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Hydrodynamic equations for one-dimensional systems of inelastic particles
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Using a different method, the balance equations of mass, momentum, and kinetic energy are derived for an
arbitrary one-dimensional system of inelastic particles from its kinematic description. The failure of the hy-
drodynamic equations for such dissipative systems must be attributed to the inconsistency of constitutive
relations with the microscopic structure of the system. Among the constitutive relations, the Fourier law of heat
conduction is the most inappropriaf&1063-651X%97)06505-1

PACS numbg(s): 47.50:+d, 05.20.Dd, 83.20.Di, 81.05.Rm

Recently, Du, Li, and Kadanoffl] have shown that with lost in inelastic collisions. Therefore, the contradiction be-
the introduction of a very small dissipation in the micro- tween the numerical results ii] and the solution of the
scopic dynamics, the usual hydrodynamics approach fousual hydrodynamic equations cannot be associated with the
granular flows fails to give a correct picture for a many- balance equations, but with constitutive relations inadequate
particle system. They have numerically simulated the oneto the microscopic structure.
dimensional motion of\ sizeless inelastic particles of iden-  Du, Li, and Kadanoff1] have used the constitutive rela-
tical mass, confined by two walls of infinite mass. If this tions for relatively dense granular materials in high shear
system is driven by collisions with the boundary walls, mostflow derived in[9,10]. In that case the flux of the kinetic
of the particles become squeezed in a small “clump” andenergy is proportional to the gradient of the kinetic tempera-
move with a smaller velocity than the other particles. Thisture (the Fourier law and the dissipation rate of the kinetic
result is independent of how the energy is pumped in at thenergy is proportional to the kinetic temperaturelpower.
boundaries. Contrary to the prediction of the usual hydrodyBut the Fourier law is not valid for the corpuscular system in
namic equations, the clump does not disappear as the dis$it]. Indeed, the fast particle running between the left wall
pation tends to zero. In fact, the particles in the clump areand the “clump” transports the energy gained from the col-
squeezed into a smaller space and move with slower speelision with the wall and loses it during the inelastic collision
A similar phenomenon has been reported in the cooling ofvith the neighboring particle. This nonvanishing energy flux
inelastic particle systen2-4]. near the wall corresponds to a vanishing gradient of the ki-

In this paper we investigate the reason for the hydrodynetic temperature, because in this region only the fast par-
namics breakdown for this corpuscular system. The hydroticle can move and its average state does not depend on
dynamic description of a continuum consists of two partsposition.

The first is a set of balance equations for local macroscopic The numerical experiment ifil] contains only 100 par-
fields modeling fundamental physical quantiti@sass, mo- ticles and an unquestionable continuum macroscopic inter-
mentum, energy, entropy, exd5]. The balance equations pretation of the results is difficult to obtain. In this paper we
are postulated and have a general form and validity. In gendse a simplified form of a more general approach valid for
eral, the number of continuous fields is greater than the nunthree-dimensional systems as wédllL]. A space-time coarse-
ber of balance equations, so additional relations are needegfained average for an arbitrary physical quantity attached to
(e.g., the expression of the stress tensor for a specified m#he particles is defined. Its first-order partial derivatives are
terial). In continuum mechanics, such relations are referredlmost everywhere continuous. For an arbitrary number of
to as “constitutive relations'{6] and represent the second particles, we prove that this space-time average satisfies a
part of the hydrodynamic description. Thus the hydrody-relation of the same form as the balance equations. If the
namic equations always consist of balance equations artemporal and spatial averaging intervals can be chosen such
constitutive relations. The constitutive relations describe the¢hat the discontinuities of the partial derivatives vanish or
macroscopic properties of the material and are related to theecome negligible, the usual continuous fields and balance
specific microscopic structure of the corpuscular system. equations are obtained.

The balance equations are valid for any conserved physi- Our approach has the advantage that the macroscopic con-
cal quantity[5,7,8. If the physical quantity is not conserved, tinuous description does not depend on the number of the
then the balance equations are supplemented with the suppbarticles or the microscopic dynamical laws. The space-time
and production densities for the physical quantity, for in-coarse-grained averages can be defined and satisfy a balance
stance, the entropy production for irreversible processes in aquation even for a single particle. Also, we can analyze the
continuum. The same approach works for the kinetic energynacroscopic properties of the corpuscular system without a
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direct study of the dynamical system associated with the par- 1 N
ticles. For instance, Du, Li, and Kadanoff's corpuscular sys- Il @)= — E [Gi(X,t+7)—G;(X,t—7)]. ©)]
tem does not verify the equipartition of energy, but we do 4ma =1
e e S oot e et s eI fnclon(e) depends o ough te nstata when
netic energy for the same system as[léh Then we a’pply the ith _partlcle enter_s or leaves the mtervad—(a,xf a).
. S ’ These instants are given by the zeros of the equations

our method to a very simple situation such that all the terms
in the balance equations can be explicitly determined. The X:(U)—x*a=0,
constitutive relations are directly tested and we prove that in
this case the Fourier law of heat conduction is not valid. and using the implicit function theorem we obtadiu/dx

