that f is two times

differentiable on I, with f ′′ continuous at x∗.
Then there exists an interval J ⊆ I such that for any initial approximation

x0 ∈ J , the iterations (5) are well defined, remain in J and converge to x∗ with
q-order at least 6.

Proof. The first and second relations in (5) imply the existence of θn and ηn
in the interior of the intervals determined by xn and x∗, resp. yn and x∗ such
that

x∗ − yn = − f ′′(θn)

2f ′(xn)
(x∗ − xn)

2, n = 0, 1, ...(6)

x∗ − zn = − f ′′(ηn)

2f ′(yn)
(x∗ − yn)

2, n = 0, 1, ...(7)
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The third relation in (5) and the Newton identity imply that

(8) x∗ − xn+1 = − [x∗, yn, zn; f ]

[yn, zn; f ]
(x∗ − zn)(x

∗ − yn), n = 0, 1, ...

Relations (6)–(8) lead to

(9) x∗ − xn+1 = − [x∗, yn, zn; f ]f
′′(ηn) · [f ′′(θn)]

3

16[yn, zn; f ]f ′(yn)[f ′(xn)]3
(x∗ − xn)

6, n = 0, 1, ...,

which shows the assertion, provided that x0 is sufficiently close to x∗.
Under supplementary conditions on f we obtain the following result.

Theorem 2 If f and x0 verify α), and

β′) f is two times differentiable on [a, b], with f ′′ continuous at x∗;

γ) x0 ∈ [a, b] verifies the Fourier condition: f(x0)f
′′(x0) > 0 (see [10]),

and, moreover,

i1. f ′(x) > 0, ∀x ∈ [a, b];

ii1. f ′′(x) ≥ 0, ∀x ∈ [a, b],

then the sequences (xn)n≥0, (yn)n≥0 and (zn)n≥0 generated by (5), remain
in [a, b] and obey

j1. xn > yn > zn > xn+1 > x∗, n = 0, 1, ...;

jj1. limxn = lim yn = lim zn = x∗.

Proof. By α) and i1 it follows that x∗ is the unique solution of (1). Let
xn ∈]a, b[ be an approximation which verifies the relation f(xn)f

′′(xn) > 0.
Then by ii1 it follows that f(xn) > 0, which, together with i1 lead to xn > x∗.

From i1, ii1 and relation (6) we have x∗− yn ≤ 0, i.e. yn ≥ x∗. Analogously,
from (7) and (8) it follows zn ≥ x∗ and xn+1 ≥ x∗.

The first relation in (5) and f(xn) > 0, f ′(xn) > 0 imply that yn < xn.
Analogously, the second relation in (5) leads to zn < yn, while the third relation
in (5) to xn+1 < zn. Conclusion j1 is therefore proved. Moreover, it is clear
that the elements of the sequences (xn)n≥0, (yn)n≥0 and (zn)n≥0 remain in
the interval [x∗, x0] ⊂ [a, b]. By j1 it follows that these three sequences are
convergent.

Let limxn = `. Relation j1 implies that lim yn = lim zn = `. The first relation

in (5) attracts that ` = `− f(`)
f ′(`) , so f(`) = 0, i.e., ` = x∗.

The following immediate consequence holds.

Corollary 3 If f and x0 ∈ [a, b] verify α), β′), γ) and, moreover

i2. f ′(x) < 0, ∀x ∈ [a, b];
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ii2. f ′′(x) ≤ 0, ∀x ∈ [a, b],

then the elements of the sequences (xn)n≥0, (yn)n≥0, and (zn)n≥0 generated by
(5) remain in the interval [a, b] and satisfy the conclusions j1 and jj1 of
Theorem 2.

It is easy to see that if instead of (1) we consider

(10) −f(x) = 0

then function h : [a, b] → R given by relation

h(x) = −f(x)

verifies hypothesis of Theorem 2.

Theorem 4 If f and x0 ∈ [a, b] verify α), β′), γ) and, moreover,

i3 f ′(x) > 0, ∀x ∈ [a, b];

ii3 f ′′(x) ≤ 0, ∀x ∈ [a, b],

then the elements of the sequences (xn)n≥0, (yn)n≥0 and (zn)n≥0 generated by
(5) remain in [a, b] and, moreover, obey

j3. xn < yn < zn < xn+1 < x∗, n = 0, 1, ..., ;

jj3. limxn = lim yn = lim zn = x∗.

The proof of this result is similar to the proof of Theorem 2.
If we replace equation (1) by (10) then we obtain:

Corollary 5 If f and x0 ∈ [a, b] verify hypothesis α), β′), γ) and, moreover,

in. f ′(x) < 0, ∀x ∈ [a, b];

iin. f ′′(x) ≥ 0, ∀x ∈ [a, b],

then the elements of the sequences (xn)n≥0, (yn)n≥0 and (zn)n≥0 generated by
(5) remain in [a, b] and satisfy the statements j3 and jj3 of Theorem 4.

Remark 6 Relations (9) show us that the Aitken-Newton method has the q-
convergence order at least 6 (it is exactly 6 if f ′′ (x∗) 6= 0, see [9]). In order to
obtain xn+1 from xn in (5) we need to perform the following function evalua-
tions: f(xn), f

′(xn), f(yn), f
′(yn) and f(zn), i.e., 5 function evaluations. This

shows that the efficiency index of this method is 5
√
6 which is greater than of

Aitken or Newton method.
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Remark 7 Under additional information on the bounds of the size of deriva-
tives, one can obtain obtain some a posteriori error estimations of the error:

(11) |x∗ − xn+1| ≤
M

2m
|xn+1 − yn| |xn+1 − zn| , n = 0, 1, ...

where
m ≤ min

x∈[a,b]
|f ′(x)| , M ≥ max

x∈[a,b]
|f ′′(x)| .

