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Numerical Investigations on Ergodicity of Solute Transport in
Heterogeneous Aquifers

N. Suciu,1 C. Vamoş,2 J. Vanderborght,3 H. Hardelauf,3 and H. Vereecken,3

Abstract. [1] Darcy velocities for log-normal hydraulic conductivity with small vari-
ance and finite correlation length were approximated by periodic random fields. Accu-
rate simulations of two-dimensional advection-dispersion processes were achieved with
the Global Random Walk algorithm, using 1010 particles in every transport realization.
Reliable statistical estimations were obtained by averaging over 256 realizations. The main
result is a numerical evidence for the convergence, in mean square limit, of the actual
concentrations to the macrodispersion process predicted by a known limit theorem. For
small initial plumes the ergodic behavior can be expected after thousands of advection
time scales, when the mean square deviation from the theoretical prediction of the cross-
section space averaged concentrations falls under 20%. The increase of the transverse di-
mension of the plumes slows down the approach to the quasi-ergodic state and has an
unexpected nonlinear effect on the variability of the actual concentrations and disper-
sivities. INDEX TERMS: 1831 Hydrology: Groundwater quality; 1832 Hydrology: Ground-
water transport; 1869 Hydrology: Stochastic hydrology; Mathematical Geophysics: 3275 Un-
certainty quantification; 3294 Mathematical Geophysics: Instruments and techniques; KEYWORDS:
ergodicity, macrodispersion, global random walk

1. Introduction

[2] It is generally admitted that groundwater quality
is mainly affected by the transport of dissolved chemicals
through soils and aquifers. The classical model is based on
a dispersion and advection mechanism which describes the
transport at some “local scale”. Further, one assumes that
the variability of the solute movement in subsurface water
is caused by the heterogeneity of the hydraulic conductivity
which, for a given natural formation, is efficiently described
as a realization of a random space function [Sposito et al.,
1986; Hassan et al., 1998]. The corresponding advection ve-
locity field becomes a random function also and the trans-
port in natural porous media is described by a stochastic
model [Dagan, 1984] which follows the approach for turbu-
lent diffusion in atmosphere [Taylor, 1921], or, in terms of
the mathematical theory of stochastic processes, as a diffu-
sion in a random velocity field [Matheron and de Marsily,
1980; Avellaneda and Majda, 1992].

[3] As shown in [Sposito et al., 1986], once the advection-
dispersion model for local scale has been inferred, the
stochastic modeling of transport in groundwater consists
of two successive steps. First, the behavior of the ensem-
ble averaged concentration has to be investigated to look
for the existence of an up-scaled diffusive behavior called
“macrodispersion”. The second issue is to assess the appli-
cability of the ensemble statistics to predictions made for
a single groundwater system. The latter, which is the cen-
tral problem in stochastic modeling, is generally referred to
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as “ergodicity” in hydrogeological literature [Dagan, 1984,
1987; Kabala and Sposito, 1994; Sposito, 1997; Fiori, 1998;
Trefry et al., 2003; Janković et al., 2003]. It is in this sense
that the term ergodicity will be used in the following.

[4] Even though abundant literature has been produced
in the last two decades, the investigations on ergodicity were
in most cases limited to the study of the second moments
of the solute plume and the conclusions often disagree. For
instance, it is accepted that the length scale to reach the
asymptotic limit predicted by the stochastic model is im-
practical for real contamination problems [Berkowitz, 2001;
Schwarze et al., 2001; Dentz et al., 2002, 2003; Eberhard,
2004]. However, recent numerical investigations conclude
that, for extended initial plumes, the dispersivities behave
ergodically, at relatively small distances from the injection
domain [Janković et al., 2003]. These conclusions do not
agree with the results of Trefry et al. [2003], which show
that the dispersivities significantly differ from realization to
realization even after hundreds of heterogeneity scales and
the concentrations do not reach the Gaussian limit predicted
by the stochastic macrodispersion model. The result of Tre-
fry et al. [2003] is consistent with other numerical simu-
lations which show that the attainment of a quasi-ergodic
state is more complicated than indicated by some analytical
approaches [Naff et al., 1998b].

[5] To examine whether, when and how accurately the
stochastic model predicts the behavior in actual aquifers,
we propose numerical quantitative estimations of the quasi-
ergodic behavior in the spirit of the “operational ergodicity”
of Kabala and Sposito [1994]. We use a rigorous mathemat-
ical proof of the existence of the up-scaled macrodispersion
process to check whether the numerical method is accurate
enough for our purpose. Further, we use the same theoreti-
cal result to investigate the ergodicity. That is to say, we are
looking for those indicators of the contamination in actual
plumes that can be predicted by the theoretical result, in the
limits of acceptable errors. The numerical task is carried out
with the “Global Random Walk” algorithm (GRW) [Vamoş
et al., 2003]. Superseding the limitations encountered by the
classical particle tracking method, the GRW algorithm per-
forms the simulation of advection-dispersion displacements
over thousands of advection time scales of tens of billions of
particles, initially distributed over hundreds of heterogeneity
scales.
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[6] For the sake of clarity and for computational rea-
sons, we consider only the classical stochastic model, two-
dimensional transport problems and small variance of the
velocity field in our numerical investigations. This permits
detailed analyses of transport in velocity fields with finite
correlation lengths, which are not possible in less restrictive
conditions. In the following we discuss these limitations and
present some reasons to choose this methodological frame.

[7] More recently, stochastic models free of the Fickian
hypothesis were proposed as alternatives to the classical
stochastic model. These models generally describe ensemble
averaged concentrations and their parameters can, in prin-
ciple, be derived from measurable properties of the medium
(breakthrough curves or hydraulic conductivities). The the-
ory proposed by Cushman and Moroni [2001] generalizes the
statistical mechanical approach for Hamiltonian systems to
an arbitrary statistical ensemble with invariant probability
measure and it enables the description of anomalous disper-
sion induced by velocity fluctuations evolving over a hier-
archy of scales on the scale of observation. Berkowitz and
Scher [2001] presented a general approach, based on the
ensemble average of a master equation, equivalent to a con-
tinuous time random walk over a range of length scales on
which the statistical homogeneity can be assumed. This
approach was extended to a Fokker-Planck equation with
memory term, which integrates the transport behavior over
homogeneous units of the medium, each of them described
by the ensemble averaged master equation [Cortis et al.,
2004]. Another promising stochastic model for transport in
saturated porous media describes the trajectories of the so-
lute particles, in the position-velocity phase space, by means
of a Langevin stochastic differential equation which accounts
for non-Fickian features of the transport as well [Kurban-
muradov et al., 2003]. The ensemble average of the classical
advection-dispersion equations can be obtained under ap-
propriate limiting conditions as particular cases of the three
stochastic models mentioned above.

[8] The classical model is also able to capture the com-
plexity of transport in groundwater. Anomalous diffusion
in the pre-asymptotic transport regime presumably occurs
under quite broad conditions [Trefry et al., 2003]. For more
restrictive conditions (perfectly stratified aquifers), the en-
semble averaged solution of the classical model can be super-
diffusive at all times [Matheron and de Marsily, 1980]. How-
ever, what really makes the classical model attractive for ap-
plications is the existence of mathematical proofs for the dif-
fusive behavior of the ensemble averaged concentration, for
typical groundwater transport problems, characterized by
velocity fields with finite correlations lengths. Since the clas-
sical model describes the transport in given velocity fields,
the quantitative approach to ergodicity is straightforward
and consists in analyzing the sample-to-sample fluctuations
and the deviation of the ensemble averaged solutions from
the macrodispersion process. Therefore, in the following we
consider only the model based on the advection-dispersion
mechanism. The conclusions of such an investigation could
be useful in assessing the predictive power of the stochastic
modeling which does not assume the Fickian behavior at a
local scale.

