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Hydrodynamic equations for one-dimensional systems of inelastic particles
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Using a different method, the balance equations of mass, momentum, and kinetic energy are derived for an
arbitrary one-dimensional system of inelastic particles from its kinematic description. The failure of the hy-
drodynamic equations for such dissipative systems must be attributed to the inconsistency of constitutive
relations with the microscopic structure of the system. Among the constitutive relations, the Fourier law of heat
conduction is the most inappropriate.@S1063-651X~97!06505-7#

PACS number~s!: 47.50.1d, 05.20.Dd, 83.20.Di, 81.05.Rm
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Recently, Du, Li, and Kadanoff@1# have shown that with
the introduction of a very small dissipation in the micr
scopic dynamics, the usual hydrodynamics approach
granular flows fails to give a correct picture for a man
particle system. They have numerically simulated the o
dimensional motion ofN sizeless inelastic particles of iden
tical mass, confined by two walls of infinite mass. If th
system is driven by collisions with the boundary walls, mo
of the particles become squeezed in a small ‘‘clump’’ a
move with a smaller velocity than the other particles. T
result is independent of how the energy is pumped in at
boundaries. Contrary to the prediction of the usual hydro
namic equations, the clump does not disappear as the d
pation tends to zero. In fact, the particles in the clump
squeezed into a smaller space and move with slower sp
A similar phenomenon has been reported in the cooling
inelastic particle systems@2–4#.

In this paper we investigate the reason for the hydro
namics breakdown for this corpuscular system. The hyd
dynamic description of a continuum consists of two pa
The first is a set of balance equations for local macrosco
fields modeling fundamental physical quantities~mass, mo-
mentum, energy, entropy, etc.! @5#. The balance equation
are postulated and have a general form and validity. In g
eral, the number of continuous fields is greater than the n
ber of balance equations, so additional relations are nee
~e.g., the expression of the stress tensor for a specified
terial!. In continuum mechanics, such relations are refer
to as ‘‘constitutive relations’’@6# and represent the secon
part of the hydrodynamic description. Thus the hydrod
namic equations always consist of balance equations
constitutive relations. The constitutive relations describe
macroscopic properties of the material and are related to
specific microscopic structure of the corpuscular system.

The balance equations are valid for any conserved ph
cal quantity@5,7,8#. If the physical quantity is not conserve
then the balance equations are supplemented with the su
and production densities for the physical quantity, for
stance, the entropy production for irreversible processes
continuum. The same approach works for the kinetic ene
551063-651X/97/55~5!/6277~4!/$10.00
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lost in inelastic collisions. Therefore, the contradiction b
tween the numerical results in@1# and the solution of the
usual hydrodynamic equations cannot be associated with
balance equations, but with constitutive relations inadequ
to the microscopic structure.

Du, Li, and Kadanoff@1# have used the constitutive rela
tions for relatively dense granular materials in high sh
flow derived in @9,10#. In that case the flux of the kinetic
energy is proportional to the gradient of the kinetic tempe
ture ~the Fourier law! and the dissipation rate of the kinet
energy is proportional to the kinetic temperature to3

2power.
But the Fourier law is not valid for the corpuscular system
@1#. Indeed, the fast particle running between the left w
and the ‘‘clump’’ transports the energy gained from the c
lision with the wall and loses it during the inelastic collisio
with the neighboring particle. This nonvanishing energy fl
near the wall corresponds to a vanishing gradient of the
netic temperature, because in this region only the fast p
ticle can move and its average state does not depend
position.

The numerical experiment in@1# contains only 100 par-
ticles and an unquestionable continuum macroscopic in
pretation of the results is difficult to obtain. In this paper w
use a simplified form of a more general approach valid
three-dimensional systems as well@11#. A space-time coarse
grained average for an arbitrary physical quantity attache
the particles is defined. Its first-order partial derivatives
almost everywhere continuous. For an arbitrary number
particles, we prove that this space-time average satisfie
relation of the same form as the balance equations. If
temporal and spatial averaging intervals can be chosen
that the discontinuities of the partial derivatives vanish
become negligible, the usual continuous fields and bala
equations are obtained.