ConsiderN identical sizeless particles of mass We  =1/&(u). If ue (t—7,t+ 7), thenu occurs as the integra-
study the evolution of the system during the time interval tion limit in Eq. (1) and the derivative ofe) with respect to
=[0,T]. The particles are confined within the spatial intervalx is
[0,1] by collisions with two walls of infinite mass. The col-
lisions between particles are inelastic and are characterized 1 @i(u) @i(U)
by the numerical parameter=(1—r)/2. The restitution co- I p)= Ara 21 Z &(u) E &(u) |
efficientr is defined in terms of the particles velocities after ueup ueuy >

iSi ,— I: —_— —_ - . . . .
and before the collision by; —vy=—r(v1~v,). The par whereU/ (U!) is the set containing the instants when the
ticles interact only when they collide and there are no exter*th particle leavegenters the interval k—a,x+a) during
nal forces acting on the particles, except that due to the cot— '

I . : . the interval (— 7,t+ 7). One can prove that the partial de-
lisions with the walls. We assume that the system k'nemat'cﬁvatives (3) and (4) are almost everywhere continuoftisi]
is known, i.e., the position of each partidleN is a given yw '

function of timex;: 1—[0,1]. When a collision occurs, the Relation(3) shows thawt{@ s related to the change of

corresponding velocitie§ =X; undergo jumps and between thromt:]— 7;0 thr émcegoizlo 'andHEV(\)/haImct);.Etﬂ(]avery—

collisions the motion is uniform. We suppose that the total'V1€7€, € Changes @, are only jJumps. en par-

number of collisions during is finite. t|cI(=T enterqleaveg the interval Q<'— a,x+a), the change of
Let ¢;(t), tel, be the real function of time describing the Gi 'SdTL ¢i(u) [;"Pi(u).]' Acccl)rdlng to Eq'glflr)]’ thﬁ corre-f

variation of an arbitrary physical quantity attached to the spog ing part ob(¢) |sheque;1 to— a".(Tg)' "%C 'an%e oh

ith particle. In the followinge; will represent only the mass ,Gi ue to ¢; occurs when t-e- particles coll € Inside the

(m), the momentum ), and the kinetic energy interval (x—a,x+a). The collision part ofd{¢) is

(m&?/2). Since the only variations of the velocigy are the 1 N

jl_Jmps from one constant value to another, the temporal de- S.p= i 2 2 [pi(s—0)— @i(s+0)], (5)

rivative of ¢; identically vanisheg;=0 almost everywhere. Tai=1seV,

Consider two real parameters<<T/2 anda>0 and de-

fine the function

4

whereV; is the set containing the instantswhen theith
particle collides inside X—a,x+a) during t—7,t+7),
¢i(s+0) is the limit to the left, andp;(s—0) is the limit to
the right. We deduce that the relation

I @)+ I 9€)= o (6)

is always true. In the following we show that this identity is
the general form of the balance equations for the corpuscular
system considered.

Gi(x,t)=@i(t)H(@—|x;(t)—x]|), 2 First we apply the identity6) for mass, i.e.q;=m. The

space-time averagd) becomes the mass densfiy). Since

the masses of the particles are identical, we héng

=mc, wherec=(1) is the particle number density or the

concentration obtained from Eql), for ¢;=1. The mean

. . velocity field v is defined by(¢)=cv if c#0 and is zero

t; igﬂttij;r:)(.)f-rhaet;ﬁfotrteﬁ«p) ().(’:() cf:ja{r?ctte;rlzesltthe mean dls' otherwise (In [1] the velocity field is incorrectly defined, but

) ¢ utthe poink and the ime.. 111S a coarse- - ;¢ oversight has not affected the hydrodynamic equations
grained average over the space and time intervals defined l?gr granular flows used ifil].) The terms, e defined by Eq.
a andr, i.e., the density op. Obviously,(¢) also depends on (5) vanishes because the collisions do not imply the variation

the parametera and 7, but we do not gxplicitly wr[te this of the mass of particles or their number. Then relat{6n
dependence. The average) is nonvanishing only ifx e becomes

