ULAM STABILITY FOR A DELAY DIFFERENTIAL EQUATION

DIANA OTROCOL* AND VERONICA ILEA**

ABSTRACT. In this paper we study the Ulam-Hyers stability and generalized Ulam-Hyers-Rassias stability for a delay differential equation. Some examples are given.

MSC 2000: 34K20, 34L05, 47H10.

 $\label{thm:equiv} \textbf{Keywords: Ulam-Hyers stability, Ulam-Hyers-Rassias stability, descriptions of the temperature of the temp$

lay differential equation.

1. Introduction

In the last 30 years, the stability theory of functional equations was strongly developed. Very important contributions to this subject were brought by Ulam [15], Rassias [10], Hyers et al. [4], Jung [5], Guo et al. [3], Kolmanovskii and Myshkis [6] and Radu [9]. Our results are connected to some recent papers of Castro and Ramos [2] and Jung [5] (where integral and differential equations are considered), Bota-Boriceanu and Petruşel [1] and Petru et al. [8] (where the Ulam-Hyers stability for operatorial equations and inclusions are discussed). Following [13] and [7], in our paper we will investigate Ulam-Hyers stability, generalized Ulam-Hyers-Rassias stability for the following differential equation with modification of the argument

$$x'(t) = f(t, x(t), x(g(t))), \ t \in I \subset \overline{\mathbb{R}},$$

where

(i) I = [a, b] or $I = [a, \infty[, a, b \in \mathbb{R};$

(ii) $f \in C([a,b] \times \mathbb{R}^2, \mathbb{R}), g \in C([a,b], [a-h,b]), g(t) \leq t, h > 0$, respectively $f \in C([a,\infty[\times \mathbb{R}^2,\mathbb{R}), g \in C([a,\infty[,[a-h,\infty[,g(t)\leq t,h>0.$

By a solution of the above equation we understand a function $x \in C([a-h,b],\mathbb{R}) \cap C^1([a,b],\mathbb{R})$, respectively $x \in C([a-h,\infty[,\mathbb{R}) \cap C^1([a,\infty[,\mathbb{R}),\mathbb{R})))$, that verifies the equation.

^{* &}quot;T. Popoviciu" Institute of Numerical Analysis, Romanian Academy, Fântânele 57, Cluj-Napoca, 400320, Romania.

^{**} Department of Mathematics, Faculty of Mathematics and Computer Science, "Babes-Bolyai" University, M. Kogălniceanu 1, Cluj-Napoca, RO-400084, Romania.

2. Preliminaries

We begin our considerations with some notions and results from Ulam stability (see [13], [14]), for the case I = [a, b].

For $f \in C(I \times \mathbb{R}^2, \mathbb{R})$, $\varepsilon > 0$, $\varphi \in C([a - h, b], \mathbb{R}_+)$ and $\psi \in C([a - h, a], \mathbb{R})$ we consider the following Cauchy problem

$$(2.1) x'(t) = f(t, x(t), x(g(t))), t \in I$$

(2.2)
$$x(t) = \psi(t), t \in [a - h, a]$$

and the following inequations

$$(2.3) |y'(t) - f(t, y(t), y(g(t)))| \le \varepsilon, \ t \in I$$

$$(2.4) |y'(t) - f(t, y(t), y(g(t)))| \le \varphi(t), \ t \in I.$$

Definition 2.1. The equation (2.1) is Ulam-Hyers stable if there exists a real number c > 0 such that for each $\varepsilon > 0$ and for each solution $y \in C^1([a-h,b],\mathbb{R})$ of (2.3) there exists a solution $x \in C^1([a-h,b],\mathbb{R})$ of (2.1) with

$$|y(t) - x(t)| \le c\varepsilon, \quad \forall t \in [a - h, b].$$

Definition 2.2. The equation (2.1) is generalized Ulam-Hyers-Rassias stable with respect to φ , if there exists $c_{\varphi} > 0$, such that for each solution $y \in C^1([a-h,b],\mathbb{R})$ of the inequation (2.4) there exists a solution $x \in C^1([a-h,b],\mathbb{R})$ of (2.1) with

$$|y(t) - x(t)| \le c_{\varphi}\varphi(t), \ \forall t \in [a - h, b].$$

Remark 2.3. A function $y \in C^1(I,\mathbb{R})$ is a solution of (2.3) if and only if there exists a function $h \in C(I,\mathbb{R})$ (which depends on y) such that

