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Abstract. Fractional Brownian motion (fBm) is a nonstationary self-similar continuous stochastic process
used to model many natural phenomena. A realization of the fBm can be numerically approximated by
discrete paths which do not entirely preserve the self-similarity. We investigate the self-similarity at di [ert
ent time scales by decomposing the discrete paths of fBm into intrinsic components. The decomposition
is realized by an automatic numerical algorithm based on successive smoothings stopped when the max-
imum monotonic variation of the averaged time series is reached. The spectral properties of the intrinsic
components are analyzed through the monotony spectrum defined as the graph of the amplitudes of the
monotonic segments with respect to their lengths (characteristic times). We show that, at intermediate
time scales, the mean amplitude of the intrinsic components of discrete fBms scales with the mean char-
acteristic time as a power law identical to that of the corresponding continuous fBm. As an application
we consider hydrological time series of the transverse component of the transport process generated as a
superposition of di [udive movements on advective transport in random velocity fields. We found that the
transverse component has a rich structure of scales, which is not revealed by the analysis of the global

variance, and that its intrinsic components may be self-similar only in particular cases.

PACS. 05.40.Jc Brownian motion — 05.45.Tp Time series analysis — 92.40.Kf Groundwater

1 Introduction

Complex multiscale nonlinear and nonstationary time se-
ries need special algorithms to identify, separate, and ana-
lyze their evolution at di [erknt scales [1]. Traditional data
analysis methods, including the multiresolution analysis
supplied by the wavelet decomposition [2], are not well
suited for such a task because they are based on pre-
determined basis and have a nonadaptive character. An
alternative is the empirical mode decomposition (EMD)
method, a data-driven numerical algorithm which decom-
poses a time series into several intrinsic spectral compo-
nents arranged in a hierarchy of time scales [3]. The EMD
method was recently extended to more e [cieht and math-
ematically rigorous algorithms: the iterative filtering [4],
the synchrosqueezed wavelet transform [5], and the sparse
time-frequency representation [6].

A critical problem for any time series decomposition
into a hierarchy of spectral components is the manner in
which the time scale is defined. In the case of the classical
Fourier analysis one uses the frequency of the constant am-
plitude trigonometric components which is a global quan-
tity that can be generalized only for periodic components.
The EMD and its subsequent modifications use the in-
stantaneous frequency of signals, but this notion is con-
troversial in mathematics and engineering [7].

An alternative and more general approach to the time
scale issue is provided by the characteristic times defined
as the spacings between successive local extrema of time
series, also equal to the lengths of their monotonic seg-
ments [3]. Hence the time series is decomposed into a se-
quence of monotonic segments and the analysis is focused
on the monotony properties of the time series. Instead
of the usual power spectrum we introduce the monotony
spectrum of the time series obtained by plotting the am-
plitudes of the monotonic segments as a function of their
duration (the characteristic times) [8].

In the case of a noisy time series, the noise fluctuations
hide the variations of the larger scale components and the
monotony spectrum contains information only on the vari-
ations of the smallest time scales. The variations of larger
scales separated from those of small scales are available
through the intrinsic components of a spectral decomposi-
tion of the time series. That is why a complete description
of a time series is obtained only by the monotony spectra
of all the intrinsic components. We obtained such a de-
scription for the returns of several financial indices after
we decomposed them into disjoint multiplicative intrinsic
components [8]. In this paper we continue this approach
in order to obtain additive decompositions of self-similar
non-stationary time series without imposing the disjoint
condition.
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A simple method to eliminate the small scale fluctu-
ations is the smoothing by successive moving averages
(MA). The main di Cculty to find an intrinsic component
by repeated MAs is to establish a rigorous criterion to
stop the averagings so that the resulting component pre-
serve the essential properties of the initial time series. For
instance, in iterative filtering this criterion consists of im-
posing an artificial threshold for the di [erence between the
initial time series and the sum of the components already
determined [4]. The novelty of our algorithm is given by a
simple criterion, without any parameter, based on the de-
termination of the maximum monotonic variation during
the repeated MAs. This parameter-free criterion allows
us to design an automatic algorithm to decompose some
types of time series into intrinsic components.