[9] Two-dimensional models can be very useful tools to
predict contamination in natural aquifers [Hassan et al.,
1998]. They may be applied to the case of hydraulic con-
ductivity which is isotropic in the horizontal plane but has a
much smaller correlation length in the vertical direction as
well as to transport at regional scale [Dagan, 1987]. Two-
dimensional numerical simulations in vertical planes ori-
ented along the mean flow direction were successful in re-
producing the experimental results obtained in tracer tests
[Moltyaner et al., 1993]. The two-dimensional simulations
also provide insight into the convergence of the transport
process to the Gaussian limit [Trefry et al., 2003]. This

is mainly relevant when ergodicity is investigated, as sug-
gested by Dagan [1984; 1987], through averages over space
domains with large transverse dimensions. Then, the be-
havior of the space mean concentration is mainly governed
by the longitudinal dispersivities which, for typical two- and
three-dimensional transport problems are quite close for any
time, as shown by both theory [Dagan, 1987, 1984; Fiori et
al., 2003] and numerical simulations [Schwarze et al., 2001;
Dentz et al., 2002, 2003].

[10] The presumption that the hydraulic conductivity has
a log-normal distribution and small variance is an accepted
simplification leading to Gaussian velocity fields which can
capture the essential features of the stochastic model [Cor-
tis et al., 2004; Eberhard, 2004]. In the present context, this
choice is not a limitation since the existence of the up-scaled
Gaussian distribution for the ensemble averaged concentra-
tion, used as reference in our investigations, is ensured for
Gaussian velocity fields when the velocity variance goes to
zero.

[11] The paper is structured as follows. Section 2 con-
tains some definitions and results concerning the notions of
macrodispersion and ergodicity. Section 3 contains some
general considerations on numerical modeling as well as the
statement of our numerical method. Section 4 presents the
main numerical results. Conclusions are drawn in Section
5. Appendix A presents the GRW algorithm and details
on the numerical computations. Appendix B is dedicated
to technical details concerning the transport problem which
approximately fulfils the theoretical requirements for the ex-
istence of up-scaled Gaussian diffusion and the statistics of
numerically generated velocity fields.

2. Macrodispersion and Ergodicity
2.1. The Macrodispersion Stochastic Model

[12] For slowly variable porosity which can be taken as
a constant, and for non-reactive solutes, the mathematical
model of transport in saturated porous media is given by
an advection-dispersion equation for the concentration field
c(x, t),

∂tc + V∇c = D∇2c. (1)

The constant “local dispersion coefficient” D accounts for
both the molecular diffusion and the hydrodynamic mixing
due to the small scale variability of the velocity field [Spos-
ito et al., 1986; Kapoor and Gelhar, 1994; Labolle and Fogg,
2001; Janković et al., 2003]. The stochastic approach con-
siders stationary velocities V(x) which are realizations of
a random field (random space function) that is statistically
homogeneous.

[13] A stochastic process has “diffusive behavior” when
the mean squared displacement, or variance, is linear as
function of time. The typical example is the Brownian mo-
tion, i.e. the 1-dimensional Gaussian process X(t) with zero
mean and variance σ2(t) = 〈X2〉(t) = 2Dt. In this case, the
diffusion coefficient D describes both the shape of the Gaus-
sian distribution and the width of the diffusion front 〈X2〉.
In the case of the process described by the equation (1),
and, generally, in systems with space-time variable proper-
ties, the width of the diffusion fronts is no longer given by
the diffusion coefficients alone. Instead, the rate of increase
of the second centered moment σ2(t) defines “effective dif-
fusion coefficients”

Deff (t) =
σ2(t)

2t
, (2)

which can be used to check whether the process has a diffu-
sive behavior [Avellaneda and Majda, 1992]. The existence
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of a constant limit for t −→ ∞ of the effective coefficients (2)
is ensured, for every realization of the velocity field, by some
weak conditions on the partial derivatives of V (bounded
vector potential) [Avellaneda and Majda, 1989; Tatarinova
et al., 1991].

[14] The definition (2) was mainly used in hydrological
applications for comparisons between theory and field tests
[Dagan, 1987] and to compute the first order approximations
of dispersivities by travel time statistics [Vanderborght and
Vereecken, 2002; Fernndez-Garcia et al., 2005a,b]. Some-
times, in analytical approaches [Attinger et al., 1999; Dentz
et al., 2000a] or numerical studies [Tompson and Gelhar,
1990; Trefry et al, 2003] the dispersion is described by the
local slope, dσ2/dt or by the mean slope of the variance

D̃(t) =
σ2(t) − σ2(0)

2t
= Deff (t) − σ2(0)

2t
. (3)

At large times D̃ tends to Deff and the slope of the vari-
ance can be used as well to define the asymptotic effective
coefficients. However, the time behavior of the solute plume
is properly described by the rate of increase of the second
moment (2), which, unlike the mean slope (3), is positively
defined at all times.

[15] Since disconnected, bimodal or asymmetric plumes
could have the same second moment as a Gaussian plume,
the existence of the coefficients (2) do not yet prove the
existence of the Gaussian limit process. A limit theorem
was demonstrated by Kesten and Papanicolaou [1979]. Ne-
glecting the local dispersion in (1), considering velocity
fields with non-vanishing mean U and small fluctuations
εu, ε � 1, V = U + εu, and making the assumption that
the field has some ”strong mixing” property, as character-
ized by a suitable fast decay of the correlation function
r(x)/ε2=〈u(0)u(x)〉, the authors proved that the average
of the transport process over the realizations of the veloc-
ity field can be up-scaled to a Gaussian diffusion. In the
“weak random limit” (ε −→ 0, t −→ ∞, ε2t =constant),
the ensemble averaged concentration verifies an advection-
diffusion equation with the up-scaled diffusion coefficients
given by

D∗ =
∫ ∞
0

r(Ut)dt.

Under these conditions, the statement of Taylor [1921] gets
a rigorous proof.

[16] Using a scaling argument, Winter et al. [1984] show
that when the local coefficients D are of the order ε2, an
extension of the exact result of [Kesten and Papanicolaou,
1979] to advection-diffusion processes is possible and the up-
scaled diffusion coefficients are of the form

D∗ = D +
∫ ∞
0

r(Ut)dt. (4)

For incompressible velocity fields, the up-scaled velocity
equals the mean velocity U. We remark here that the up-
scaled coefficient (4) has the same form as the first order
approximation of the “macrodispersion coefficient” derived
in [Dagan, 1984]. A test for the accuracy of the numeri-
cal simulations which mimics the previous conditions is to
check whether the deviations of the computed up-scaled co-
efficients from the values D∗ given by (4) are one order of
magnitude smaller than the local dispersion coefficient D.

2.2. Ergodicity

[17] Strictly speaking, the macrodispersion model is di-
rectly applicable to a single aquifer if the same asymptotic
Gaussian approximation holds for each realization [Sposito
et al., 1986]. Hereafter we call this strong property “asymp-
totic ergodicity”. Sufficient conditions for asymptotic er-
godicity are provided if the ensemble average of the actual
concentrations tend to the solution of the macrodispersion

model and the sample-to-sample fluctuations tend to zero.
In this case, the effective coefficients in every realization
necessarily also tend to the macrodispersion coefficients.