- (i) $|h(t)| \le \varepsilon$, $\forall t \in I$;
- (ii) $y'(t) = f(t, y(t), y(g(t))) + h(t), \forall t \in I.$

Remark 2.4. A function $y \in C^1(I,\mathbb{R})$ is a solution of (2.4) if and only if there exists a function $\widetilde{h} \in C(I,\mathbb{R})$ (which depends on y) such that

- (i) $\left|\widetilde{h}(t)\right| \leq \varphi(t), \ \forall t \in I;$
- (ii) $y'(t) = f(t, y(t), y(g(t))) + \tilde{h}(t), \ \forall t \in I.$

Remark 2.5. If $y \in C^1(I, \mathbb{R})$ is as solution of the inequation (2.3), then y is a solution of the following integral inequation

$$\left| y(t) - y(a) - \int_{a}^{t} f(s, y(s), y(g(s))) ds \right| \le (t - a)\varepsilon, \ \forall t \in I.$$

Remark 2.6. If $y \in C^1(I, \mathbb{R})$ is as solution of the inequation (2.4), then y is a solution of the following integral inequation

$$\left| y(t) - y(a) - \int_a^t f(s, y(s), y(g(s))) ds \right| \le \int_a^t \varphi(s) ds, \ \forall t \in I.$$

Analogously, one may have the above definitions and remarks for the case $I = [a, \infty[$, the interval [a - h, b] would be replaced by $[a - h, \infty[$.

In the sequel we shall use the following Picard operator definition and the well-known Gronwall lemma and abstract Gronwall lemma (see, e.g. Rus [12]).

Definition 2.7. (Rus [11]) Let (X, d) be a metric space. An operator $A: X \to X$ is a Picard operator if there exists $x^* \in X$ such that:

- (i) $F_A = \{x^*\}$ where $F_A := \{x \in X \mid A(x) = x\}$ is the fixed point set of A:
- (ii) the sequence $(A^n(x_0))_{n\in\mathbb{N}}$ converges to x^* for all $x_0\in X$.

Lemma 2.8. (Gronwall Lemma) Let $g, h \in C([a,b], \mathbb{R}_+)$ be two functions. We suppose that g is increasing. If $x \in C([a,b], \mathbb{R}_+)$ is a solution of the inequation

$$x(t) \le g(t) + \int_a^b h(s)x(s)ds, \ t \in [a, b],$$

then

$$x(t) \le g(t) \exp\left(\int_a^b h(s)ds\right), \ t \in [a, b].$$

Lemma 2.9. (Abstract Gronwall Lemma) Let (X, d, \leq) be an ordered metric space and $A: X \to X$ an operator. We suppose that:

- (i) A is a Picard operator $(F_A = \{x_A^*\})$;
- (ii) A is an increasing operator.

Then we have: (a) $x \in X$, $x \leq A(x) \Longrightarrow x \leq x_A^*$;

- (b) $x \in X$, $x \ge A(x) \Longrightarrow x \ge x_A^*$.
- 3. Ulam-Hyers stability on a compact interval I = [a, b]

In this section we present conditions for the equation (2.1) to admit the Ulam-Hyers stability on a compact interval I = [a, b].

Theorem 3.1. We suppose that

- (a) $f \in C([a, b] \times \mathbb{R}^2, \mathbb{R}), g \in C([a, b], [a h, b]), g(t) \le t, h > 0;$
- (b) there exists $L_f > 0$ such that $\forall t \in [a, b], u_i, v_i \in \mathbb{R}, i = 1, 2, we have$

$$|f(t, u_1, u_2) - f(t, v_1, v_2)| \le L_f \sum_{i=1}^{2} |u_i - v_i|;$$

(c)
$$2(b-a)L_f < 1$$
.

Then

- (i) the problem (2.1)–(2.2) has a unique solution in $C([a-h,b],\mathbb{R}) \cap C^1([a,b],\mathbb{R})$;
- (ii) the equation (2.1) is Ulam-Hyers stable.