We verify the decomposition algorithm by applying it
on discrete paths of fractional Brownian motion (fBm)
which have well-known self-similarity properties [9]. We
show that the intrinsic components that we obtain pre-
serve the basic self-similarity of fBm. Furthermore, the
range of time scales for which the self-similarity is satis-
fied increases with the length of the finite fBm and the
largest and the smallest scales are not self-similar. The
discrete fBms shorter than 500 values do not have self-
similar intrinsic components. The ability of moving aver-
ages to make obvious the self-similarity of fBm has also
been proved for the segments limited by the intersections
between the fBm path and its smoothed form [10,11].

Our new algorithm decomposes the time series con-
taining a hierarchy of time scales with the amplitude de-
creasing monotonically from the large scales to the small
scales, as for example the discrete fBm, but it cannot de-
compose time series if the variations with the largest am-
plitudes occur at the smallest time scales. Even with this
limitation, our algorithm has many possible applications.
For example fBm is used in modelling phenomena in hy-
drology [12-14], finance [15,16], network tra [cJIL7,18],
geophysics [19] and many other domains [20].

In stochastic subsurface hydrology, the fBm may be
used as a model for the trajectory of the transport pro-
cess whenever the velocity field has long range power law
correlations [14] as well as a model of the preasymptotic
regime in case of short-range correlation [21,22]. In this
article, as an application, we analyze hydrological time
series of the transverse component of the transport pro-
cess generated as a superposition of di [udive movements
on advective transport in random velocity fields. The anal-
ysis of the corresponding time series with our automatic
algorithm reveals that, in general, the transverse compo-
nent of the transport process does not have intrinsic com-
ponents obeying a self-similarity law. The results show
a more complex structure of scales which cannot be de-
tected by analytical or numerical estimations of the global
variance.

2 Monotony spectrum

For an arbitrary time series {x,, = x(n),n = 1,2,...,N}
we denote by n;, j =0,1,2,...,J, the positions of the lo-

cal extrema with the convention np = 1 and n; = N.
Therefore the time series has J monotonic segments, the
characteristic times are A; = n; —n;—1, 1 < j < J and
a; = [x(n;) — x(n;—1)]| is the amplitude of the variation of
the j-th monotonic segment. In the simplest cases, the set
{A;} supplies a full description of the time scales contained
by the time series. For instance, a harmonic oscillation has
all A; equal to half of the oscillation period. The situa-
tion is more complex in the case of a noisy time series.
Then the characteristic times distribution is dominated
by the small-scale fluctuations of the noise and it does not
distinguish the large-scale variations possibly existing in
the time series. Quantitatively, a time series cannot con-
tain monotonic variations smaller than Amin = min{A;},
but there may exist components with monotonic varia-
tions lasting longer than Amax = max{A;}.

We exemplify this behavior of the characteristic times
by means of an artificial time series numerically gener-
ated by the method described in [23,24]. We construct a
nonmonotonic trend from monotonic semiperiods of sinu-
soid with random amplitudes joined together such that the
trend is continuous. The amplitudes of the sinusoids are
random numbers with a uniform probability distribution.
The trend is characterized by three parameters: the length
of the time series N, the number of monotonic segments
P, and the minimum number of points in a monotonic
segment ANnin. These trends have a large variability ho-
mogeneously distributed throughout the entire definition
interval. We superpose a white Gaussian noise over this
trend. An additional parameter r characterizes the ratio
of the amplitude of the trend variations to that of the
noise fluctuations. Figure 1la shows such an artificial time
series with N = 3000, P = 20, ANmin =10 and r = 3.

A detailed description of the monotonic segments is
given by the monotony spectrum obtained by plotting the
amplitudes a; with respect to characteristic times A;. In
the monotony spectrum of the time series in Fig. 1a all the
characteristic times are smaller than Apax = 7 (Fig. 1d).
The monotonic variations of hundreds of time steps of
the trend do not appear in the monotony spectrum. As a
result the monotony spectrum of the noisy time series is
almost identical with that of the same noise without the
trend (not presented here).