[18] The assumption underlying the concept of ergodic-
ity is that suitable space averages of the actual concentra-
tion can be described by the solution of the macrodispersion
model, when the spatial variability of the concentration en-
compasses the variability from realization to realization. In
[Dagan, 1984; 1987] it is assumed that the space and the en-
semble mean are interchangeable if the variance of the space
averaged concentration tends to zero. It was shown that
the spatially averaged concentration in single realizations is
close to the macrodispersion solution after tens of correla-
tion lengths of the hydraulic conductivity, if the initial solute
body or the domain of the space average extends over a few
correlation lengths across the mean flow [Dagan, 1984, p.
165]. This result was derived in a Lagrangian frame for a
normal distribution of the displacements of the solute parti-
cles, inferred by a first order approximation of the transport
equations. A similar approach, using another approximation
technique [Dagan, 1987, eq. (3.14)], led however to a differ-
ent result indicating a non-ergodic behavior, manifested by
a finite limit of the concentration fluctuations at the plume
center of mass, which is practically reached after a few cor-
relation lengths [Dagan and Fiori, 1997, figure 3]. The same
approximation led to a finite asymptotic variance of the sec-
ond longitudinal moment of the plume [Fiori, 1998, figures 4
and 5], which also indicates non-ergodic behavior. These re-
sults contradict other Lagrangian approaches [Pannone and
Kitanidis, 1999] and Eulerian theories (which are limited in
turn by closure approximations) [Kapoor and Gelhar, 1994;
Kapoor and Kitanidis, 1998]. A renewed Lagrangian result
of Fiori and Dagan [2000] corrects the previous one, show-
ing that the concentration coefficient of variation tends to
zero (after much larger travel times, corresponding to thou-
sands of correlation scales) but predicts a large time behav-
ior which is still different from that obtained in Eulerian
approaches.

[19] The ergodic behavior of individual plumes was re-
cently investigated numerically. Janković et al. [2003] found
a good agreement between the behavior of the individual
plumes and the predictions of the macrodispersion model,
for both two- and three-dimensional transport simulations,
which suggests an ergodic behavior of the extended plumes
as predicted by Dagan [1984]. On the contrary, Trefry et al.
[2003], who simulated the concentration field in single real-
izations of transport for two-dimensional plumes with initial
extension of tens of correlation lengths across the mean flow,
found that the ergodic behavior is not reached even when the
plumes have traveled hundreds of correlations lengths. The
last result is apparently in agreement with that found by
Fiori and Dagan [2000]. Yet, the two numerical approaches
are not completely comparable. Trefry et al. [2003] per-
formed a direct investigation, by comparing the dispersivi-
ties in given realizations, defined by the effective coefficients
(3) divided by the mean velocity, to the macrodispersivities
corresponding to the up-scaled coefficients (4) of the stochas-
tic model. They also checked whether the concentration be-
comes Gaussian. Janković et al. [2003] did not investigate
the concentration field and in their paper the macrodisper-
sivities were computed through a Taylor formula, similar
to (4) (see eq. (14) in [Janković et al., 2003]) which gives
smoother results and can explain the different conclusions
in the two papers.

[20] In spite of the common belief that extended initial
plumes have an ergodic behavior, there are no general math-
ematical proofs for that. The relevance of the macrodis-
persion model for each realization of the medium is not an
immediate consequence of the existence of the Gaussian up-
scaling and is not ensured either by the ergodic properties
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of the random velocity field [Sposito et al., 1986; Kabala
and Sposito, 1994]. Moreover, in the limiting case of vanish-
ing local dispersion, it was proved that groundwater flows
governed by the Darcy law are geometrically constrained
against becoming chaotic and, consequently, the purely ad-
vective transport is in general not ergodic [Sposito, 1997,
2001]. The stratified aquifer model of Matheron and de
Marsily [1980] provides another counter example, for the
complete advection-dispersion model. The exact expressions
derived by Clincy and Kinzelbach [2001] show that the fluc-
tuations of the longitudinal effective coefficient tend to a
finite limit, even if the flow is not aligned with the strata
and the transport has asymptotic diffusive behavior. Since
the asymptotic effective coefficients in given realizations do
not tend to their expectation (a necessary condition for er-
godicity), the transport is not ergodic. Quantitative numer-
ical estimations for the deviation from the macrodispersion
model of the transport in realizations of a Gaussian velocity
field with finite correlation lengths (in both transverse and
longitudinal directions) were recently obtained, for the case
of point-like initial plumes [Eberhard, 2004]. The numerical
computations of Eberhard [2004], based on approximate so-
lutions of the transport equation, show that the fluctuations
of the longitudinal effective coefficient tend to zero, indicat-
ing that a necessary condition for ergodicity is fulfilled. To
prove the ergodicity of transport in velocity fields with finite
correlation lengths it is necessary to check whether the suf-
ficient conditions, formulated for actual concentrations, are
verified. It is also useful to investigate the behavior of the
effective coefficients for extended plumes and their relation
with ergodicity.

[21] To achieve our goals, we introduce a definition which
is general enough to include various conceptual features of
the term ergodicity cited above. Let A(t) be the value of
an observable at time t, A∗(t) the theoretical prediction and
∆A = 〈(A−A∗)2〉1/2 the mean square deviation from theory
(the angular brackets denote averaging over the ensemble of
realizations of the velocity filed). The observable A is ergodic
within the range η, η > 0, if ∆A ≤ η. Since the theory usu-
ally predicts A∗ as an asymptotic limit and the observable
A is known at finite times, in practice a more flexible defini-
tion is necessary. From the relation (∆A)2 = σ2

A +(∆〈A〉)2,
where σA = 〈(A − 〈A〉)2〉1/2 is the standard deviation of A
and ∆〈A〉 = 〈A〉 − A∗ the deviation of the mean 〈A〉 with
respect to A∗, one obtains the equivalent definition

(e1) |∆ 〈A〉| ≤ η1, (e2) σA ≤ η2. (5)

If the conditions (5) are fulfilled, then the observable A is
ergodic within the range η = (η2

1 + η2
2)1/2. The asymptotic

ergodicity in a strict sense, i.e. as discussed in [Sposito et
al., 1986], is ensured when the observable A is the concen-
tration and (5) holds in the large time limit for arbitrary
small and positive η1 and η2. When the observable A is
a space averaged concentration and the conditions (5) are
fulfilled at finite times for dimensions of the averaging do-
main tending to infinity, then the space averaged concen-
tration converges in the mean square limit to the ensemble
averaged concentration and the space and ensemble aver-
ages are interchangeable. The condition (e2) was used in
[Dagan, 1984, 1987] to investigate the ergodicity under the
assumption that the ensemble averaged concentration is al-
ready Gaussian at finite times. The condition (e2) also for-
mulates the “self-averaging” property investigated in [Clincy
and Kinzelbach, 2001; Eberhard, 2004] for the longitudinal
effective coefficient. The condition (e1) alone, applied to ef-
fective coefficients or to second moments of the plume, is
often referred to as “ergodicity condition” [Fiori, 1998; Naff
et al., 1998b; Zhang and Seo, 2004; Dagan, 2004]. For finite
times and ranges η, the definition (5) corresponds to the
operational interpretation for ergodicity, proposed by Ka-
bala and Sposito [1994], which seeks conditions that lead to

acceptably small deviations of the experimentally observ-
able concentrations from the predictions of the stochastic
model. The observables A used to quantify the ergodicity
in this study are the cross-section space averaged concen-
tration and the effective diffusion coefficients. The corre-
sponding theoretical predictions A∗ are the solutions of the
up-scaled macrodispersion model.

3. Numerical Approach
3.1. Prerequisites for Numerical Investigations

[22] Numerical investigations on the existence of the dif-
fusion limit and ergodicity require the simulation of large
ensembles of realizations of the transport over large traveled
distances. Because this task generally surpasses the avail-
able computing resources, some compromise was accepted
and the efforts focussed by now on one or two of the three
objectives:

(a) accurate concentration field in a given realization,
(b) simulations of the transport over large time scales,
(c) reliable statistics for the ensemble of realizations.
[23] For instance, the objective (a) was pursued in [Smith

and Schwartz, 1980; Tompson and Gelhar, 1990; Moltyaner
et al., 1993; Naff et al., 1998b; Kapoor and Kitanidis, 1998;
Trefry et al., 2003; Janković et al., 2003] where given real-
izations of the transport were simulated over distances still
too small to describe the asymptotic behavior (with the ex-
ception of the confined aquifer case considered in [Kapoor
and Kitanidis, 1998]). Reliable statistical ensembles, the
objective (c), aiming to compute the up-scaled coefficients
(4), were obtained by tracking one particle in 1500 realiza-
tions of the velocity field [Bellin et al., 1992], 20 particles in
500 realizations [Salandin and Fiorotto, 1998], 20 particles
in 1600 realizations [Zhang and Seo, 2004], or 10000 parti-
cles in 20 realization [Fernndez-Garcia et al., 2005a], and
averaging over realizations. The computational constraints
did not allow the simulation over more than a few of ve-
locity correlation lengths and the asymptotic regime, i. e.
constant coefficients D∗, was not reached.