Proof. (i) In the condition (a), the problem (2.1)–(2.2) is equivalent to the integral equation

$$x(t) = \begin{cases} \psi(t), & t \in [a - h, a], \\ \psi(t) + \int_{a}^{t} f(s, x(s), x(g(s))) ds, & t \in [a, b]. \end{cases}$$

Let $X := C([a-h,b], \mathbb{R})$ and $B_f : X \to X$ be given by

$$B_f(x)(t) := \begin{cases} \psi(t), & t \in [a - h, a], \\ \psi(t) + \int_a^t f(s, x(s), x(g(s))) ds, & t \in [a, b]. \end{cases}$$

We show that B_f is a contraction on X with respect to the Chebyshev norm.

$$|B_{f}(x)(t) - B_{f}(y)(t)| = 0, \quad \forall x, y \in C([a - h, b], \mathbb{R}), \ t \in [a - h, a].$$

$$|B_{f}(x)(t) - B_{f}(y)(t)|$$

$$\leq \left| \int_{a}^{t} f(s, x(s), x(g(s))) ds - \int_{a}^{t} f(s, y(s), y(g(s))) ds \right|$$

$$\leq L_{f} \left(\max_{a - h \leq t \leq b} |x(s) - y(s)| + \max_{a - h \leq t \leq b} |x(g(s)) - y(g(s))| \right) (b - a)$$

$$\leq 2(b - a) L_{f} ||x - y||, \ \forall x, y \in C([a - h, b], \mathbb{R}), \ t \in [a, b].$$

So,

$$||B_f(x) - B_f(y)|| \le 2(b-a)L_f ||x-y||, \ \forall x, y \in C([a-h,b], \mathbb{R}),$$

i.e., B_f is a contraction w.r.t. the Chebyshev norm on X. The proof follows from the Banach contraction principle.

(ii) Let $y \in C([a-h,b],\mathbb{R}) \cap C^1([a,b],\mathbb{R})$ be a solution of the inequation (2.3). We denote by $x \in C([a-h,b],\mathbb{R}) \cap C^1([a,b],\mathbb{R})$ the unique solution of the Cauchy problem

$$x'(t) = f(t, x(t), x(g(t))), t \in [a, b],$$

 $x(t) = y(t), t \in [a - h, a].$

From condition (a) we have

$$x(t) = \begin{cases} y(t), & t \in [a - h, a], \\ y(a) + \int_{a}^{t} f(s, x(s), x(g(s))) ds, & t \in [a, b]. \end{cases}$$

Remark 2.5 gives

$$\left| y(t) - y(a) - \int_a^t f(s, y(s), y(g(s))) ds \right| \le (t - a)\varepsilon, \ t \in [a, b].$$

It follows that |y(t) - x(t)| = 0, for $t \in [a - h, a]$ and for $t \in [a, b]$ we have

$$(3.1) |y(t) - x(t)| \le$$

$$\le |y(t) - y(a) - \int_a^t f(s, y(s), y(g(s))) ds| +$$

$$+ \int_a^t |f(s, y(s), y(g(s))) - f(s, x(s), x(g(s)))| ds$$

$$\le (t - a)\varepsilon + L_f \Big(\int_a^t |y(s) - x(s)| ds + \int_a^t |y(g(s)) - x(g(s))| ds \Big).$$

According to the last inequality, for $u \in C([a-h,b], \mathbb{R}_+)$ we consider the following operator $A: C([a-h,b], \mathbb{R}_+) \to C([a-h,b], \mathbb{R}_+)$ defined by

$$A(u)(t) := \begin{cases} 0, & t \in [a-h, a], \\ (t-a)\varepsilon + L_f \int_a^t u(s)ds + L_f \int_a^t u(g(s))ds, & t \in [a, b]. \end{cases}$$

In order to verify that A is a Picard operator (Definition 2.7) we prove that A is a contraction.