In order to determine the large scale variations we
eliminate small scales using the smoothing with the re-
peated central moving average [24]. We consider a suc-
cession of averagings i = 0,1,2,...,1 and we denote the

time series averaged i times by {yff)} with the convention

yflo) = X,,. The i-th moving average is defined as
o=_1  Fyoh @
n 2K +1 o n+k !

where K is the semilength of the averaging window and
K <n [NI-K. If n CKI(n > N —K), then the average
is taken over the first n + K (the last N — n + K + 1)

values of yff). The properties of this moving average are

analyzed in [24].
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Fig. 1. (a) An artificial time series with N = 3000, P = 20, ANmin = 10, and r = 3. (b) The averaged time series with K = 40.
(c) The time series averaged two times with K = 40. (d-f) The monotony spectra of the time series in panels a-c.

The time series obtained after a single and two succes-
sive averagings with K = 40 of the time series in Fig. la
are plotted in Figs. 1b and 1c and the corresponding mono-
tony spectra in Figs. 1e and 1f. After the first averaging
the most of the small scale fluctuations are eliminated,
nevertheless the largest scale variations are interrupted by
small residual inflections (Fig. 1b). The monotony spec-
trum contains seven monotonic segments longer than 50

of the monotonic variations of time series averaged i times
and we denote by

1 [
A =max a), @)

the maximum amplitude of all the monotonic segments
occurring until the i-th averaging. From this definition it
follows that A; is monotonically increasing. We denote

time steps and many fluctuations with smaller scales (Fig. 1e)by Amnax its maximum value to which it asymptotically

After the second averaging, only five fluctuations shorter
than 5 time steps remain and almost all the monotonic seg-

ments of the trend are present in y,(f) (Fig. 1f). The varia-
tion of the monotony spectrum illustrates the well-known
numerical method to estimate the trend by smoothing the
short scale fluctuations.

3 Maximum monotonic variation

A critical issue related to the trend extraction by repeated
averagings is the stopping criterion. If the averagings are
stopped too soon then the noise fluctuations are not elimi-
nated; on the other hand if they are stopped too late, then
the fluctuations are smoothed out but the trend could be
distorted by oversmoothing [24]. We present here a stop-
ping criterion which has no parameters and is based on
the monotony properties of the time series.

We consider i successive averagings with given K; and

we denote by aldy = maxj{algi)} the maximum amplitude

tends and which is the maximum monotonic variation of
a time series. In fact Amnax is reached in a finite number
imax Of averagings and after that A; remains constant.

This behavior results from the fact that a$h« tends to
zero when i — oo, so that it has to exist a maximum
corresponding to the imax average.

The optimum smoothing of the time series {x,} is
that given by the imax averaging because all the mono-
tonic variations of the next averagings are smaller than
Amax. Hence we have to determine imax, but the varia-
tion of allx with respect to i is not monotonic and it can
have many local maxima (see for instance Fig. 2a). The
value of imax can take dilerent values depending on the
relation between the amplitudes of the small scale fluctu-
ations and those of the large scale variations and also on
their smoothing rates. Therefore it is di Ccullt to establish
whether the maximum obtained after a certain number of
averagings is the real one or whether a larger one could
be obtained during the next averagings.

In order to design a stopping criterion, without any
subjective implication, we use the global variation of the
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time series averaged i times
V; = max{y’} — min{y{"}.

V; is strictly decreasing with respect to the number of aver-
agings i and it tends asymptotically to zero. The equality
V; =V, is possible only if there exist more than 2K +1
successive values x,, equal to the global maximum and
others equal to the global minimum. We do not consider
such special time series in our study.

We have the obvious relation a$. < V;; the equality
takes place when the two global extrema are the ends of
the same monotonic segment. We denote by I the smallest
value of the index i for which V; < A;. Then for every
i > | we have the inequalities

a®

maxSVi<VI<A11

)
meaning that A; in Eq. (2), which is monotonically in-
creasing, cannot be larger than Ay, so that Amax = Aj.
As a general rule imax < | and then A; is constant for
i = Imax, imax + 1, ..., I. The smoothings are stopped after
I averagings when for the first time the inequality V; < A;
holds and we can determine also imax Which corresponds
to the maximum monotonic variation.

We apply the maximum monotonic variation criterion

to the time series analyzed in the previous section (Fig. 1a).