[24] The objectives (b) and (c) were aimed at in [Schwarze
et al., 2001; Dentz et al., 2002, 2003], in the study of the
large time behavior of the effective coefficients in the case
of point-like injection. The velocity fluctuations εu were
numerically approximated using the generator of Kraich-
nan [1970]. The coefficients were computed in two ways:
as average over the trajectories of a single particle in thou-
sands of realizations, which corresponds to D∗ in (4), and
as average over realizations of the coefficients correspond-
ing to Deff (2), obtained by tracking a number of particles
(between tens and hundreds) released at the same point in
each realization. The time behavior of the two coefficients
is different but both tend to the same constant limit, af-
ter travel distances of more than 1000 correlations lengths.
The numerically simulated limit coefficients were close to
the approximations of the order ε2 provided by perturba-
tion analyses.

[25] The objective (a) has not yet been attained at the
same time with (b) and (c) due to the limitations of the
computational resources. For instance, with regard to the
particle tracking method which is the most frequently used
in large scale simulations, it is recognized that the number
of particles should be enormous if we want to obtain accu-
rate concentrations in the limit of a few significant figures
[Sun, 1996, p. 95]. Recent investigations show that, for the
transport problems discussed here, the necessary number of
particles is of the order of tens of billions, which is pro-
hibitive for the particle tracking algorithms [Vamoş et al.,
2003; Suciu et al., 2004].
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[26] Our numerical approach uses the GRW algorithm, a
generalized random walk method for which there are no lim-
itations as to the maximum number of particles. In [Suciu
et al., 2002; 2004] it was shown that GRW is appropriate to
simulate large scale transport in groundwater. In this paper
we show that GRW fulfils the requirements (a), (b), and (c)
from above and makes possible a direct investigation on the
ergodicity issue, based on the definition (5).

3.2. Implementation of the GRW Method

[27] We considered two-dimensional divergence-free ve-
locity fields with constant mean 〈V〉 = U = (U, 0), U = 1
m/day, given by the Darcy law for normal log-hydraulic con-
ductivity y, with isotropic correlation length λy = 1 m, and
variance σ2

y = 0.1. They were generated numerically with
the Kraichnan procedure which is frequently used in large
scale simulations of transport [Jaekel and Vereecken, 1997;
Schwarze et al., 2001; Dentz et al. 2002, 2003; Eberhard,
2004]. The Kraichnan method ensures the incompressibility
and approximates the realizations of the Gaussian velocity
field, given by the first order approximation in σy of Darcy
and continuity equations, by means of a superposition of
sine (or cosine) periodic modes.

[28] In every realization of the velocity field the simulation
of an isotropic diffusion (Dll = D = 0.01 m2/day, Dlm = 0
for l �= m) was conducted for dimensionless times Ut/λy

corresponding to thousands of correlation lengths, using the
reduced fluctuations GRW algorithm presented in Appendix
A1. In each realization of the velocity field, N = 1010 par-
ticles were initially uniformly distributed in a vertical band
or located at the origin of the grid. Because the theoreti-
cal result presented in subsection 2.1 was obtained for un-
bounded domains, the grid was chosen to be larger than the
maximum extension of the plume. Implementation details
are discussed in Appendix A2. Some preliminary tests have
shown that the longitudinal local dispersion has little in-
fluence on the resulting concentration fields, in agreement
with the results concerning the longitudinal effective coeffi-
cients presented by Fiori [1996, figure 1] and by Dentz et al.
[2000a, Appendix B]. Thus D mainly describes the strength
of the transverse local dispersion.

[29] We chose the transport parameters σ2
y = 0.1 and

D = 0.01 m2/day after preliminary investigations, presented
in Appendix B1. These parameters minimize numerical arti-
facts inherent in two-dimensional simulations. The compar-
ison presented in Appendix B2 show that the fluctuations
have similar large time behavior for exponential and Gaus-
sian shape for the correlation of the log-hydraulic conductiv-
ity field, provided that the number of periods in Kraichnan
routine and the number of realizations are large enough.
For the detailed investigations on ergodicity presented in
the following we chose the exponential correlation shape,
Np = 6400 and R = 256 realizations. In Appendix B3 it
was shown that the numerically generated velocities approx-
imate a Gaussian random field and the squared fluctuations
ε2 have roughly the same order of magnitude as the local
dispersion coefficient D (see second line of table B1), in
agreement with the theoretical assumptions leading to an
up-scaled Gaussian process. The corresponding theoretical
values of the longitudinal and transverse effective diffusion
coefficients, computed from the 1-st order estimation of the
correlations under the integral in (4) [Dagan, 1984], have
the values

D∗
11 = 0.11 m2/day, D∗

22 = 0.01 m2/day. (6)

[30] The simulations started with a uniform initial dis-
tribution of the 1010 particles inside rectangles λy × Lλy,
with L = 10, 50 and 100, oriented across the mean flow. In

the case of instantaneous point source, all the particles were
released from the origin of the grid at the initial time. The
total simulation time was of 2000 days for L = 100, 2700
days for L = 50, and 4000 days for L = 10 and for the point
source. The cross-section space averaged concentrations in
given realizations C(x1, t; L) were computed according to
(A1) by the number of particles in a domain λy×(160+L)λy

divided by the total number of particles N . The normalized
concentrations were obtained through division by the initial
concentrations: C(x1, t) = C(x1, t; L)/C(0, 0; L). The aver-
aging domain, oriented across the mean flow and centered at
x1, corresponds to the ideal sampling across reference planes
aimed at in field tracer tests [Vanderborght and Vereecken,
2002] as well as in laboratory and numerical experiments
[Fernndez-Garcia et al., 2005a,b]. We stored the space aver-
aged concentration at the plume center of mass, C(〈x1〉, t),
as well as the concentration field C(x1, t) at several fixed
times. The effective coefficients (2) were computed accord-
ing to (A2). Further, we computed the mean concentrations
〈C〉 and the mean effective coefficients 〈Deff

ll 〉, as averages
over the ensemble of R realizations of the transport. Since
in all the simulations the mean flow velocity was U = 1
m/day, the numerical values of the effective coefficients co-
incide with the dispersivities Deff/U , measured in meters.

4. Numerical Results on Ergodicity
4.1. Cross-section Averaged Concentrations

[31] Since the width of the averaging domain is larger
than the transverse dimension of the plume, the transport
can be described by a one-dimensional problem for the spa-
tially averaged concentration C(x1, t). The corresponding
theoretical concentration C∗ is the one-dimensional Gaus-
sian distribution of coefficient D∗

11 = 0.11 m2/day which
describes the cross section average of the concentration pre-
dicted by the stochastic macrodispersion model. The er-
godicity condition (e1) in (5) was investigated by means of
the relative deviation of the ensemble average of the cross-
section averaged concentration from the theoretical value,
∆〈C〉/C∗ = (〈C〉−C∗)/C∗. The deviations ∆〈C〉/C∗, com-
puted at the plume center of mass 〈x1〉 presented in figure
1 show that in the case of point source at t = 4000λy/U the
condition (e1) is fulfilled within a range η1 	 0.17C∗. The
increase of L reduces the deviations at early times. For in-
stance, for L ≥ 50, η1 	 0.13C∗ at 100 advection time scales
λy/U (or, equivalently at one dispersion time scale λ2

y/D).
[32] To check the second ergodicity condition (e2) we used

the standard deviation of the cross-section averaged concen-
tration divided by the theoretical solution σC/C∗, where
σC = (〈C2〉 − 〈C〉2)1/2. The results presented in figure
2 show that for point source at t = 4000λy/U the condi-
tion (e2) is fulfilled within a range η2 	 0.11C∗. Thus, ac-
cording to (5) the ergodicity range is η = (η2

1 + η2
2)1/2 	

0.2C∗. The monotonous decay of the norm (∆C)2 =
σ2

C +(∆〈C〉)2 indicate the convergence in mean square limit
of the cross-section averaged concentration to the solution
of the macrodispersion process.