For $t \in [a, b]$:

$$|A(u)(t) - A(v)(t)| \le$$

$$\le L_f \left(\int_a^t |u(s) - v(s)| \, ds + \int_a^t |u(g(s)) - v(g(s))| \, ds \right)$$

$$\le L_f \left(\max_{a-h \le t \le b} |u(s) - v(s)| + \max_{a-h \le t \le b} |u(g(s)) - v(g(s))| \right) (b-a)$$

$$\le 2(b-a)L_f \|u-v\|, \ \forall u, v \in C([a-h,b], \mathbb{R}_+).$$

So, $||A(u) - A(v)|| \le 2(b-a)L_f ||u-v||$, $\forall u, v \in C([a-h,b], \mathbb{R}_+)$, i.e., A is a contraction w.r.t. the Chebyshev norm on $C([a-h,b], \mathbb{R}_+)$. Applying the Banach contraction principle, we have that A is Picard operator and $F_A = \{u^*\}$. Then

$$u^*(t) = (t - a)\varepsilon + L_f \int_a^t u^*(s)ds + L_f \int_a^t u^*(g(s))ds, \ t \in [a, b].$$

The solution u^* is increasing and $(u^*)' \geq 0$. So, $u^*(g(t)) \leq u^*(t)$ and

$$u^*(t) \le (t-a)\varepsilon + 2L_f \int_a^t u^*(s)ds.$$

From the Gronwall Lemma we obtain

$$u^*(t) < c\varepsilon$$
, $t \in [a-h, b]$, where $c := (b-a) \exp(2L_f(b-a))$.

In particular, if u := |y - x|, from (3.1), $u(t) \le A(u)(t)$ and applying the abstract Gronwall lemma we obtain $u(t) \le u^*(t)$ (A is a Picard and

an increasing operator). It follows that

$$|y(t) - x(t)| \le c\varepsilon, \ t \in [a - h, b],$$

i.e., the equation (2.1) is Ulam-Hyers stable.

4. Generalized Ulam-Hyers-Rassias stability on $I=[a,\infty[$

In this section we present conditions for the equation (2.1) to admit the generalized Ulam-Hyers-Rassias stability on the interval $I = [a, \infty[$.

Theorem 4.1. We suppose that

- (a) $f \in C([a, \infty[\times \mathbb{R}^2, \mathbb{R}), g \in C([a, \infty[, [a-h, \infty[), g(t) \le t, h > 0;$
- (b) there exists $l_f \in L^1([a, \infty[, \mathbb{R}_+) \text{ such that } \forall t \in [a, \infty[, u_i, v_i \in \mathbb{R}, i = 1, 2, \text{ we have}]$

$$|f(t, u_1, u_2) - f(t, v_1, v_2)| \le l_f(t)(|u_1 - v_1| + |u_2 - v_2|);$$

- (c) the function $\varphi \in C[a, \infty[$ is increasing;
- (d) there exists $\lambda > 0$ such that

$$\int_{a}^{t} \varphi(s)ds \le \lambda \varphi(t), \ t \in [a, \infty[.$$

Then

- (i) the problem (2.1)–(2.2) has a unique solution in $C([a-h, \infty[, \mathbb{R}) \cap C^1([a, \infty[, \mathbb{R});$
- (ii) the equation (2.1) is generalized Ulam-Hyers-Rassias stable with respect to φ .

Proof. The proof follows the same steps as in Theorem 3.1. Let $y \in C([a-h,\infty[,\mathbb{R})\cap C^1([a,\infty[,\mathbb{R})$ be a solution of the inequation (2.4). The equation (2.1) has a unique solution in $C([a-h,\infty[,\mathbb{R})\cap C^1([a,\infty[,\mathbb{R})$. We denote by $x\in C([a-h,\infty[,\mathbb{R})\cap C^1([a,\infty[,\mathbb{R})$ the unique solution of the Cauchy problem

$$x'(t) = f(t, x(t), x(g(t))), t \in [a, \infty[, x(a) = y(t), t \in [a - h, a].$$

So

$$x(t) = \begin{cases} y(t), & t \in [a - h, a] \\ y(a) + \int_a^t f(s, x(s), x(g(s))) ds, & t \in [a, \infty[.] \end{cases}$$

Remark 2.6 gives

$$\left| y(t) - y(a) - \int_{a}^{t} f(s, y(s), y(g(s))) ds \right| \le \int_{a}^{t} \varphi(s) ds \le \lambda \varphi(t), \ t \in [a, \infty[.]$$