Our approach has the advantage that the macroscopic
tinuous description does not depend on the number of
particles or the microscopic dynamical laws. The space-t
coarse-grained averages can be defined and satisfy a ba
equation even for a single particle. Also, we can analyze
macroscopic properties of the corpuscular system withou
6277 © 1997 The American Physical Society
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6278 55BRIEF REPORTS
direct study of the dynamical system associated with the
ticles. For instance, Du, Li, and Kadanoff’s corpuscular s
tem does not verify the equipartition of energy, but we
not need to find out the cause of this behavior. First
derive the balance equations of mass, momentum, and
netic energy for the same system as in@1#. Then we apply
our method to a very simple situation such that all the ter
in the balance equations can be explicitly determined. T
constitutive relations are directly tested and we prove tha
this case the Fourier law of heat conduction is not valid.

ConsiderN identical sizeless particles of massm. We
study the evolution of the system during the time intervaI
5@0,T#. The particles are confined within the spatial interv
@0,1# by collisions with two walls of infinite mass. The co
lisions between particles are inelastic and are character
by the numerical parametere5(12r )/2. The restitution co-
efficient r is defined in terms of the particles velocities aft
and before the collision byv182v2852r (v12v2). The par-
ticles interact only when they collide and there are no ex
nal forces acting on the particles, except that due to the
lisions with the walls. We assume that the system kinema
is known, i.e., the position of each particlei<N is a given
function of timexi : I→@0,1#. When a collision occurs, the
corresponding velocitiesj i5 ẋi undergo jumps and betwee
collisions the motion is uniform. We suppose that the to
number of collisions duringI is finite.

Let w i(t), tPI , be the real function of time describing th
variation of an arbitrary physical quantityw attached to the
i th particle. In the following,w i will represent only the mas
(m), the momentum (mj i), and the kinetic energy
(mj i

2/2). Since the only variations of the velocityj i are the
jumps from one constant value to another, the temporal
rivative of w i identically vanishesẇ i[0 almost everywhere
Consider two real parameters 0,t,T/2 anda.0 and de-
fine the function

^w&~x,t !5
1

4ta (
i51

N E
t2t

t1t

Gi~x,t8!dt8, ~1!

where

Gi~x,t !5w i~ t !H„a2uxi~ t !2xu…, ~2!

andH is the left continuous Heaviside function. A nonva
ishing contribution tôw& is due only to particles lying in the
spatial interval (x2a,x1a) during the temporal interval (t
2t,t1t). Therefore,̂ w&(x,t) characterizes the mean di
tribution ofw about the pointx and the timet. It is a coarse-
grained average over the space and time intervals define
a andt, i.e., the density ofw. Obviously,^w& also depends on
the parametersa and t, but we do not explicitly write this
dependence. The average^w& is nonvanishing only ifxP
(2a,11a) and the integral interval in Eq.~1! is contained in
I only if tP(t,T2t).

For a givenx, the integrand~2! is a continuous function
except at a finite number of points where it has discontin
ties of jump type. HenceGi is Riemann integrable and th
partial derivative with respect tot of ^w& is
r-
-

e
ki-

s
e
in

l

ed

r-
l-
s

l

e-

by

i-

] t^w&5
1

4ta (
i51

N

@Gi~x,t1t!2Gi~x,t2t!#. ~3!

The function^w& depends onx through the instantsu when
the i th particle enters or leaves the interval (x2a,x1a).
These instants are given by the zeros of the equations

xi~u!2x6a50,

and using the implicit function theorem we obtaindu/dx
51/j i(u). If uP(t2t,t1t), thenu occurs as the integra
tion limit in Eq. ~1! and the derivative of̂w& with respect to
x is

]x^w&5
1

4ta (
i51

N F (
uPUi8

w i~u!

j i~u!
2 (

uPUi9

w i~u!

j i~u! G , ~4!

whereUi8 (Ui9) is the set containing the instants when t
i th particle leaves~enters! the interval (x2a,x1a) during
the interval (t2t,t1t). One can prove that the partial de
rivatives~3! and~4! are almost everywhere continuous@11#.

Relation~3! shows that] t^w& is related to the change o
Gi from t2t to t1t. Sinceẇ i[0 andḢ[0 almost every-
where, the changes ofGi are only jumps. When thei th par-
ticle enters@leaves# the interval (x2a,x1a), the change of
Gi is 1w i(u) @2w i(u)#. According to Eq.~4!, the corre-
sponding part of] t^w& is equal to2]x^wj&. The change of
Gi due to w i occurs when the particles collide inside th
interval (x2a,x1a). The collision part of] t^w& is

dcw5
1

4ta (
i51

N

(
sPVi

@w i~s20!2w i~s10!#, ~5!

whereVi is the set containing the instantss when thei th
particle collides inside (x2a,x1a) during (t2t,t1t),
w i(s10) is the limit to the left, andw i(s20) is the limit to
the right. We deduce that the relation

] t^w&1]x^wj&5dcw ~6!

is always true. In the following we show that this identity
the general form of the balance equations for the corpusc
system considered.