[33] For L = 100 at one dispersion time scale one obtains
in a similar way η2 	 0.1C∗ and η 	 0.16C∗. The results
for ensemble averaged concentration as function of the dis-
tance from the center of the initial plume for a fixed time of
100λy/U , presented in figures 3 and 4, indicate that η has
a minimum at x1 = 100λy (which corresponds to the mean
center of mass coordinate). A rough prediction of the maxi-
mum concentration estimated by the cross-section averaged
concentration at the plume center of mass, C∗±3η, is reliable
for almost all the realizations of the ensemble defined by a
given statistical structure of the log-hydraulic conductivity.
In the somewhat ideal case analyzed here, for initial plumes
extending over 100 correlation lengths across the mean flow,
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the prediction based on the macrodispersion model and the
ergodic hypothesis of the space averaged concentration C
in actual aquifers is affected by uncertainties of the order
6η 	 0.9C∗.

[34] The behavior of standard deviations presented in fig-
ure 2 indicate a non-linear dependence on the plume dimen-
sion at early times. For large sources (L ≥ 50) the con-
centration fluctuations σC/C∗ are smaller than in the case
of point source, decrease with L but remain almost con-
stant, at values about 0.1, over thousands of advection time
scales. The monotonous decrease of the fluctuations, i.e. the
asymptotic ergodicity, is expected to occur at times much
larger than in the case of the point or small sources.

4.2. Effective Coefficients

[35] The relative deviation of the ensemble averaged ef-
fective coefficients from the theoretical values given in (6)
can be expressed using (3) by

∆〈Deff
ll 〉/D∗

ll = (〈Deff
ll 〉 − D∗

ll)/D∗
ll

= ∆〈D̃ll〉/D∗
ll + σ2

0,ll/(2tD∗
ll). (7)

Since the contribution of the initial plume σ2
0,ll/(2tD∗

ll) is a
deterministic quantity which tends to zero for large times, to
compare the asymptotic behavior of the effective coefficients
for different L we used the deviation of the mean slope of
the second centered moment of the plume ∆〈D̃ll〉/D∗

ll. The
results for longitudinal coefficients are presented in figure 5.
The ergodicity condition (e1) for the mean slope is fulfilled
within a range η1 	 0.11D∗

11 in the case of point source at
4000 advection times and within a range η1 	 0.05D∗

11 in the
case L = 100 at 100 advection times. Because σ2

0,11 = 0.1m2

in all cases, at t = 100λy/U its contribution in (7) is already
only 0.0045 and therefore the same range η1 characterizes
the longitudinal effective dispersion coefficients.

[36] The fluctuations σ
D

eff
11

/D∗
11 of the longitudinal effec-

tive dispersion coefficient are given in figure 6. For a small
increase of the plume dimension, the fluctuations increase
(similarly to the results reported by Naff et al. [1998b, fig-
ure 15]) and they decrease when the plume dimension is
further increased, like the fluctuations of the cross-section
averaged concentration in figure 2. The ergodicity condi-
tion (e2) is fulfilled within a range η2 	 0.16D∗

11 for point
source at t = 4000λy/U and within a range η2 	 0.14D∗

11 in
the case L = 100 at t = 100λy/U . It follows that, according
to (5), the corresponding ergodicity ranges are η 	 0.2D∗

11

(point source) and η 	 0.15D∗
11 (L = 100). The behavior

for small sources (L ≤ 10) indicate the asymptotic ergodic-
ity of the longitudinal coefficient. The deviations from the
macrodisperion model of the mean slope of the transverse
second moment and the fluctuations of the transverse ef-
fective coefficients, presented in figures 7 and 8 respectively,
indicate that the transverse coefficient is also asymptotically
ergodic.

[37] The asymptotic effective coefficients and their devi-
ation from the theoretical values D∗

ll were computed in the
case L = 100 as follows. First, the temporal averages of the
mean slopes D̃ll between t = 200λy/U and t = 2000λy/U ,

[D̃ll], were computed in every realization. Then, averages
over realizations were used to estimate the mean asymptotic
coefficients D∞

ll = 〈[D̃ll]〉 and the deviations

∆[D̃ll] = 〈([D̃ll] − D∗
ll)

2〉1/2

with respect to D∗
ll. The results are presented in figure 9 as

functions of the number of realizations R. The fact that the
deviations of the mean coefficients D∞

ll from D∗
ll are one or-

der of magnitude smaller than the local dispersion coefficient
D, in very good agreement with (4), constitutes a test for

the accuracy of the numerical simulations. The behavior of
the deviations ∆[D̃ll] (thin lines in figure 9) indicate that the

time averaged coefficients [D̃ll] are ergodic within a range of
the order of the local dispersion coefficient η 	 D = 0.01
m2/day.

[38] Even if the the mean slope is ergodic within an ac-
ceptable small range, the macrodispersion coefficients D∗

ll
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Figure 1. Deviations from the macrodisperion model
of the mean concentration at the plume center of mass
∆〈C〉/C∗(〈x1〉, t).
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describe the time behavior of the second moments of the
plume with errors smaller than 100% only when, according
to (7), σ2

0,ll/(2tD∗
ll) ≤ 1. This implies that the ergodicity

time scale is at least as large as σ2
0,ll/D∗

ll. In the cases pre-
sented in this paper, for the transverse coefficient the time
σ2

0,22/(2D) can be very large (tens of thousands of advection
scales for L ≥ 50) and increases proportionally with L2. The
increase of the ergodicity scale with the plume dimension L
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Figure 4. Standard deviations of the concentration as
space function σC/C∗(x1, 100λy/U).

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

1 10 100 1000
Ut/λy

L = 100
L = 50
L = 10

point source

Figure 5. Deviations from the macrodisperion model
of the mean slope of the longitudinal second moment

∆〈D̃ll〉/D∗
ll.

0.01

0.1

1

1 10 100 1000
Ut/λy

point source
L=10
L=50

L=100

Figure 6. Fluctuations of the longitudinal effective dis-
persion coefficient σ

D
eff
11

/D∗
ll

is also indicated by the behavior of the fluctuations in fig-
ures 2, 6 and 8. The total time in our simulations is still
too small to allow the estimation of the ergodicity scale, but
some hint can be obtained by a comparison with the analyt-
ical result of Clincy and Kinzelbach [2001]. The figure 4 in
their paper shows that the fluctuations of the longitudinal
coefficient tend to an asymptotic value (which is finite in
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the case of the model of Matheron and de Marsily studied
there) after times of the order of L2/D, i.e. the time for a
dispersive spreading of the solute over the width L of the
initial plume.

4.3. The Time Behavior of the Effective Coefficients
and Ergodicity

[39] As shown by equation (A3) in Appendix A1, the
GRW procedure computes the variance of displacements X
in a single realization as an average over the realizations of
the local dispersion process and over the distribution of the
particles inside the initial plume. The ensemble average of
the variance can be written as

〈σ2
ll〉V = 〈〈X2

l 〉D,X0
− 〈Xl〉2D,X0

〉V

= (〈X2
l 〉D,X0,V − 〈Xl〉2D,X0,V

)

− (〈〈Xl〉2D,X0
〉V − 〈Xl〉2D,X0,V

), (8)

where the subscripts D, X0 and V denote the average over
the realizations of the local dispersion, the initial distribu-
tion of the particles, and the realizations of the random ve-
locity field respectively. This obvious relation shows that
〈σ2

ll〉V is the difference between the variance with respect to
the ensemble average of the center of mass Rl = 〈Xl〉D,X0

and the variance of the center of mass Rll = 〈R2
l 〉V −〈Rl〉2V .