(—a,1+a) and the integral interval in Eq1) is contained in

| only if te(7,T—7). 8+ dy(cv)=0, (7)
For a givenx, the integrand?2) is a continuous function,

except at a finite number of points where it has discontinuiwhich is the continuity equation.

ties of jump type. Henc&; is Riemann integrable and the For momentum, we choose;=mé& and then ()

partial derivative with respect tbof (¢) is =mcv. The second term on the left-hand side of Ej.can

N
_ 1 ZJHTG t)dt’ 1
<(P>(X7t)_ 4Ta. R U i(X1 ) ] ( )
where
andH is the left continuous Heaviside function. A nonvan-

ishing contribution td¢) is due only to particles lying in the
spatial interval x—a,x+a) during the temporal intervalt (
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be written as the sum of two terms, namelmé?)=mev?  lations are needed. To obtain some information on the
+m((§—v)2). The first term is due to the mean motion of inadequate constitutive relations [iti], we consider a very
the particles and the second one can be interpreted as tk@nple case of Du, Li, and Kadanoff's corpuscular system
“microscopic” flux of momentum. The momentum is con- such that the motion of the particles is known and the aver-
served when two particles collide such tidag vanishes. But  ages(¢) can be determined.

the collision with the walls induces a variation of the particle The system contains only two particles. The simplest pe-
momentum ands:¢ is nonvanishing forxe(—a,a)U(1  riodic motion occurs if the following restrictive conditions
—a,1+a). In this case Eq(6) represents the balance equa- gre imposed: 6 e<1; the left wall returns the first particle
tion of momentum with constant velocityv,=1; the collision of the second

(o) + 0,(Cv?) + 3 (CO) = 5,.£. ®) particle with the_ right wall is perfectly elastic. The coIIisipns
of the two particles always take place at the same paqint
Here we have introduced the kinetic temperatére ((¢ =3~ €?/(1—2e—€°) and the velocity of the first particle
—v)?)/c (whenc#0), known for the granular materials as after the collision isv;=(1—3€)/(1+¢€). The velocity
the granular or fluctuating temperature. modulus of the second particle is the sars)|=(1
In a similar manner, fokp;=m¢Z/2 we obtain from Eq.  —€)/(1+ €) before and after the collision. The period of the
(6) the balance equation of the kinetic energy motion is (1— €2)/(1—2e— €?).

Usually, in continuum mechanics, the spatial average is
taken over a volume microscopic in comparison to the mac-