From the above relations, for $t \in [a - h, a]$ we have |y(t) - x(t)| = 0 and for $t \in [a, \infty[$, we obtain

$$|y(t) - x(t)| \le \left| y(t) - y(a) - \int_a^t f(s, y(s), y(g(s))) ds \right| +$$

$$+ \int_a^t |f(s, y(s), y(g(s))) - f(s, x(s), x(g(s)))| ds$$

$$\le \lambda \varphi(t) + \int_a^t l_f(s) |y(s) - x(s)| ds + \int_a^t l_f(s) |y(g(s)) - x(g(s))| ds.$$

As in the proof of Theorem 3.1 (ii), it follows that

$$|y(t) - x(t)| \le \lambda \varphi(t) \exp\left(\int_a^t 2l_f(s)ds\right) = c_{\varphi}\varphi(t), \ t \in [a, \infty[,$$

where $c_{\varphi} := \lambda \exp\left(\int_a^t 2l_f(s)ds\right)$, i.e., the equation (2.1) is generalized Ulam-Hyers-Rassias stable.

5. Applications

Here we present some consequences of the above theory.

Example 5.1. We consider the following Cauchy problem

(5.1)
$$x'(t) = f(t, x(t), x(t-h)), \ t \in [a, b)$$

(5.2)
$$x(a) = x_0$$

and the following inequations

$$|y'(t) - f(t, y(t), y(t - h))| \le \varepsilon, \ t \in [a, b)$$

 $|y'(t) - f(t, y(t), y(t - h))| \le \varphi(t), \ t \in [a, b).$

In this case, from Theorem 3.1 we have:

Theorem 5.2. We suppose that

- (a) $f \in C([a, b] \times \mathbb{R}^2, \mathbb{R});$
- (b) there exists $L_f > 0$ such that $\forall t \in [a, b], u_i, v_i \in \mathbb{R}, i = 1, 2$ we have

$$|f(t, u_1, u_2) - f(t, v_1, v_2)| \le L_f \sum_{i=1}^2 |u_i - v_i|;$$

Then

- (i) the problem (5.1)–(5.2) has a unique solution in $C([a-h,b],\mathbb{R}) \cap C^1([a,b],\mathbb{R})$;
- (ii) the equation (5.1) is Ulam-Hyers stable.

Let $b = +\infty$. The conditions (a)-(d) from Theorem 4.1 are the same, so the problem (5.1)-(5.2) has a unique solution in $C([a - h, \infty[, \mathbb{R}) \cap C^1([a, \infty[, \mathbb{R})]))$ and the equation (5.1) is generalized Ulam-Hyers-Rassias stable on $[a, \infty[$.

Theorem 5.3. We suppose that

- (a) $f \in C([a, \infty[\times \mathbb{R}^2, \mathbb{R});$
- (b) there exists $l_f \in L^1([a, \infty[, \mathbb{R}_+) \text{ such that } \forall t \in [a, \infty[, u_i, v_i \in \mathbb{R}, i = 1, 2, \text{ we have}]$

$$|f(t, u_1, u_2) - f(t, v_1, v_2)| \le l_f(t)(|u_1 - v_1| + |u_2 - v_2|);$$

- (c) the function $\varphi \in C[a, \infty[$ is increasing;
- (d) there exists $\lambda > 0$ such that

$$\int_0^t \varphi(s)ds \le \lambda \varphi(t), \ t \in [a, \infty[.$$

Then

- (i) the problem (5.1)–(5.2) has a unique solution in $C([a-h, \infty[, \mathbb{R}) \cap C^1([a, \infty[, \mathbb{R});$
- (ii) the equation (5.1) is generalized Ulam-Hyers-Rassias stable with respect to φ .