Assuming that the averages over initial positions and ve-
locity realizations have the following permutation property
〈· · ·〉D,X0,V = 〈· · ·〉D,V,X0

, the first term in (8) becomes

〈〈X2
l 〉D,V − 〈Xl〉2D,V

〉X0
+ 〈〈Xl〉2D,V

〉X0
− 〈Xl〉2D,X0,V

.

For statistical homogeneous velocity fields it seems reason-
able to assume the independence of the averages 〈X̃l〉D,V

and 〈X̃2
l 〉D,V , where X̃l = Xl − X0l, from the initial state

X0. Then, the last two terms above give the initial variance
σ2

0,ll = 〈X2
0l〉X0

− 〈X0l〉2X0
and the first term becomes inde-

pendent of X0 and represents the variance around the en-
semble averaged center of mass for the process starting with
a point-like injection at X̃l = 0, X̃ll = 〈X̃2

l 〉D,V − 〈X̃l〉2D,V
.

Finally, the ensemble average (8) of the second centered mo-
ment of the plume becomes〈

σ2
ll

〉
= σ2

0,ll + X̃ll − Rll. (9)

The variance X̃ll is just the ll component of the “one-particle
displacement covariance or the second spatial covariance of
an ergodic plume” [Zhang and Seo, 2004] frequently used
in investigations on ergodicity. When the local dispersion
is neglected, (9) is identical to the relation (11) in [Dagan,
1990], derived in the hypothesis of “Lagrangian stationarity”
and using the permutation of averages over initial states and
velocity realizations. The explicit dependence of X̃ll on lo-
cal dispersion and velocity correlations can be derived from
descriptions of the transport process in terms of trajecto-
ries [Rajaram and Gelhar, 1993a; Fiori, 1998] or by using
the advection-dispersion equation [Kitanidis, 1988; Rajaram
and Gelhar, 1993b].

[40] Dividing both sides of (9) by 2t and using (2), the
effective coefficients can be written as

〈Deff
ll 〉(t) −

σ2
X0,ll

2t
= Derg

ll (t) − Dcm
ll (t). (10)

The “center of mass coefficient” Dcm
ll corresponds to the

“pseudodispersivity” investigated numerically by Naff et al.
[1998b]. The first term in the right side of (10) is the so
called “ergodic coefficient” which is expected to become
constant and equal to the up-scaled macrodispersion coeffi-
cient in the large time limit [Dagan, 1990]. The condition

Dcm
ll = 0 is referred to as “ergodicity condition” [Fiori, 1998,

Naff et al., 1998b; Zhang and Seo, 2004; Dagan, 2004]. The
ergodic coefficients correspond to the “ensemble coefficients”
introduced by Attinger et al. [1999] (where the ensemble
and effective coefficients are defined by the time derivative
of the corresponding variances related by (8)). Under the
assumption of statistical homogeneity of the log hydraulic
conductivity the ensemble coefficients were also shown to be
independent of the shape and dimension of the initial plume
and equal to the coefficients for the case of a point source
[Dentz et al., 2000b; Clincy and Kinzelbach, 2001]. Zhang
and Seo [2004] have shown that, even in anisotropic me-
dia, the longitudinal and transverse ergodic second moments
given by theory can be retrieved in numerical simulations by
using the relation (9). However, analyzing the fluctuations
of the longitudinal effective coefficient from realization to
realization, Naff et al. [1998b] found a “non-ergodic behav-
ior”, indicated by the increase of the fluctuations with the
transverse dimension of the plume, and suggested that the
approach to a quasi-ergodic state is more complicated than
described by the equation (10). In the following we investi-
gate this issue in the light of our GRW simulations.

[41] The longitudinal center of mass coefficient decreases
with the plume dimension (figure 10) and the ergodic co-
efficient derived from (10) is practically independent of the
plume dimensions (figure 11). This agrees with the result
for the ergodic second moments of the plume obtained by
Zhang and Seo [2004, figure 5] and the results for the longi-
tudinal center of mass coefficient in [Naff et al., 1998b, figure
14]. Dcm

ll is the deviation of the mean slope, given by the
left side of (10), from the ergodic coefficient. When Derg

ll is
the theoretical coefficient (given for instance by first-order
approximations), Dcm

ll = 0 is the ergodicity condition (e1)
written for a range η1 = 0. The increase of fluctuations with
the plume dimension reported by Naff et al. [1998b, figure
15] simply means that the vanishing center of mass coeffi-
cients in (10) is not sufficient to ensure the ergodicity of the
mean slope of the second moment of the plume. Even though
the center of mass coefficients become negligible quantities
and the ensemble averaged slope approach the ergodic coef-
ficient, the sample-to-sample fluctuations can be still large.
This situation is dramatically illustrated in the case of the
transverse coefficients. After 1000 advection times the first
ergodicity condition (e1) is fulfilled within a range two orders
of magnitude smaller than the local dispersion coefficient, as
shown by the behavior of Dcm

22 in figure 12. The fluctuations
of the mean slope (10), which are equal to the fluctuations of
the effective coefficients in figure 8, indicate that the second
condition (e2) is not fulfilled in the same range. Moreover,
the larger the transverse dimension of the plume is, the less
ergodic the transverse coefficients are.

[42] We comment here that the coefficient corresponding
to L = 100 in figure 13 has negative values at early times.
This non-physical behavior occurs because in the left side
of (10) the contribution of the initial plume was extracted
from the total variance. This “bad result” shows that the
definition of the effective coefficients by the mean slope of
the variance fails to describe the plume at finite times. We
also note that the negative effective transverse dispersivities
obtained by Zhang et al. [1996] are due to their definition
by the local slope of the second moment, and are not “an
artifact of the first-order approximation”, as the authors
suggest. It is indeed easy to see that there are no nega-
tive values if the dispersivities are computed by using the
positively defined coefficient (2) and the variances shown in
figure 2b of the quoted paper.

[43] The large differences between the coefficient for point
source and the coefficients for L ≥ 10 shown in figure 13
prove that for plumes with large transverse dimensions the
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ergodic coefficient for pre-asymptotic regime cannot be de-
fined by (10). Unlike the center of mass coefficients (figure
12) which go to zero, the differences between the ergodic co-
efficients increase with the plume dimension. These devia-
tions can be neglected only for small plumes (as was the case
for L ≤ 4 in [Zhang and Seo, 2004], figures 5b,c). This de-
pendence on the plume dimension could be a consequence of
the inherent non-homogeneity of the numerically generated
velocity field. But, in practice, the statistical homogeneity
is always an approximation. This is shown, for instance,
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Figure 10. Time behavior of the longitudinal center of
mass coefficient Dcm
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by the behavior of the confidence intervals rendered by the
uncertainty of the statistical parameter estimates in care-
fully designed laboratory experiments [Fernndez-Garcia et
al., 2005b], which are very similar to those for the numer-
ical velocity field presented in figure B7. However, even if
the lack of strict statistical homogeneity can produce the
small differences for the longitudinal coefficients in figure
11, it does not explain the large differences shown in figure
13. Therefore, the very validity of the relation (10) can be
questioned.

[44] The assumption that the average over initial posi-
tions permutes with the average over the realizations of the
velocity field, on which (10) is based, is not always true.
For instance, when local dispersion was neglected and the
transport process was described in a Lagrangian framework,
the above permutation of averages was possible only under
the “simplifying assumption of ergodicity in the plume spa-
tial moments” [Sposito and Dagan, 1994, p. 588] (carry-
ing the implicit hypothesis of “dynamically identical” solute
particles described by a single statistical ensemble [Sposito,
1997]). It was already shown by Sposito and Dagan [1994]
that in the purely advective case the relation (10) is not com-
plete if the interdependence between the initial positions and
the velocities of the solute particles is taken into account.
Because for Darcy flows such interdependencies cannot be
ignored (unless some restrictions on the flow domain are im-
posed) [Sposito, 1997; 2001], it follows that in general the
relation (10) is not true. Since the dynamical system ap-
proach used in the papers quoted above is restricted to the
advective case, the description of the dispersion and its de-
pendence on initial state, in the case of non-vanishing local
dispersion, calls for further investigations based on appro-
priate methods.