First we apply the identity~6! for mass, i.e.,w i5m. The
space-time average~1! becomes the mass density^m&. Since
the masses of the particles are identical, we have^m&
5mc, wherec5^1& is the particle number density or th
concentration obtained from Eq.~1!, for w i[1. The mean
velocity field v is defined by^j&5cv if cÞ0 and is zero
otherwise.~In @1# the velocity field is incorrectly defined, bu
this oversight has not affected the hydrodynamic equati
for granular flows used in@1#.! The termdcw defined by Eq.
~5! vanishes because the collisions do not imply the variat
of the mass of particles or their number. Then relation~6!
becomes

] tc1]x~cv !50, ~7!

which is the continuity equation.
For momentum, we choosew i5mj i and then ^w&

5mcv. The second term on the left-hand side of Eq.~6! can
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55 6279BRIEF REPORTS
be written as the sum of two terms, namely,^mj2&5mcv2

1m^(j2v)2&. The first term is due to the mean motion
the particles and the second one can be interpreted as
‘‘microscopic’’ flux of momentum. The momentum is con
served when two particles collide such thatdcj vanishes. But
the collision with the walls induces a variation of the partic
momentum anddcj is nonvanishing forxP(2a,a)ø(1
2a,11a). In this case Eq.~6! represents the balance equ
tion of momentum

] t~cv !1]x~cv
2!1]x~cu!5dcj. ~8!

Here we have introduced the kinetic temperatureu5^(j
2v)2&/c ~whencÞ0!, known for the granular materials a
the granular or fluctuating temperature.

In a similar manner, forw i5mj i
2/2 we obtain from Eq.

~6! the balance equation of the kinetic energy

] te1]x~ve!1]x~2vcu!1]xq5dcj
2, ~9!

wheree5c(v21u) is proportional to the density of the ki
netic energy andq5^(j2v)3& is the microscopic flux of the
granular temperature. The collision term does not vanish
cause of the energy loss at inelastic collisions.

Relations~7!–~9! are of the same form as the usual b
ance equations, but they have a wider validity. We have
imposed any restriction to the number of particlesN, which
can be very small. Therefore, these relations also hold
simple mechanical systems not possessing statistical pro
ties characteristic to thermodynamic systems, but they
serve the discontinuous nature of the initial corpuscular
scription. The first-order partial derivatives~3! and ~4! have
discontinuous variations when a collision occurs or whe
particle enters or leaves the spatial interval (x2a,x1a). For
certain corpuscular systems, we can choosea andt such that
these discontinuous variations vanish or are negligible,
the smoothness specific to the continuous fields is obtain

Whent→0, definition~1! is reduced to an instantaneou
space average. In this case^w& coincides with the usual mac
roscopic fields if at an arbitrary timet the particles in (x
2a,x1a) form a near-equilibrium thermodynamic system
If the local equilibrium holds, then there is anamin such that
for a.amin this condition is satisfied. Hence the usual b
ance equations are particular cases of the relations~7!–~9!.

Definition ~1! also contains a time average. The time
tegral in Eq.~1! is identical to that used in the formulation o
the ergodic hypothesis. Therefore, for a nonvanishing va
of t, more microstates of the corpuscular system are inclu
in the averagêw& and the smoothness of^w& is improved in
comparison to an instantaneous space average. The u
limit of t is given by the requirement that the time averag
should not distort the time evolution of the local fields^w&. If
the corpuscular system is in a steady state, we can
t→` and then the space averaging can be reduced even
point (a→0).

Relations~6!–~9! are either identities or equations, a
cording to the available information on the microscop
structure. If the motion of each particle is explicitly know
then Eqs. ~6!–~9! are simple identities containing onl
known functions. Otherwise, they become the balance eq
tions for the averageŝw&, which now are unknown func
tions, and to obtain a solvable problem, the constitutive
the
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lations are needed. To obtain some information on
inadequate constitutive relations in@1#, we consider a very
simple case of Du, Li, and Kadanoff’s corpuscular syst
such that the motion of the particles is known and the av
ages^w& can be determined.

The system contains only two particles. The simplest
riodic motion occurs if the following restrictive condition
are imposed: 0,e, 1

3; the left wall returns the first particle
with constant velocityv051; the collision of the second
particle with the right wall is perfectly elastic. The collision
of the two particles always take place at the same poinxc
5 1

22e2/(122e2e2) and the velocity of the first particle
after the collision isv185(123e)/(11e). The velocity
modulus of the second particle is the sameuv2u5(1
2e)/(11e) before and after the collision. The period of th
motion is (12e2)/(122e2e2).