The stopping condition of the averagings is fulfilled after
I = 44 averagings and the maximum monotonic variation
Amax occurs for imax = 18 (Fig. 2a). As discussed above,
V; has a monotonic variation (continuous line), whereas

a$l« has several maxima and minima until it reaches the
global maximum (circle markers). The time series aver-
aged imax times approximates very well the trend, the ab-
solute values of the local relative error being smaller than
0.08 (Fig. 2b). Its absolute values are greater than 0.03
only where the trend has large slopes. In these regions
the residuals w,, = x,, —y,, have fluctuations with larger
amplitudes than in other regions (Fig. 2c). Due to these
distortions w,, is uncorrelated (white) only for lags larger
than 22 time steps, but it is Gaussian with a very good
approximation (the Kolmogorov-Smirnov index is 0.013).

We have thus shown that the maximum monotonic
variation criterion provides a correct decomposition of the
analyzed time series which has the time scales concen-
trated in two disjoint intervals: the deterministic trend
corresponds to the large scales and the Gaussian white
noise to the small scales (Fig. 3). But if the amplitudes of
the noise fluctuations are much larger than those of the
trend variations, then the decomposition does not work.
Indeed, the separation of the components of di [erknt scales
is possible only if the successive averagings smooth faster
the small scale variations than those of large scale. Al-
though the noise attenuation rate is larger due to its fast
sign variations, if the noise amplitude is very large, then
it is possible that the trend is damped first and the large
scale component cannot be extracted.

A special case is that of the time series containing a
hierarchy of time scales dominated by the large ones. Such
time series are the discrete paths of fBm. In the following
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Fig. 2. (a) The variation of alix with respect to the number
of averagings compared with the variation of V; (continuous
line). (b) The local relative error [l equal with the ratio of
the di[erknce of the initial time series and the estimated trend
to the real trend. (c) The residuals after the extraction of the
intrinsic component.
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Fig. 3. The monotony spectra of the intrinsic component of
the large scale (circle markers) and of the small scale (point
markers).
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we describe an automatic algorithm to extract a hierarchy
of components from a discrete fBm using the maximum
monotonic variation criterion. Since the algorithm uses
no parameter, these components are intrinsic, completely
determined by the available data.

We introduce a distinct notation for the intrinsic com-
ponents successively extracted. If C is the total number of
intrinsic components, then the c-th intrinsic component is
ul? ¢ =1,2,..,C. It is obtained by applying the maxi-
mum monotonic variation algorithm to the residuals w,
while the next residuals are equal to witD
The ord(elr) one residuals are identical with the initial time
series Wy’ = X,,.

First we choose the semilengths K; = i of the averaging
windows such that we gradually increase the smoothing.
When i = 0 the monotony spectrum is plotted for the

initial time series. The intrinsic component that we search

is given by u,, = yff“‘“). The extraction of the intrinsic
components stops when the algorithm does not succeed to
extract a new intrinsic component. This happens if imax =
0, i.e., the maximum monotonic variation occurs for the
unsmoothed residuals.

=w$ —ul.

4 Intrinsic components of fBm

The fractional Brownian motion (fBm) was defined as
a moving average of the past increments of an ordinary
Brownian motion by means of a power type smoothing
kernel [9]. The exponent H [(D,1) of the fBm process
By (t) is related to its self-similarity property, i.e., the
processes B (at) and a B (t) have the same probability
distribution. The fBm is nonstationary with the variance
varying in time as a power law ¢? = t2#. In fact the fBm is
the single Gaussian stochastic process with stationary in-
crements, continuous mean square and satisfying the self-
similarity property [9]. When H = 0.5, the fBm reduces
to ordinary Brownian motion.

The fBm is a continuous stochastic process and there
are many numerical algorithms to generate its discrete
paths [25]. We use the algorithm based on the wavelet
decomposition [26] which is an improved form of that de-
signed in [27]. It provides a good approximation of the fBm
path if H is not close to 0.1. Obviously, by discretization
some of the self-similarity properties of the fBm are lost.
Our decomposition into intrinsic components allows us to
show that the self-similarity is distorted for the smallest
and largest time scales.

