**Citations in journals from Web of Sciences with Impact Factor > 0.3:**

E. Cătinaş, *On some iterative methods for solving nonlinear equations*, Rev Anal Numer Theor Approx, 23 (1994) 47-53

cited by:

I.K. Argyros and S. Hilout, *Majorizing sequences for iterative procedures in Banach spaces*, J. Complexity, 28 (2012) 5-6, 562-581, **Impact Factor 2011 (IF) 1.099**

E. Cătinaş, *On some iterative methods for solving nonlinear equations*, Rev Anal Numer Theor Approx, 23 (1994) 47-53

cited by:

I.K. Argyros and S. Hilout, *Majorizing sequences for iterative methods*, J. Comp. Appl. Math., 236 (2012) 1947–1960, **IF 1.112**

E. Cătinaş, *On some iterative methods for solving nonlinear equations*, Rev Anal Numer Theor Approx, 23 (1994) 47-53

cited by:

Fenlin Yang, Ke Chenb and Bo Yua, *Homotopy method for a mean curvature-based denoising model*, Apppl. Numer. Math., 62 (2012) 185–200, **IF 0.967**

E. Cătinaş, *Estimating the radius of an attraction ball*, Applied Mathematics Letters 22 (2009) 712 714.

cited by:

L.A. Melara, A.J.Kearsley, *The radius of attraction for Newton’s method and TV-minimization image denoising*, Appl. Math. Lett., 25 (2012) 2417–2422**, IF 1.371**

E. Cătinaş, *The inexact, inexact perturbed and quasi-Newton methods are equivalent models*, Math. Comput. 74, 291–301 (2004)

cited by:

I.K. Argyros, S. Hilout*, Weaker conditions for the convergence of Newton’s method*, J. Complexity, 28 (2012), 364-387 **IF 1.099**

I. Păvăloiu, *Introduction in the Theory of Approximation of Equations Solutions*, Dacia Ed., Cluj-Napoca, 1976.

cited by:

I.K. Argyros and S. Hilout, *Majorizing sequences for iterative methods*, J. Comp. Appl. Math., 236 (2012) 1947–1960, **IF 1.112**

I. Păvăloiu, *Sur la méthode de Steffensen pour la résolution des équations opérationnelles non linéaires*, Rev. Roumaine Math. Pures Appl. 13 (6) (1968) 857–861

cited by:

I.K. Argyros and S. Hilout, *Majorizing sequences for iterative methods*, J. Comp. Appl. Math., 236 (2012) 1947–1960, **IF 1.112**

I. Păvăloiu, *On the convergence of a Steffensen-type method*, in: Seminar on Mathematical Analysis, Preprint, 91–7, ‘‘Babeş–Bolyai’’ Univ., Cluj-Napoca, 1991, pp. 121–126.

cited by:

*Majorizing sequences for iterative methods*, J. Comp. Appl. Math., 236 (2012) 1947–1960, **IF 1.112**

I. Păvăloiu, *Sur la méthode de Steffensen pour la résolution des équations opérationnelles non linéaires*, Rev. Roumaine Math. Pures Appl. 13 (1968) 857–861.

cited by:

I.K. Argyros and S. Hilout, *Majorizing sequences for iterative procedures in Banach spaces*, J. Complexity, 28 (2012) 5-6, 562-581, **IF 1.099**

I. Păvăloiu, *Introduction in the Theory of Approximation of Equations Solutions*, Dacia Ed., Cluj-Napoca, 1976.

cited by:

I.K. Argyros and S. Hilout, *Majorizing sequences for iterative procedures in Banach spaces*, J. Complexity, 28 (2012) 5-6, 562-581, **IF 1.099**

I. Păvăloiu, *On the convergence of a Steffensen–type method*, Seminar on Mathematical Analysis, 121–126, 91–7, ‘‘Babeş–Bolyai’’ Univ., Cluj-Napoca, 1991. Preprint.

cited by:

I.K. Argyros and S. Hilout, *Majorizing sequences for iterative procedures in Banach spaces*, J. Complexity, 28 (2012) 5-6, 562-581, **IF 1.099**

I. Păvăloiu**,** *On an approximation formula*, Rev. Anal. Numer. Theor. Approx. 26 (1997), Ns. 1-2, pp. 179-183

cited by:

F. Pătrulescu, *A numerical method for the solution of an autonomous initial value problem*, Carpathian J. Math., 28 (2012) no. 2, 289-296, **IF 0.906**