wheree=c(v2+ ) is proportional to the density of the ki- 0SCOPIC ;cale of the contmuous. phenomenon. For our ap-
netic energy and=((¢—v)?3) is the microscopic flux of the proach this corresponds t—0. First we take the average
granular temperature. The collision term does not vanish bel) over a spatial interval much smaller than the system
cause of the energy loss at inelastic collisions. length, i.e.,a<1, and then we study the limit case. For a
Relations(7)—(9) are of the same form as the usual bal-more condensed description we distinguish five spatial re-
ance equations, but they have a wider validity. We have nogions. Each of the two boundary regions 4,a) and (1
imposed any restriction to the number of partidéswhich ~ —a,1+a) contains one wall and the particles can move only
can be very small. Therefore, these relations also hold fowithin a subdomain of the averaging spatial interval (
simple mechanical systems not possessing statistical proper-a,x+a). In the transition regionx;—a,x.+a) both par-
ties characteristic to thermodynamic systems, but they prdicles contribute to the averagg). The transition region and
serve the discontinuous nature of the initial corpuscular dethe boundary regions bound two “uniform” regions, &,
scription. The first-order partial derivativéd) and(4) have —a) and k.+a,1—a).
discontinuous variations when a collision occurs or when a This is a simple mechanical system and the averdges
particle enters or leaves the spatial interval-@,x+a). For  could present discontinuous variations. The periodicity of the
certain corpuscular systems, we can chams@d rsuch that  motion allows one to completely eliminate these discontinui-
these discontinuous variations vanish or are negligible, antles, although the local equilibrium assumption is not satis-
the smoothness specific to the continuous fields is obtainedied. Fora fixed, the necessary smoothness is obtained if 2
When 7— 0, definition(1) is reduced to an instantaneous is equal to the period of the motion. Then E8). implies that
space average. In this cage coincides with the usual mac- all the temporal derivatives vanish and we could say that the
roscopic fields if at an arbitrary time the particles in x  system is in a “steady” state.
—a,x+a) form a near-equilibrium thermodynamic system. We estimate the quantities in the balance equati@ns
If the local equilibrium holds, then there is ag,, such that  (9). The mean velocity field identically vanishes=0 be-
for a>a, this condition is satisfied. Hence the usual bal-cause(£)=0. In the uniform regions the concentratian
ance equations are particular cases of the relatigRg9). takes two constant values;=(1—¢€)/7(1—3€) and c,
Definition (1) also contains a time average. The time in-=(1+¢€)/7(1—¢€). In the boundary and transition regions
tegral in Eqg.(1) is identical to that used in the formulation of ¢ has a linear variation between these constant values and the
the ergodic hypothesis. Therefore, for a nonvanishing valuexterior null value. The granular temperatutdas a linear
of 7, more microstates of the corpuscular system are includedariation only in the transition region between the constant
in the averagée) and the smoothness ¢f) is improved in ~ values ;= (1—3€)/(1+¢€) and 6,=(1—€)?/(1+ €)% We
comparison to an instantaneous space average. The uppetice thatd has the same value in a uniform region and the
limit of 7is given by the requirement that the time averagingadjacent boundary region.
should not distort the time evolution of the local fields. If In the hydrodynamic equations used by Du, Li,
the corpuscular system is in a steady state, we can tak&d Kadanoff1], the other quantities are given by constitu-
r—c and then the space averaging can be reduced even tdisie relations: 5.6=0, q=—d,(C16%?), and §.£2 =
point (a—0). —C,ec?6%? with C; and C, numerical constants. In our
Relations (6)—(9) are either identities or equations, ac- case, they can be calculated from the microscopic motion of
cording to the available information on the microscopicthe corpuscular system. In the left uniform regigrhas the
structure. If the motion of each particle is explicitly known, constant valuej,=4e(1—€)/r(1+ €)2. In the transition re-
then Egs.(6)—(9) are simple identities containing only gion and the left boundary region it has a linear variation,
known functions. Otherwise, they become the balance equavhile for x>x.+a it vanishes. The momentum is not con-
tions for the average&p), which now are unknown func- served when the particles collide with the walls, such that in
tions, and to obtain a solvable problem, the constitutive rethe boundary regionss.é=*(1—¢€)/2ar(1+¢€). For x

die+ dy(ve)+ d (2vCh) + = 6,2, 9
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e(a,1—a), we haves.£=0. The kinetic energy is conserved appears because in our case, after the collision, the first par-
for the elastic collision with the right wall and the nonvan- ticle loses kinetic energy, while the kinetic energy of the
ishing values of the corresponding collision term @&  second particle is conserved.
=+2e(1—€)lar(l+€)? if xe(—a,a) or xe (X, —a,Xc Now we can study the validity of the constitutive relations
+a). Itis easy to test that the balance equatitfs-(9) are  in [1]. The first,5.£=0, is identically satisfied. But the con-
identically Satisfied, while all the constitutive relations for stitutive relations Concerning the granu|ar temperamre-
granular materials used [1] are incorrect. main inappropriate. In particular, the proportionality of the
The limit a—0 simplifies the above continuous descrip- kinetic-energy flux to the temperature gradient, i.e., the Fou-
tion. The boundary regions disappear and the domain of defyier |aw, is contradicted. Indeed, althoughis constant for
nition o_f the continuous f|eIQS_ becor_néﬁsl). Thg transition  _ (0x.), q=gy is nonvanishing. This flux really exists be-
region is reduced to the collision poik{ separating the tWo .5 ;56 the first particle transports the energy gained from the
uniform regions. I_n these uniform regions, all the terms Ofcollision with the left wall and loses it during the inelastic
the balance equatiori#)—(9) are equal to zero. However, the collision with the second particle. The energy dissipation is

values of the continuous fields correspond to a state that Bescribed bvs £2, which is proportional to the Dirac func-
analogous to that described|ib]. Indeed, there are two dis- . ¥oct” prop - )
tion — 8(x—x.). Therefore, in1] the constitutive relations

tinct regions with different concentrations and temperaturesf 46.c2 b dified. The validity of oth
Becausec,>c, and 6,<#6,, the “denser” and “colder” or g and 6.£“ must be modified. The validity of other con-

clump is composed by the first particle near the left wall. InStitutive relations can be tested by applying our method to
[1] the clump occurred near the right wall. This differencethe results of numerical simulations.
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