We apply the algorithm described in the previous sec-
tion to a discrete fBm with N = 5000 and H = 0.7

(Fig. 4a). Three intrinsic components are obtained (Figs. 4b-

d), the last of them is Gaussian (the Kolmogorov-Smirnov
index is 0.011) and uncorrelated except for a lag equal to
one time step. The global variations of the three compo-
nents are: V1 =552 V@ =252 and V® = 3.2. Hence

the analyzed time series is dominated by large time scales
and, because at? < V @, the amplitudes of the monotonic

variations decrease rapidly as the time scale decreases.
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Fig. 4. A discrete path of an fBm with H = 0.7 (a) is decom-
posed into a hierarchy of three intrinsic components (b-d).

The monotony spectra of the three intrinsic compo-
nents are plotted in log-log scale in Fig. 5. Although the
number of the monotonic segments varies strongly (J® =
7, 3@ =98, and J® = 1257), their monotony spectra do
not superpose and have similar shapes. However, only the
monotony spectrum of the second intrinsic component has
a well-defined shape while that of the first intrinsic com-
ponent has too few points and that of the third intrinsic
component is distorted because the monotonic segments
have the minimum length limited by the time step. The
elongated shape of the monotony spectra shows that the
amplitudes of the monotonic segments in each intrinsic
component increase with the increase of their character-
istic times. Since we use a log-log plot, this dependence
indicates the existence of a power law.

If the intrinsic components are correctly determined,
then their structure has to reflect in some way the self-
similarity law of the fBm. We notice that the mean ampli-
tudes of the monotony spectra of the intrinsic components
in Fig. 5 decrease with the decrease of the mean charac-
teristic times. We investigate this behavior on a statistical
ensemble of 100 discrete fBms with N = 5000 and with
a fixed value of H. For each intrinsic component of each
fBm path we compute the mean [ANCof the characteristic
times and the mean [@lof the amplitudes of the mono-
tonic segments. Then the coordinates ([IANLTal)]give the
center of mass of a monotony spectrum of the intrinsic
component in linear coordinates.

The results for two statistic ensembles of 100 discrete
fBms with H = 0.5 and H = 0.9 are plotted in log-log
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Fig. 5. The monotony spectra of the intrinsic components in
Figs. 4b-d. The order of the components increases from right
to left.
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Fig. 6. The mean amplitudes of intrinsic components as a
function of their mean characteristic times for two statistical
ensembles of discrete fBms with H = 0.5 (cross markers) and
H = 0.9 (circle markers).

coordinates in Fig. 6. Before verifying the existence of the
power law, we notice that at small and large values of
[ACIn Fig. 6 the centers of mass of the intrinsic compo-
nents arrange themselves on distinct line segments. The
two alignments have di [erent causes.

First we discuss the case of large time scales. The num-
ber of the monotonic segments J.. of the ¢ intrinsic compo-
nent is an integer, so that the mean characteristic time of
a component takes only the discrete values A= N/J..
The maximum value [AC= N is obtained if the intrin-
sic component is monotonic (J. = 1). The next value
[AFE N/2 occurs when J. = 2 and the distance in log-log
coordinates between these two mean characteristic times
is10g;5(N/2). When J.. increases, these distances decrease.
For large values of J.. the values of log,,[AC&re separated

1.2

0.8

SO—06C—5

05 1 1.5 2 25 3

Fig. 7. Slopes of the centers of mass of the statistical en-
sembles of 1000 discrete fBms contained within a unit interval
centered at To. The values of the self-similarity parameter H
is plotted with dashed line.

by intervals so small that they cannot be perceived sepa-
rately on the graph.

The other alignment of the centers of mass at small
[ACds due to the discrete variations of the averaging win-
dow K in Eq. (1). For small values of K these jumps are
perceptible and the centers of mass separate from each
other. These discrete variations could be eliminated using
a smooth averaging kernel, but the results are not essen-
tially changed by such a procedure.