I. Păvăloiu, *Introduction in the Theory of Approximation of Equations Solutions*, Dacia Ed., Cluj-Napoca, 1976.

cited by:

I.K. Argyros, S. Hilout, *Weaker conditions for the convergence of Newton’s method*, J. Complexity, 28 (2012), 364-387 **IF 1.099**

C. Vamoş, *Automatic algorithm for monotone trend removal*, Physical Review E, vol. 75 (2007) no. 3, art.id.: 036705,

cited by:

Jeng Yih-Nen; Yang Tzung-Ming; Cheng You-Chi, *A class of fast and accurate deterministic trend decomposition in the spectral domain using simple and sharp diffusive filters*, Journal of the Franklin Institute-Engineering and Applied Mathematics, Vol.: 349, Issue: 6, Pages: 2065-2092, 2012, **IF 2.724**

V.V. Morariu, L. Buimaga-Iarinca, C. Vamoş, Ş.M. Şoltuz, *Detrended fluctuation analysis of autoregressive processes*, Fluctuation and noise letters, v. 7 (2007) no. 3, L249-L255,

cited by:

Kristoufek Ladislav*, How are rescaled range analyses affected by different memory and distributional properties? A Monte Carlo study*, Physica A-Statistical Mechanics And Its Applications, Vol. 39, Issue 17, Pages: 4252-4260, Published: SEP 2012, **IF 1.373**

C. Vamoş, Ş. M. Şoltuz, M. Crăciun, *Order 1 autoregressive process of finite length*, Rev. Anal. Numér. Théor. Approx., vol 36, no.2, 199-214 (2007),

cited by:

Long B.C.; Knight K.L.; Hopkins T., Parcell A.C., Feland J.B., *Production of Consistent Pain by Intermittent Infusion of Sterile 5% Hypertonic Saline, Followed by Decrease of Pain With Cryotherapy*, Journal of Sport Rehabilitation vol. 21, issue 3, pp. 225-230, 2012, **IF 1.072**

C. Vamoş, N. Suciu and H. Vereecken, *Generalized random walk algorithm for the numerical modeling of complex diffusion processes*, Journal of Computational Physics, 186(2), pp. 527-544, 2003,

cited by:

Aleksander Stanislavsky and Karina Weron, *A study of difusion under a time-dependent force by time subordination*, Journal of Statistical Mechanics: Theory and Experiment, Issue 07 (July 2012), Published 19 July 2012, P07020, **IF 1.727**

and

Lin Liu, Wei Sun, Guang Ye, Huisu Chen, Zhiwei Qian, *Estimation of the ionic diffusivity of virtual cement paste by random walk algorithm*, Construction and Building Materials, Vol. 28, No. 1. (March 2012), pp. 405-413, Impact Factor: **1.366**

C. Vamoş, N. Suciu, and A. Georgescu, *Hydrodynamic equations for one-dimensional systems of inelastic particles*, Physical Review E, Vol. 55, pp. 6277-6280, 1997,

cited by:

Wylie J.J.; Yang R.; Zhang Q., *Periodic orbits of inelastic particles on a ring*, Physical Review E, Volume 86, Issue: 2, Article Number: 026601, Part 2, 2012**IF 2.255**

N. Suciu, *Spatially inhomogeneous transition probabilities as memory effects for diffusion in statistically homogeneous random velocity fields*, Physical Review E, 81, 056301,

cited by:

Dorini, F. A.; Cunha, M. C. C., *On the linear advection equation subject to random velocity fields*, Behaviour Research and Therapy, 50(1), 679-690, 2012, **IF 3.295**

C. Vamoş, N. Suciu, and A. Georgescu, *Hydrodynamic equations for one-dimensional systems of inelastic particles*, Physical Review E, Vol. 55, pp. 6277-6280, 1997,

cited by:

Wylie J.J.; Yang R.; Zhang Q., *Periodic orbits of inelastic particles on a ring*, Physical Review E, Volume 86, Issue: 2, Article Number: 026601, Part 2, 2012**IF 2.255**

C. I. Gheorghiu**,** *Spectral Methods for Differential Problems*, Ed. Casa Cartii de Stiinta, Cluj-Napoca, 2007, ISBN 978-973-133-099-0; Zbl 1122.65118,

cited by:

EH Doha, AH Bhrawy – *An efficient direct solver for multidimensional elliptic Robin boundary value problems using a Legendre spectral-Galerkin method*, Computers & Mathematics with Applications, http://dx.doi.org/10.1016/j.camwa.2011.12.0500 2012, Volume 64, Issue 4, August, 2012, Pages 558-571 – **IF 1.747**

and

IMR Sadiq, T Gambaryan-Roisman, P Stephan, *Falling liquid films on longitudinal grooved geometries: Integral boundary layer approach*, Physics of Fluids, 24 (2012) no.1, 014104, **IF 1.926**

and

Claude Brezinski, Paraskevi Fika and Marilena Mitrouli, *Moments of a linear operator, with applications to the trace of the inverse of matrices and the solution of equations*, Numerical Linear Algebra with Applications, Vol. 19, Issue 6, pages 937–953, December 2012,** IF 1.163**

C.I. Gheorghiu, Dragomirescu, I.F., *Spectral methods in linear stability. Applications to thermal convection with variable gravity field*, Applied Numerical Mathematics, 59(2009) 1290-1302; DOI 10.1016/j.apnum.2008.07.004- impact factor 0.967,

cited by:

EH Doha, WM Abd-Elhameed, AH Bhrawy – *An efficient direct solver for multidimensional elliptic Robin boundary value problems using a Legendre spectral-Galerkin method*, Computers & Mathematics with Applications, Volume 64, Issue 4, August 2012, Pages 558–571 *http://dx.doi.org/10.1016/j.camwa.2011.12.050*,- **IF: 1.574**

Rhoades, BE; Soltuz SM, *The equivalence between the convergences of Ishikawa and Mann iterations for an asymptotically nonexpansive in the intermediate sense and strongly successively pseudocontractive maps*, JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS Volume: 289 Issue: 1 Pages: 266-278 DOI: 10.1016/j.jmaa.2003.09.057 Published: JAN 1 2004

cited by:

Wang, Xuewu; Marino, Giuseppe; Muglia, Luigi, *On the Convergence of Mann and Ishikawa Iterative Processes for Asymptotically phi-Strongly Pseudocontractive Mappings *ABSTRACT AND APPLIED ANALYSIS Article Number: 850104 DOI: 10.1155/2012/850104 Published: 2012, **IF** **1.318**

and

Colao, Vittorio, *On the Convergence of Iterative Processes for Generalized Strongly Asymptotically phi-Pseudocontractive Mappings in Banach Spaces *, JOURNAL OF APPLIED MATHEMATICS Article Number: 563438 DOI: 10.1155/2012/563438 Published: 2012, **IF** **0.656**

and

Hussain, Nawab; Chugh, Renu; Kumar, Vivek; et al. *On the Rate of Convergence of Kirk-Type Iterative Schemes*, JOURNAL OF APPLIED MATHEMATICS, Article Number: 526503 DOI: 10.1155/2012/526503, Published: 2012 , **IF** **0.656**

Rhoades, BE; Soltuz, SM**,** *The equivalence between Mann-Ishikawa iterations and multistep iteration,* NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS Volume: 58 Issue: 1-2 Pages: 219-228 DOI: 10.1016/j.na.2003.11.013 Published: JUL 2004

cited by:

Wang, Xuewu; Marino, Giuseppe; Muglia, Luigi, *On the Convergence of Mann and Ishikawa Iterative Processes for Asymptotically phi-Strongly Pseudocontractive Mappings * ABSTRACT AND APPLIED ANALYSIS Article Number: 850104 DOI: 10.1155/2012/850104 Published: 2012, **IF 1.318**

and

Xue, Zhiqun; Rafiq, Arif; Zhou, Haiyun *On the Convergence of Multistep Iteration for Uniformly Continuous Phi-Hemicontractive Mappings*, ABSTRACT AND APPLIED ANALYSIS Article Number: 386983 DOI: 10.1155/2012/386983 Published: 2012, **IF 1.318**

and

Hussain, Nawab; Chugh, Renu; Kumar, Vivek; et al. *On the Rate of Convergence of Kirk-Type Iterative Schemes*, JOURNAL OF APPLIED MATHEMATICS, Article Number: 526503, DOI: 10.1155/2012/526503 Published: 2012, **IF 0.656**

and

Colao, Vittorio, *On the Convergence of Iterative Processes for Generalized Strongly Asymptotically phi-Pseudocontractive Mappings in Banach Spaces*, JOURNAL OF APPLIED MATHEMATICS Article Number: 563438 DOI: 10.1155/2012/563438 Published: 2012, **IF 0.656**

and

Z Xue, A Rafiq, H Zhou*, **On the Convergence of Multistep Iteration for Uniformly Continuous-Hemicontractive Mappings*, – Abstract and Applied Analysis, 2012 – Article ID 386983, 9 pages, doi:10.1155/2012/386983, **IF 1.318**

and

N Hussain, R Chugh, V Kumar, A Rafiq, *On the rate of convergence of Kirk-type iterative schemes*, J. of Applied Mathematics Vol. 2012 (2012), Article ID 526503, 22 pages doi:10.1155/2012/526503, **IF 0.656**