Example 5.4. We consider the following Cauchy problem

$$(5.3) x'(t) = f(t, x(t), x(t^2)), t \in [0, 1]$$

$$(5.4) x(0) = x_0$$

and the following inequations

$$|y'(t) - f(t, y(t), y(t^2))| \le \varepsilon, \ t \in [0, 1)$$

 $|y'(t) - f(t, y(t), y(t^2))| \le \varphi(t), \ t \in [0, 1).$

For this example, Theorem 3.1 and Theorem 4.1 become

Theorem 5.5. We suppose that

- (a) $f \in C([0,1] \times \mathbb{R}^2, \mathbb{R});$
- (b) there exists $L_f > 0$ such that $\forall t \in [0, 1], u_i, v_i \in \mathbb{R}, i = 1, 2, we have$

$$|f(t, u_1, u_2) - f(t, v_1, v_2)| \le L_f \sum_{i=1}^{2} |u_i - v_i|;$$

Then

- (i) the problem (5.3)–(5.4) has a unique solution in $C([0,1],\mathbb{R}) \cap C^1([0,1],\mathbb{R})$;
- (ii) the equation (5.3) is Ulam-Hyers stable.

Theorem 5.6. We suppose that

- (a) $f \in C([0, \infty[\times \mathbb{R}^2, \mathbb{R});$
- (b) there exists $l_f \in L^1([0,\infty[,\mathbb{R}_+) \text{ such that } \forall t \in [0,\infty[,u_i,v_i \in \mathbb{R}, i=1,2, \text{ we have}]$

$$|f(t, u_1, u_2) - f(t, v_1, v_2)| \le l_f(t)(|u_1 - v_1| + |u_2 - v_2|);$$

(c) the function $\varphi \in C[0, \infty[$ is increasing;

(d) there exists $\lambda > 0$ such that

$$\int_0^t \varphi(s)ds \le \lambda \varphi(t), \ t \in [0, \infty[.$$

Then

- (i) the problem (5.3)–(5.4) has a unique solution in $C([0, \infty[, \mathbb{R}) \cap C^1([0, \infty[, \mathbb{R});$
- (ii) the equation (5.3) is generalized Ulam-Hyers-Rassias stable with respect to φ .

Acknowledgement The authors would like to thank the referees for their useful and valuable suggestions.

The work of the second author was supported by a grant of the Romanian National Authority for Scientific Research, CNCS UEFISCDI, project number PN-II-ID-PCE-2011-3-0094.

References

- [1] Bota-Boriceanu M.F., Petruşel A., Ulam-Hyers stability for operatorial equations, Analele Şt. Univ. "Al. I.Cuza" Iaşi, 2011, LVII, DOI: 10.2478/v10157-011-0003-6
- [2] Castro L.P., Ramos A., Hyers-Ulam-Rassias stability for a class of nonlinear Volterra integral equations, Banach J. Math. Anal., 2009, 3, 36–43
- [3] Guo D., Lakshmikantham V., Liu X., Nonlinear Integral Equations in Abstract Spaces, Kuwer Academic Publishers, Dordrecht, Boston, London, 1996
- [4] Hyers D.H., Isac G., Rassias Th.M., Stability of functional equations in several variables, Progress in Nonlinear Differential Equations and their Applications, 34, Birkhäuser, Boston, 1998
- [5] Jung S.-M., A fixed point approach to the stability of a Volterra integral equation, Fixed Point Theory Appl., 2007, Article ID 57064, 9p
- [6] Kolmanovskii V., Myshkis A., Applied Theory of Functional Differential Equations, Kluwer, 1992
- [7] Otrocol D., Ulam stabilities of differential equation with abstract Volterra operator in a Banach space, Nonlinear Functional Analysis and Applications, 2010, 15(4), 613–619
- [8] Petru T.P., Petruşel A., Yao J.-C., Ulam-Hyers stability for operatorial equations and inclusions via nonself operators, Taiwanese J. Math., 2011, 15(5), 2195–2212
- [9] Radu V., The fixed point alternative and the stability of functional equations, Fixed Point Theory, 2003, 4(1), 91–96
- [10] Rassias Th.M., On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 1978, 72, 297–300
- [11] Rus I.A., Generalized contractions, Cluj University Press, 2001
- [12] Rus I.A., Gronwall lemmas; ten open problems, Scientiae Mathematicae Japonicae, 2009, 70(2), 221–228
- [13] Rus I.A., Ulam stability of ordinary differential equations, Studia Univ. "Babes-Bolyai" Mathematica, 2009, 54(4), 125–133
- [14] Rus I.A., Remarks on Ulam stability of the operatorial equations, Fixed Point Theory, 2009, 10, 305–320
- [15] Ulam S.M., A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, 8, Interscience Publishers, New York, 1960