The centers of mass of the intrinsic components in log-
log coordinates are distributed along two straight lines
with slopes equal to s = 0.496 and s = 0.948, values that
approximate very well the Hurst parameters of the two
statistical ensembles (Fig. 6). This result shows that the
intrinsic components obtained with the maximum mono-
tonic variation algorithm preserve the self-similarity prop-
erty of fBm in the form

AT IAf. 4
However, the distribution of the centers of mass about the
regression lines is not homogeneous (Fig. 6). Due to the
limited length of the time series the self-similarity does
not hold at small scales near the time step or at large
scales near the length of the time series. In the follow-
ing we determine the interval of time scales on which the
discrete paths of the fBm satisfy as close as possible the
self-similarity law.

We denote by T = log; A the order of magnitude of A.
We fit a straight line on the centers of mass for which T is
contained in the interval [to — 0.5, Tg + 0.5] of unit length
with the center on a fixed value 1p. The slopes s of these
straight lines for dilerknt 1o and for several values of H
are plotted in Fig. 7 for statistical ensembles with 1000
time series. A good approximation of H is obtained in all
cases for 19 1, 1.75]. Taking into account the unit width
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of the fitting interval, we can say that the centers of mass
of the intrinsic components of fBm transform themselves
into each other according to the self-similarity law (4) for
T = log,o [ACT]A.5, 2.25], i.e., for two orders of magnitude.
The intrinsic components with the center of mass outside
of this interval (those with small and large time scales) do
not obey the self-similarity law.

The length of the interval over which the self-similarity
holds varies with the length of time series. We analyze
this dependence using several statistical ensembles of 1000
time series with fixed H and variable time series lengths
N [{500, 1000, ...,5000}. The orders of magnitude Tty of
the characteristic times for which the slope s approximates
H with a relative error smaller than 0.03 are plotted in
Fig. 8. The analysis has been made for two values of the
Hurst parameter H = 0.3 and H = 0.7. The interval
for which the center of mass of the intrinsic components
satisfies the self-similarity law increases with N and for
N [500 there are no self-similar intermediate scales.

In Fig. 8, we notice that the centers of mass of the
intrinsic components have large fluctuations for H = 0.7.
It is likely that the numerical generation of discrete paths
of fBm is weaker for large H. One can use other numerical
algorithms to obtain better paths. However, a comparison
of dilerknt generation algorithms is beyond the scope of
this article.

5 Intrinsic components of hydrological time
series

In stochastic subsurface hydrology, the fBm naturally oc-
curs as a model for the trajectory of the transport pro-
cess whenever the velocity field has long range power law
correlations [14]. For short range correlations instead, the
transport can be described asymptotically as a Gaussian
di[udion [28]. However, for typical groundwater forma-
tions, the process converges to this Gaussian limit after
long travel distances of hundreds of correlation lengths
[21] so that the pre-asymptotic regime shows anomalous
di [udion features [22]. While anomalous behavior in the
pre-asymptotic regime of the longitudinal component of
the transport process has been well documented [21,22],
much less is known about the behavior of the transverse
component.

As in the case of fBm, using the maximum monotonic
variation algorithm, we analyze the time series describing
the transverse component of the transport process gen-
erated by a popular numerical algorithm. We consider a
typical model of the hydraulic conductivity for saturated
aquifers consisting of a two-dimensional statistically ho-
mogeneous space random function, with exponential cor-
relation of correlation length z. and variance o2 [28,29].
Realizations of this random function are generated by the
well known Kraichnan algorithm [30] as sums of random
periodic modes. The velocity samples are approximated,
through a linearization of Darcy and continuity equations,
by a slightly modified Kraichnan algorithm, as sum be-
tween a constant mean (U, 0), with U = 1 m/day, and a

fluctuation (u, v) given by a superposition of random pe-
riodic modes [29, Eq. 21]. To avoid artificial un-physical
fluctuations [31], the number of periodic modes is chosen
of the order of the length N of the time series to be gen-
erated.

We also consider an isotropic Gaussian di[udion pro-
cess specified by a coe [cieht D = 0.01 m?/day. The tra-
jectory of the resulting advection-di [usion process is gov-
erned by a system of two It6 equations. Their solution
is approximated by a weak Euler scheme [28]. Here we
consider only the time series of the transverse trajectory
component, less investigated in the past. The weak Euler
approximation of the solution for the transverse trajectory
component is given by
n=12,...,N, 5)
where yo = 0, 6t = 0.5 days is the time step, v,—1 =
V(Xp—1,Yn—1), Xp, is the solution for the longitudinal com-
poneny; and ¢ is an unbiased random walk of amplitude
€| = 2Dat [28].