In order to prove them, we consider the Newton identity,

f(xn+1) =f(yn) + [yn, zn; f ](xn+1 − yn)+

+ [xn+1, yn, zn; f ](xn+1 − yn)(xn+1 − zn), n = 0, 1, ...

whence, taking into acount (5), we get

f(xn+1)− f(x∗) = [xn+1, yn, zn; f ](xn+1 − yn)(xn+1 − zn), n = 0, 1, ...,

or

xn+1 − x∗ =
[xn+1, yn, zn; f ]

[x∗, xn+1; f ]
(xn+1 − yn)(xn+1 − zn), n = 0, 1, ...

The mean value formulas for divided differences lead to (11).
These estimations can be applied in connection to any of the results proved

above.

3 Numerical examples

Example 8 Consider the equation

f(x) = ex + sinx− 2, x ∈ [0, 1].

The derivatives of f are given by

f ′(x) = ex + cosx > 0, x ∈ [0, 1],

f ′′(x) = ex − sinx.

Some elementary considerations on f ′′ show that f ′′(x) > 0 , x ∈ [0, 1]. Since f
is continuous, f ′(x) > 0, x ∈ [0, 1] and f(0) = −1, f(1) = e + sin 1 − 2 > 0, it
follows that f has a unique solution on [0, 1].

Taking x0 = 1, the hypotheses of Theorem 2 are satisfied.
In Table 1 we present the results obtained in double precision using Matlab.

Table 1
n xn yn zn f (xn)
0 1.000000000000000e+0 5.213403278939761e-1 4.498799895489901e-1 1.5e+0

1 4.486920253023863e-1 4.486719164440748e-1 4.486719163512726e-1 4.9e-5

2 4.486719163512727e-1 0

One can easily verify that min
x∈[0,1]

|f ′(x)| = 2 and max
x∈[0,1]

|f ′′(x)| ≤ e.
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Taking into account (11) we get

|x∗ − x2| ≤ e
4 |x2 − y1| · |x2 − z1| .

The quantity in the right hand side is majorized by 7.0e-27, which, together
with the fact that f (x2) = 0, shows that in this particular case, x∗ can be
computed with accuracy higher than the machine epsilon.

Example 9

f(x) = ln(x2 + x+ 2)− x+ 1 = 0, x ∈ [4, 5].

We have

f ′(x) =
−x2 + x− 1

x2 + x+ 2
< 0, for x ∈ [4, 5];

f ′′(x) =
−2x2 − 2x+ 1

(x2 + x+ 2)2
< 0, for x ∈ [4, 5];

f(4) = ln 22− 3 > 0 and f(5) = ln 32− 4 < 0.
We take x0 = 5, so hypotheses of Corollary 3 are verified. The obtained

results are presented in Table 2.
Table 2.

n xn yn zn f (xn)
0 5.000000000000000e+0 4.185883280456726e+0 4.152656878948953e+0 -5.3e-1

1 4.152590868900850e+0 4.152590736757159e+0 4.152590736757158e+0 -7.9e-8

2 4.152590736757158e+0 0

In this case we have min
x∈[4,5]

|f ′(x)| > 1
3 and max

x∈[4,5]
|f ′′(x)| ≤ 1

8 , whence, by

(11) we get
|x∗ − x2| ≤ 3

16 |x2 − y1| · |x2 − z1| .
The quantity in the right hand side is majorized by 1.4e-31, which, together

with the fact that f (x2) = 0 shows that in this example too x∗ is computed with
accuracy higher than the machine epsilon.

We make the following comments regarding the convergence order of the ob-
tained sequences. Since they are monotonic in these two examples, the quotient
convergence factors [9, ch. 9] can be determined by (9), taking into account the
mean value formulas for divided differences, as

(12) Q6 {xk} = lim
k→∞

|xk+1 − x∗|
|xk − x∗|6

=
(f ′′ (x∗))5

32 (f ′ (x∗))
5 .

Therefore, since in both examples f ′′ (x∗) 6= 0, the q-convergence order is exactly
6. However, the above quantity requires the knowledge of the solution x∗. In [4]
and [5], the asymptotical constantQ6 {xk} was approximated by some quantities
computable at each step:

(13)
|xk+1 − xk|
|xk − xk−1|6

, k = 1, 2, ...
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In Example 8, formula (12) (with x∗ considered as x2) yields the value 6.3e-4,
while formula (13) for k = 1 yields 7.1e-4, i.e., two close quantities. These values
are also close in Example 9, where we obtain 1.0e-6, respectively 3.5e-7.

Some other formulas to determine the convergence order were considered in
[21]:

p ≈ ln |(xk+1 − x∗) / (xk − x∗)|
ln |(xk − x∗) / (xk−1 − x∗)| , k = 1, 2, ...

subsequently approximated in [5] by

p ≈ ln |(xk+1 − xk) / (xk − xk−1)|
ln |(xk − xk−1) / (xk−1 − xk−2)|

, k = 2, 3, ...

but since in the presented examples the solution was approximated in only three
steps (the convergence order is high), we cannot use these formulas.
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