5. Conclusions

[45] The results obtained in the present study, indicate
that the numerical approach was appropriate for a numerical
investigation on the ergodicy of transport in heterogeneous
aquifers. The requirements of accurate concentration in ev-
ery realization of the random field, long time simulations
of transport and large statistical ensembles of realizations
were carried out with the GRW algorithm. The large scale
simulations were also possible owing to the fast generator
of the first order approximated Darcy velocity fields, based
on the Kraichnan routine. The approximation of the Gaus-
sian random velocity fields with periodic fields was shown
to be reliable for 6400 modes in the Kraichnan algorithm.
The quantitative assessment of ergodicity for space averaged
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concentrations and effective diffusion coefficients was done
via comparisons with a rigorous mathematical result on the
existence of the up-scaled macrodispersion process which de-
scribes the ensemble averaged concentration asymptotically.

[46] A numerical evidence for the asymptotic ergodic be-
havior of the two-dimensional transport was supplied by the
simulations in the case of point-like and small initial plumes.
The time to reach acceptably small deviations from the pre-
dictions of the macrodispersion model is of thousands of
advection time scales. In rapidly fluctuating velocity fields
with advection times of the order of seconds, for instance in
the case of turbulent transport in atmosphere, the ergodic
behavior manifests after a few hours. Since the advection
times in groundwater are of the order of days, the ergodic be-
havior in a strict sense can be expected when the plume has
traveled tens of years. This could be useful in applications
for persistent contaminants, like the long life radionuclides.

[47] For sufficiently large initial plumes, the macrodisper-
sion model can be used to predict the contamination with
errors that could be acceptable in forecasting at smaller time
scales. For instance, when the initial plume extends over
one hundred heterogeneity scales across the direction of the
mean flow, and the solute plume has traveled hundreds of
heterogeneity scales, the “three sigma” rule indicates that
the cross-section averaged concentration and the longitu-
dinal effective coefficient in given realizations can be pre-
dicted within a range of uncertainty of about 90%. This
uncertainty remains almost constant over thousands of het-
erogeneity scales. In the same conditions, the uncertainty
of the transverse coefficient is tens of times larger.

[48] Nevertheless, the common belief that large plumes
have ergodic behavior should be amended. The fluctuations
from realization to realization have an intricate non-linear
dependence on the transverse dimension of the initial plume,
for both cross-section space averaged concentrations and ef-
fective diffusion coefficients. For concentration and longi-
tudinal effective coefficient, the fluctuations decrease when
the transverse plume dimension is larger than ten correlation
lengths, but the travel time to reach the monotonous decay
towards a quasi-ergodic state is much larger than for small
sources. For the transverse effective coefficient the fluctua-
tions increase with the dimension of the initial plume at all
times. It is expected that the time scale which character-
izes the ergodicity increases like the square of the transverse
dimension of the initial plume.

[49] The evolution of the ensemble averaged effective co-
efficients also show features not accounted for by the exist-
ing theory. The slope of the displacements variance, often
used to estimate the effective coefficients, yields non-physical
(negative) estimations of the transverse coefficients at tens
of advection time scales. Therefore, the rate of increase
of the variance, which describes the spatial extension of the
plume and is positively defined, is the appropriate definition
for the effective coefficients. The condition of vanishing cen-
ter of mass coefficient in the large time limit was also found
to be not sufficient for the assessment of the ergodic behav-
ior. The failure of the usual approach to define a transverse
“ergodic coefficient” for extended initial plumes indicates a
dependence on initial conditions, similar to the purely ad-
vective case, which deserves further investigations.

Appendix A: Global Random Walk
A1. The Algorithm

[50] The GRW algorithm is a generalization of particle
tracking method which increases the speed of the compu-
tations and considerably improves the accuracy of the nu-
merical simulations [Vamoş et al., 2003]. The solution of a
parabolic equation of form (1) is described using N particles
which move in a grid, undergoing advective displacements

and diffusive jumps according to the random walk law. The
concentration field at a given time t = kδt and at a grid
point (x1, x2) = (i1δx1, i2δx2) is given by

c(x1, x2, t) =
1

N∆1∆2

s1∑
i′1=−s1

s2∑
i′2=−s2

n(i1 + i′1, i2 + i′2, k),(A1)

where ∆l = 2slδxl, l = 1, 2, are the lengths of the symmet-
rical intervals centered at xl and n(i1, i2, k) is the number of
particles which at time step k lie at the grid point (i1, i2).

[51] The one-dimensional GRW algorithm describes the
scattering of the n(i, k) particles from (xi, tk) by

n(j, k) = δn(j, j+vj , k)+δn(j+vj−d, j, k)+δn(j+vj+d, j, k),

where vj are discrete displacements in a given velocity field
and d describes the diffusive jumps. The quantities δn are
Bernoulli random variables and describe respectively, the
number of particles which remain at the same grid site after
an advective displacement, the number of particles jumping
to the left and those jumping to the right (with respect to
the advected position). The distribution of the particles at
the next time (k + 1)δt is given by

n(i, k + 1) =
∑

j

δn(i, j, k).

The average number of particles undergoing diffusive jumps
and the average number of particles remaining at the same
node after the displacement vj are given by the relations

δn(j + vj ± d, j, k) =
1

2
r n(j, k),

δn(j, j + vj , k) = (1 − r) n(j, k),

where 0 ≤ r ≤ 1. The diffusion coefficient D is related to
the grid steps by the relation

D = r
(dδx)2

2δt
.

For two and three-dimensional cases, the same procedure is
repeated for all space directions.

[52] Because the total number of particles N contained
in the grid is conserved, the GRW algorithm is stable. The
condition r ≤ 1, ensures that there is no numerical diffu-
sion. In [Vamoş et al., 2003] it was shown that for Gaus-
sian diffusion the numerical solution converges as O(δx2)
+O(N−1/2), i.e. for large numbers of particles the conver-
gence order is O(δx2), the same as for the finite differences
scheme. A comparison with a particle tracking code (diffu-
sion over ten time steps of N particle starting at the center
of a cubic grid) shows that while in GRW algorithm there
is practical no limitation, N > 109 particles becomes pro-
hibitive for the particle tracking method.

[53] The “reduced fluctuations” GRW algorithm is de-
fined by

δn(j + vj − d, j, k) =

{
n/2 if n is even

[n/2] + θ if n is odd
,

where n = n(j, k)−δn(j, j+vj , k), [n/2] is the integer part of
n/2 and θ is a variable taking the values 0 and 1 with prob-
ability 1/2. This algorithm is appropriate for large scale
problems, for two reasons. Firstly, the diffusion front does
not extend beyond the limit concentration defined by one
particle at a grid point, keeping a physical significant shape
(unlike in finite differences where a pure diffusion front has
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a cubic shape of side ∼ (2Dt)1/2). Secondly, the “reduced
fluctuations” algorithm requires only a minimum number of
calls of the random number generator. The figure 1A illus-
trates the reduced fluctuations GRW algorithm for r = 1
and the figure 2A presents the resulting concentration field
computed by (A1).

[54] In the following we describe the computation of the
diagonal effective coefficients, according to the GRW algo-
rithm. The variance of particles displacements, σ2

ll, l = 1, 2,
in dimensionless form, is given by

1

(δx)2
σ2

ll(kδt) =

1

N

∑
i1,i2

i2l n(i1, i2, k) −
[

1

N

∑
i1,i2

il n(i1, i2, k)

]2

. (A2)

Using (A2), the effective coefficients are computed as

Deff
ll (kδt) = σ2

ll/(2kδt).