For fixed D and 6t, the properties of the time series (5)
are controlled by the parameters z. and 0. For the present
simulations we have chosen the ranges 1 m <z, <30 m
and 0.15 < ¢2 < 12. Figure 9 shows time series samples
with N = 5000 for three extreme values of the parameters.
The time series y,, for the minimum values of z. and ¢?
is plotted in Fig. 9a. Increasing z. to its maximum value
leads to a time series dominated by large scale variations,
the fluctuations being negligible (Fig. 9b). The fluctua-
tions are also reduced when 62 is increased, but less than
in the previous case (Fig. 9¢). The numerical generation
algorithm for the chosen value of 6t does not work when
both of the two parameters take their maximum values.

Self-similarity properties of the hydrological time se-
ries y,, are analyzed by the automatic algorithm used for
discrete fBm in the previous section. In Figs. 10a-c we
plot the results obtained for statistical ensembles of 1000
time series of length N = 5000. One remarks that only for
z. =1 m and 02 = 12 (Fig. 10c) the mean amplitudes are
aligned along a straight line for all characteristic times, in-
dicating the self-similarity property. When a2 is set to its
minimum value the linear alignment disappears, hence in
this case the mean amplitudes of the intrinsic components
do not satisfy a power law.

Even if the hydrological time series do not have a global
self-similarity law, we can fit a straight line on the cen-
ters of mass of the intrinsic components as we have made
in Fig. 6. In Fig. 10a the slope is s = 0.4946 indicating
a normal diludion. Increasing the value of z. is equiv-
alent to expand the dimensionless time Ut/z., so that
time series with N = 5000 time steps correspond to the
pre-asymptotic regime. This scale transformation explains
why the shape of the graph in Fig. 10b is similar to the
first part of the graph in Fig. 10a.

The global slope for Fig. 10b is s = 0.9502 indicat-
ing a super-di [udive behavior. These results are consistent
with the behavior of the transverse diludion coe [Cieht
obtained from Monte Carlo simulations with z. = 1 and
02 = 0.1, which increases to a maximum at about Ut/z. =

Yn = Yn—1 + Vn—lét + E;
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Fig. 9. Three samples of the hydrological time series with
extreme values of z; and o?.

5, followed by an asymptotic decay towards a constant
value [28, 32]. Moreover, the variance of y,, fits well with an
fBm variance proportional to t?, with H = 0.4886, from
zero to the total simulation time Ut/z, = 2000, and with
H = 0.5667, from zero to Ut/z. = 5. The transition be-

tween super-di [usion and di [ugion passes through a sub-
di [udive regime with H = 0.4343, between Ut/z. =5 and
Ut/z. = 100. We also found that the separation of these
regimes, shown by di [erences between the corresponding
Hurst coe [ciehts, becomes even more pronounced as the
correlation length increases from z. =1 to z, = 27 [32].

In the case shown in Fig. 10c, when the hydrological
time series are self-similar, the global slope is s = 0.5701,
corresponding to a slightly super-di [udive behavior. Al-
though the value 62 = 12 is beyond the range of validity
of the linear approximation of the velocity field, it provides
an indication that the transverse transport may be super-
di [udive only for extremely large spatial heterogeneity of
the hydraulic conductivity. This is in qualitative agree-
ment with numerical investigations on longitudinal trans-
port which show that the anomalous behavior is mainly
favored by the increase of 02 [21,22].

A more detailed description of the hydrological time
series is given by the variation of the slope computed for
unit-length intervals of t (Figs. 10d-f). If 6> = 0.15 the
slopes at the small time scales depend strongly on the
parameter z.. For the minimum value of z. the slope is
smaller than 0.5 for time scales with 1o < 2.5 (Fig. 10d),
indicating a sub-di[udive transport although the global
behavior is di[udive. When z. = 30 m the slope is larger
than 0.5 over the same range for 1y (Fig. 10e); it can be
even larger than 1, although for fBm H < 1. This super-
di [udive behavior is in accordance with the global behav-
ior in this case. For the largest value of 62 considered in
our simulations (Fig. 10f) the slope varies slightly between
0.5 and 0.6, in accordance with a global super-di [1dive be-
havior.