Soltuz, SM, The equivalence of Picard, *Mann and Ishikawa iterations dealing with quasi-contractive operators*, Math Commun, Volume: 10 Pages: 81-88 Published: 2005

cited by:

Phuengrattana, Withun; Suantai, Suthep, *Strong convergence theorems and rate of convergence of multi-step iterative methods for continuous mappings on an arbitrary interval*, Fixed Point Theory and Applications Article Number: 9 DOI: 10.1186/1687-1812-2012-9 Published: 2012, **IF: 1.634**

B.E. Rhoades, SM. Soltuz*, The equivalence between Mann-Ishikawa iterations and multistep iteration*, Nonlinear Analysis-Theory Methods & Applications, **58**(2004), 219–228.

cited by:

Vittorio Colao, On the Convergence of Iterative Processes for Generalized Strongly Asymptotically phi-Pseudocontractive Mappings in Banach Spaces, JOURNAL OF APPLIED MATHEMATICS Article Number: 563438 DOI: 10.1155/2012/563438 Published: 2012, **IF: 0.656**

Soltuz, SM, *The equivalence between Krasnoselskij, Mann, Ishikawa, Noor and multistep iterations* Mathematical Communications, 2007 – hrcak.srce.hr

cited by:

N Hussain, R Chugh, V Kumar, A Rafiq *On the rate of convergence of Kirk-type iterative schemes*, Journal of Applied Mathematics, Volume 2012 (2012), Article ID 526503, 22 pages, doi:10.1155/2012/52650, **IF=0.656**

Ş. M Şoltuz**,** *The equivalence of Picard, Mann and Ishikawa iterations dealing with quasi-contractive operators*, Mathematical Communications, 2005 – 10, 81–88 (2005)

cited by:

N Hussain, R Chugh, V Kumar, A Rafiq, *On the rate of convergence of Kirk-type iterative schemes*, – Journal of Applied Mathematics, Volume 2012 (2012), Article ID 526503, 22 pages, doi:10.1155/2012/526503, 2012 – hindawi.com, **IF=0.656**

and

W Phuengrattana, S Suantai, *Strong convergence theorems and rate of convergence of multi-step iterative methods for continuous mappings on an arbitrary interval*, Fixed Point Theory and Applications, vol.9, 2012 – doi:10.1186/1687-1812-2012-9, Springer, **IF=0.776**

D. Otrocol, I.A. Rus, *Functional-differential equation with “maxima”, of mixed type*, Fixed Point Theory, 9(2008), no.1, 207-220,

cited by:

Rabha W. Ibrahim, *Extremal solutions for certain type of fractional differential equations with maxima*, Advances in Difference Equations, 2012, 2012:7, Published: 8 February 2012, **IF: 0.845**

D. Otrocol, *Abstract Volterra operators*, Carpathian J. Math., 24 (2008), no. 3, 370-377,

cited by:

I.A. Rus, *An abstract point of view on iterative approximation of fixed points: impact on the theory of fixed point equations*, Fixed Point Theory, 13, No. 1, 179-192, 2012, **IF: 0.970.**

**Citations in journals from Web of Sciences with Impact Factor > 0.3 published online 2012 :**

E. Cătinaş, *Inexact perturbed Newton methods and application to a class of Krylov solvers*. J. Optim. Theory Appl. 108, 543–571 (2001)

cited by:

M.J. Smietanski, *A perturbed version of an inexact generalized Newton method for solving nonsmooth equations*, Numer. Algor. DOI 10.1007/s11075-012-9613-7, **IF 1.042**

E. Cătinaş, *The inexact, inexact perturbed and quasi-Newton methods are equivalent models*, Math. Comput. 74, 291–301 (2004)

cited by:

M.J. Smietanski, *A perturbed version of an inexact generalized Newton method for solving nonsmooth equations*, Numer. Algor. DOI 10.1007/s11075-012-9613-7, **IF 1.042**