Usually, in continuum mechanics, the spatial average
taken over a volume microscopic in comparison to the m
roscopic scale of the continuous phenomenon. For our
proach this corresponds toa→0. First we take the averag
~1! over a spatial interval much smaller than the syst
length, i.e.,a!1, and then we study the limit case. For
more condensed description we distinguish five spatial
gions. Each of the two boundary regions (2a,a) and (1
2a,11a) contains one wall and the particles can move o
within a subdomain of the averaging spatial intervalx
2a,x1a). In the transition region (xc2a,xc1a) both par-
ticles contribute to the average~1!. The transition region and
the boundary regions bound two ‘‘uniform’’ regions (a,xc
2a) and (xc1a,12a).

This is a simple mechanical system and the averages^w&
could present discontinuous variations. The periodicity of
motion allows one to completely eliminate these discontin
ties, although the local equilibrium assumption is not sa
fied. Fora fixed, the necessary smoothness is obtained ift
is equal to the period of the motion. Then Eq.~3! implies that
all the temporal derivatives vanish and we could say that
system is in a ‘‘steady’’ state.

We estimate the quantities in the balance equations~7!–
~9!. The mean velocity field identically vanishesv[0 be-
cause^j&[0. In the uniform regions the concentrationc
takes two constant valuesc15(12e)/t(123e) and c2
5(11e)/t(12e). In the boundary and transition region
c has a linear variation between these constant values an
exterior null value. The granular temperatureu has a linear
variation only in the transition region between the const
valuesu15(123e)/(11e) and u25(12e)2/(11e)2. We
notice thatu has the same value in a uniform region and t
adjacent boundary region.

In the hydrodynamic equations used by Du, L
and Kadanoff@1#, the other quantities are given by constit
tive relations: dcj50, q52]x(C1u

3/2), and dcj
2 5

2C2ec
2u3/2 with C1 and C2 numerical constants. In ou

case, they can be calculated from the microscopic motion
the corpuscular system. In the left uniform region,q has the
constant valueq154e(12e)/t(11e)2. In the transition re-
gion and the left boundary region it has a linear variatio
while for x.xc1a it vanishes. The momentum is not con
served when the particles collide with the walls, such tha
the boundary regionsdcj56(12e)/2at(11e). For x
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6280 55BRIEF REPORTS
P(a,12a), we havedcj50. The kinetic energy is conserve
for the elastic collision with the right wall and the nonva
ishing values of the corresponding collision term aredcj

2

562e(12e)/at(11e)2 if xP(2a,a) or xP(xc 2a,xc
1a). It is easy to test that the balance equations~7!–~9! are
identically satisfied, while all the constitutive relations f
granular materials used in@1# are incorrect.

The limit a→0 simplifies the above continuous descri
tion. The boundary regions disappear and the domain of d
nition of the continuous fields becomes~0,1!. The transition
region is reduced to the collision pointxc separating the two
uniform regions. In these uniform regions, all the terms
the balance equations~7!–~9! are equal to zero. However, th
values of the continuous fields correspond to a state tha
analogous to that described in@1#. Indeed, there are two dis
tinct regions with different concentrations and temperatu
Becausec1.c2 and u1,u2 , the ‘‘denser’’ and ‘‘colder’’
clump is composed by the first particle near the left wall.
@1# the clump occurred near the right wall. This differen
fi-

f

is

s.

appears because in our case, after the collision, the first
ticle loses kinetic energy, while the kinetic energy of t
second particle is conserved.

Now we can study the validity of the constitutive relatio
in @1#. The first,dcj50, is identically satisfied. But the con
stitutive relations concerning the granular temperatureu re-
main inappropriate. In particular, the proportionality of th
kinetic-energy flux to the temperature gradient, i.e., the F
rier law, is contradicted. Indeed, althoughu is constant for
xP(0,xc), q5q1 is nonvanishing. This flux really exists be
cause the first particle transports the energy gained from
collision with the left wall and loses it during the inelast
collision with the second particle. The energy dissipation
described bydcj

2, which is proportional to the Dirac func
tion 2d(x2xc). Therefore, in@1# the constitutive relations
for q anddcj

2 must be modified. The validity of other con
stitutive relations can be tested by applying our method
the results of numerical simulations.
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@11# C. Vamoş, A. Georgescu, and N. Suciu, Studii s¸i Cercetări
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