The variation of the slope s with the order of magni-
tude 1o of the time scales for small variances o2, revealed
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by our decomposition method, corresponds qualitatively
to the variation of the Hurst coe [cieht with the scale
of observation inferred from Monte Carlo simulations [28,
32] (described above). However, an important di[erknce
should be noted here. Unlike the time scale A used in our
time series analysis, in numerical and experimental hy-
drological studies the scale is simply given by the time
interval of the observation. As this interval increases, it
encompasses more and more monotony intervals of length
A of the trajectory y,, which contribute to its global vari-
ance. The power of the new decomposition method is that
it considers the contribution of all the monotony scales
of a time series from the beginning of the analysis, not
gradually as in hydrological Monte Carlo approaches. The
advantage in analyzing the di [udive behavior of the hydro-
dynamic time series is that it provides precisely identified

and quantified contributions of the separated time scales,
which are related to characteristic intervals of variation of
the random velocity.

6 Conclusions

In this paper we analyze the spectral properties of nonlin-
ear and nonstationary time series using the characteristic
time equal with the distance between two successive local
extrema [3]. In this way the local time scales are identi-
fied with the lengths of the monotonic segments contained
in the time series. We extend the approach based on the
monotony properties by introducing the amplitude of the
monotonic segments and plotting these amplitudes as a
function of their characteristic times.
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The monotony spectrum describes only the variations
of the smallest scale contained by the time series. In order
to obtain a complete description we need the monotony
spectra of a decomposition of the time series into a spec-
tral hierarchy of intrinsic components. We obtain this de-
composition by smoothing the small scale variations with
a repeated moving average which is stopped when the
maximum monotonic variation is reached. The newly in-
troduced algorithm is parameter-free, hence automatic,
and the resulting components are therefore intrinsic.

Our decomposition algorithm can generate a spectral
hierarchy of intrinsic components for the time series con-
taining a continuum of time scales with amplitudes de-
creasing from large scales to small scales. The discrete
path of an fBm satisfies this condition and we have suc-
ceeded to decompose it if its length is larger than 500 time
steps. The mean amplitude of the intrinsic components of
discrete fBm scales with the mean characteristic times as
a power law with the exponent equal to the Hurst param-
eter of the original fBm (Eq. (4)). This result shows that,
as expected, the components preserve the self-similarity
of the fBm and constitutes a validation test of our auto-
matic algorithm. Furthermore, we have established that
the discretization of the fBm restrains the validity of the
self-similarity property only to intermediate scales.

The application of the maximum monotonic variation
algorithm to the transverse components of di [udion in ran-
dom fields illustrates the occurrence of a possible super-
di [udive fBm behavior of the transverse transport for large
variances a2 of the hydraulic conductivity in saturated
aquifers. For smaller values of o2 the transverse coordi-
nates do not satisfy a self-similarity law. In some cases
the hydrological time series cannot be approximated lo-
cally by fBm because the local slope is greater than 1
(Fig. 10e).

As we have seen in this paper, the monotony spec-
trum of a single time series, not only that of a statistical
ensemble, contains a lot of information about its spectral
structure (see Sect. 2). In a previous study we decom-
posed single time series of financial returns imposing the
condition that the monotony spectra of the intrinsic com-
ponents should be disjoint [8]. The algorithm used there
could be improved by combining it with the automatic
algorithm of the maximum monotonic variation.

An open problem is the possibility to prove theoreti-
cally some of the numerical results obtained here. We also
intend to extend the application of the monotony spec-
trum to other types of time series than those analyzed
till now, for example, to multifractal time series. Several
such multifractal analyses were already performed using
the decomposition into intrinsic components obtained by
the EMD method [33]. The same approach can be ap-
plied using the intrinsic components obtained with the
algorithm of maximum monotonic variation. In fact, the
graphs in Figs. 10d and 10e might be interpreted as vari-
ations with the time scale of the average Holder exponent
of a multifractal time series [34].
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