E. Cătinaş, *The inexact, inexact perturbed and quasi-Newton methods are equivalent models*, Math. Comput. 74, 291–301 (2004)

cited by:

I.K. Argyros and S. Hilout, *Estimating upper bounds on the limit points of majorizing sequences for Newton’s method*, Numer. Algor. DOI 10.1007/s11075-012-9570-1, **IF 1.042**

*Introduction in the Theory of Approximation of Equations Solutions*, Dacia Ed., Cluj-Napoca, 1976.

cited by:

I.K. Argyros and S. Hilout, *Estimating upper bounds on the limit points of majorizing sequences for Newton’s method*, Numer. Algor. DOI 10.1007/s11075-012-9570-1, **IF 1.042**

*Introduction in the Theory of Approximation of Equations Solutions*, Dacia Ed., Cluj-Napoca, 1976.

cited by:

I.K. Argyros S. Hilout, *Secant–type methods and nondiscrete induction*, Numer. Algor., DOI 10.1007/s11075-012-9540-7, **IF 1.042**

M.-C. Anisiu, V. Anisiu, Z. Kása, *On the total palindrome complexity*, Discr. Math. 310 (2010), 109-114

cited by:

T. I, Sh. Inenaga and M. Takeda*, Palindrome pattern matching*, Theoretical Computer Science, In Press, Corrected Proof, Available online 31 January 2012, http://dx.doi.org/10.1016/j.tcs.2012.01.047, **IF 0.665**

C. I. Gheorghiu**,** *Spectral Methods for Differential Problems*, Ed. Casa Cartii de Stiinta, Cluj-Napoca, 2007, ISBN 978-973-133-099-0; Zbl 1122.65118,

cited by:

EH Doha, WM Abd-Elhameed, AH Bhrawy, *New spectral-Galerkin algorithms for direct solution of high even-order differential equations using symmetric generalized Jacobi polynomials**,* Collectanea Mathematica, 2012 – DOI: 10.1007/s13348-012-0067-y Springer **IF 0.574**

**Citations in journals from Web of Sciences with Impact Factor < 0.3, ISI Proceedings:**

V. Soporan, C. Pavai, C. Vamoş,* Modelarea numerica a tumarii otelurilor in lingotiera in vederea optimizarii parametrilor tehnologic*, Metalurgia, Vol. 48, No. 11, pp. 42-47, 1996.

cited by:

Andronache C.; Socalici A.; Heput T., Popa E*., Research on the influence of steel ingot solidification process control on the tenacity characteristics*, Metalurgia International vol. 17, No. 9, pp. 234-238, 2012, **IF:** **0.084**

**Citations in books published by reputed publishing houses**

*The inexact, inexact perturbed and quasi-Newton methods are equivalent models*, Math. Comput. 74, 291–301 (2004)

Citată în

*On some iterative methods for solving nonlinear equations*, Rev Anal Numer Theor Approx, 23 (1994) 47-53

Citată în

E. Cătinaş, *Estimating the radius of an attraction ball*, Applied Mathematics Letters 22 (2009) 712 714.

Citată în

E. Cătinaş, *Inexact perturbed Newton methods and application to a class of Krylov solvers*. J. Optim. Theory Appl. 108, 543–571 (2001)

Citată în

*The inexact, inexact perturbed and quasi-Newton methods are equivalent models*, Math. Comput. 74, 291–301 (2004)

Citată în

E. Cătinaş, *On the superlinear convergence of the successive approximations method*, J. Optim. Theory Appl., 113 (2002) no. 3, pp. 473-485

Citată în

E. Cătinaş, *Sufficient convergence conditions for certain accelerated successive approximations*, Trends and Applications in Constructive Approximation, Eds. M.G. de Bruin, D.H. Mache and J. Szabados, International Series of Numerical Mathematics, vol. 1, pp. 71-75, 2005, Birkhauser Verlag, Basel

Citată în

E. Cătinaş, *On accelerating the convergence of the successive approximations method*, Rev. Anal. Numér. Théor. Approx., 30 (2001) no. 1, pp. 3-8

Citată în

C. Mustăţa, *On the best approximation in metric spaces*, Rev. Anal. Numer. Theor. Approx. 4 (1975), no. 1, 45–50.

cited by:

S. Cobzas, *Functional analysis in asymmetric normed spaces*, Birkhäuser, 2012, 232pp.

C. Mustăţa, *A characterization of semi-Chebyshevian sets in a metric space*, Anal. Numer. Theor. Approx. 7 (1978), no. 2, 169–170.

cited by:

S. Cobzas, *Functional analysis in asymmetric normed spaces*, Birkhäuser, 2012, 232pp.

C. Mustăţa, *Some remarks concerning norm preserving. Extensions and best approximation*, Rev. Anal. Numer. Theor. Approx. 29 (2000), no. 2, 173–180 (2002).

cited by:

S. Cobzas, *Functional analysis in asymmetric normed spaces*, Birkhäuser, 2012, 232pp.

C. Mustăţa, *Uniqueness of the extension of semi-Lipschitz functions on quasi-metric spaces*, Bul. Stiint. Univ. Baia Mare Ser. B Fasc. Mat.-Inform. 16 (2000), no. 2, 207–212.

cited by:

S. Cobzas, *Functional analysis in asymmetric normed spaces*, Birkhäuser, 2012, 232pp.

C. Mustăţa, *Extensions of semi-Lipschitz functions on quasi-metric spaces*, Rev. Anal. Numer. Theor. Approx. 30(2001), no. 1, 61–67 (2002).

cited by:

S. Cobzas, *Functional analysis in asymmetric normed spaces*, Birkhäuser, 2012, 232pp.

C. Mustăţa, *Extension and approximation of semi-Lipschitz functions on a quasi-metric space*, Numerical analysis and approximation theory (Cluj-Napoca, 2002), Cluj Univ. Press, Cluj-Napoca, 2002, pp. 362–385.

cited by:

S. Cobzas, *Functional analysis in asymmetric normed spaces*, Birkhäuser, 2012, 232pp.

C. Mustăţa, *On the extremal semi-Lipschitz functions*, Rev. Anal. Numer. Theor. Approx. 31 (2002), no. 1, 103–108(2003).

cited by:

S. Cobzas, *Functional analysis in asymmetric normed spaces*, Birkhäuser, 2012, 232pp.

C. Mustăţa, *A Phelps type theorem for spaces with asymmetric norms*, (Proc. 3rd International Conf. on Applied Mathematics, Borsa, 2002), Bul. Stiint. Univ. Baia Mare, Ser. B, Matematica-Informatica 18 (2002), no. 2, 275–280.

cited by:

S. Cobzas, *Functional analysis in asymmetric normed spaces*, Birkhäuser, 2012, 232pp.

C. Mustăţa, *On the uniqueness of the extension and unique best approximation in the dual of an asymmetric linear space*, Rev. Anal. Numer. Theor. Approx. 32 (2003), no. 2, 187–192.

cited by:

S. Cobzas, *Functional analysis in asymmetric normed spaces*, Birkhäuser, 2012, 232pp.

C. Mustăţa, *Characterization of nearest points in spaces with asymmetric seminorm*, Rev. Anal. Numer. Theor. Approx. 33 (2004), no. 2, 203–208 (2005).

cited by:

S. Cobzas, *Functional analysis in asymmetric normed spaces*, Birkhäuser, 2012, 232pp.

C. Mustăţa, *On the extension of semi-Lipschitz functions on asymmetric normed spaces*, Rev. Anal. Numer. Theor. Approx. 34 (2005), no. 2, 139–150.

cited by:

S. Cobzas, *Functional analysis in asymmetric normed spaces*, Birkhäuser, 2012, 232pp.

C. Mustăţa, *Best uniform approximation of semi-Lipschitz functions by extensions*, Rev. Anal. Numer. Theor. Approx. 36 (2007), no. 2, 161–171.

cited by:

S. Cobzas, *Functional analysis in asymmetric normed spaces*, Birkhäuser, 2012, 232pp.

C. Mustăţa, *On the approximation of the global extremum of a semi-Lipschitz function*, Mediterr. J. Math. 6 (2009), no. 2, 169–180.

cited by:

S. Cobzas, *Functional analysis in asymmetric normed spaces*, Birkhäuser, 2012, 232pp.

N. Suciu, C. Vamos, Vanderborght, J., Hardelauf, H., Vereecken, H.: *Numerical investigations on ergodicity of solute transport in heterogeneous aquifers*. Water Resour. Res. **42**, W04409–W04419 (2006,

cited by:

Coutelieris, F. A., and Delgado, J., pp 5-21, in *Transport Processes in Porous Media*, Advanced Structured MaterialsVolume 20, Springer, 2012, ISBN: 978-3-642-27909-6

**Citations in international journals**

to be completed…

**Citations in national journals**

to be completed…