[55] Let us consider NX0
points uniformly distributed in-

side the initial plume, N/NX0
particles at each initial point

and let n(i1, i2, k; i01, i02) be the distribution of particles at
the time step k given by the GRW procedure for a diffusion
process starting at (i01δx1, i02δx2). Writing the distribution
for the extended plume as

n(i1, i2, k) =
∑

i01,i02

n(i1, i2, k; i01, i02),

the averages from (A2) can be rewritten in the form

1

N

∑
i1,i2

αn(i1, i2, k) =

1

NX0

∑
i01,i02

(
NX0

N

∑
i1,i2

αn(i1, i2, k; i01, i02)

)
, (A3)

where α stands for il and i2l respectively. It follows from
(A3) that the variance (A2) is an average over the trajecto-
ries of the diffusion process starting at given initial positions
and over the distribution of the initial positions.

A2. GRW Parameters

[56] The large scale computations reported in [Schwarze
et al., 2001; Dentz et al., 2002, 2003] were performed with
the particle tracking procedure. Although it was possible to
obtain estimations of the ensemble averaged effective coef-
ficients, the number of particles used in these simulations,
limited due to computational reasons at N ∼ 100, does not
suffice to simulate accurate concentrations. Even in small
scale one-dimensional problems, more than one million par-
ticles should be used in particles methods to reach the same
precision as the finite difference scheme [Vamoş et al., 2003].
Moreover, in [Suciu et al., 2004] it was shown that for the
large scale transport problem considered here, a too small
number of particles induces large numerical errors in the
simulation of the time behavior of the effective coefficients.
The statistical convergence of the simulations for a given
realization of the velocity is ensured only when billions of
particles are used. In the present numerical investigations
the number of particles was fixed at N = 1010 so that all
the simulations of transport realizations were statistically
convergent.

[57] The other GRW parameters used for the computa-
tion of the ensembles of realizations presented in this paper
are the space steps δx1 = δx2 = δx = 0.1 m, the time step
δt = 0.5 day and the amplitude of the diffusive jumps (see

Appendix A1) d = 2. The accuracy of the numerical veloc-
ity field is governed by the ratio of the log-hydraulic con-
ductivity correlation length to the space step. In our case,
λy/δx = 10 and fulfils the condition λy/δx ≥ 4, generally
recommended in literature [Ababou et al., 1989; Hassan et
al., 1998]. To reduce the “overshooting” errors in particles
methods one imposes that the mean displacement in a time
step does not surpass a given threshold [Roth and Hammel,
1995; Janković et al., 2003]. In [Suciu et al., 2004] it was
shown that, for the same overshooting, the error in GRW
simulations is mainly influenced by the discretization of the
velocity, as described by the parameter Uδt/δx. Our choice
Uδt/δx = 5 means that, in average, the particles overpass
5 space steps, but it also means that the smallest advec-
tive displacement accounted for in the GRW procedure is
δx/δt = U/5 = 0.2 m/day. The tests for a crude estimation
of the discretization errors, for fixed δt = 0.5 day and in-
creasing Uδt/δx from 5 to 10 (δx/δt from 0.2 m/day to 0.1
m/day), show that the simulated effective coefficients differ
with less than 2% (N. Suciu et al., Internal Report ICG-IV
00204, Forschungszentrum Jülich, 2004). A comparison for
the first 100 days with a GRW algorithm without overshoot-
ing led to error estimations for the effective coefficients in
given realizations, calculated with the GRW procedure and
the parameters used in this paper, which were one order
of magnitude smaller than the up-scaled coefficients (6) (N.
Suciu et al., Manuscript in preparation, 2005).
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Figure A1. Advective displacement and diffusive jumps
of 1010 particles starting at (0, 0), for d = 1 and r = 1.
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Appendix B: Large Scale Simulations
B1. The Transport Problem

[58] The transport depends on both the heterogeneity of
the advection velocity field, described by the variance of the
log hydraulic conductivity σ2

y, and the local dispersion coef-
ficient D. To select the parameters to be used in the present
numerical investigations, several combinations of σ2

y and D
were investigated in the case of point source (N. Suciu et al.,
Internal Report ICG-IV 00204, Forschungszentrum Jülich,
2004). The diffusion fronts, defined by grid points contain-
ing at least one particle, are compared in figure B1. We
note that large variances of the log-hydraulic conductivity
(σ2

y = 1) yield non-Gaussian asymmetric plumes.
[59] It should be noted that the asymmetry of the diffu-

sion fronts can be due to a numerical artifact occurring in
all the two-dimensional simulations based on particles meth-
ods. In the absence of the third component of the velocity,
the probability of occurrence of very small or null advection
displacements is high enough to delay some particles with
respect to the plume center of mass. This effect is compen-
sated by diffusive displacements, when the local dispersion
is large enough [Suciu et al., 2002]. At the limit of zero local
dispersion, trapping zones occur causing the fragmentation
of the plume and the linear increase of the effective coeffi-
cients [Dentz et al., 2003]. Therefore, the usefulness of the
two-dimensional simulations based on particles methods is
limited to small variability of the velocity and non-vanishing
local dispersion.

[60] The averages of the effective coefficients, over 256
realizations of the velocity, for fixed σ2

y = 0.1 and three dif-
ferent values of the local dispersion coefficients (D = 0.01
m2/day, D = 0.001 m2/day, and D = 0.0001 m2/day
respectively) are presented in the figures B2 and B3 as
functions of time and the corresponding Péclet numbers
P é = Uλy/D. The comparisons from figures B2 and B3
show that, besides the small asymmetry shown in figure B1,
the increase of P é considerably increases the time necessary
to reach the asymptotic coefficients D∗

ll.

B2. The Number of Periods Np, the Number of
Realizations R and the Correlation Shape

[61] The periodic fields generated with the Kraichnan al-
gorithm approximate Gaussian fields for Np −→ ∞. While
ensemble averages are well approximated for tens of peri-
ods Np in the Kraichnan routine [Jaekel and Vereecken,
1997; Schwarze et al., 2001], to approximate fluctuations
much larger Np are necessary [Eberhard, 2004]. To assess
the value of Np we compared the fluctuations of the cross-
section concentration and of the longitudinal effective coeffi-
cient, for fixed number of realizations R = 1024, considering
exponential and Gaussian shape of the correlation of the
log hydraulic conductivity, with the same λy = 1 m and
σ2

y = 0.1. The results presented in figure B4 and figure B5
suggest that Np must be at least as large as the total number
of time steps in simulations. (The fluctuations of the trans-
verse coefficient, not presented here, are already reliable for
Np = 64.) Therefore, for times up to t = 4000λy/U , we used
Np = 6400 to approximate the behavior of the transport in
Gaussian velocity fields.

[62] Figure B6 presents the fluctuations of the longitudi-
nal effective coefficient for fixed Np = 6400 and increasing
number of realizations R, in the case of exponential corre-
lation of the log hydraulic conductivity. The increase of R
from 256 to 1024 has little influence on the time behavior
of the fluctuations. We also found that R = 256 ensures

the statistical reliability for all the quantities investigated
in this study.
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Figure B1. Diffusion fronts at t = 1000 days.
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B3. The Statistics of the Darcy Velocity Fields

[63] In most of numerical studies on the stochastic model

[Chin and Wang, 1992; Bellin et al., 1992; Salandin and

Fiorotto, 1998; Naff et al., 1998a; Hassan et al., 1998]

the Eulerian statistics of the numerically generated veloc-

ity fields was estimated, under the implicit assumption of
statistical homogeneity, by space averages in given realiza-
tions followed by averages over realizations. This procedure
usually underestimates the true statistical parameters. To
show that, let us consider the components of the velocity
fluctuation ul(x) = Vl(x) − Ul, l = 1, 2, supposed to be sta-
tistically homogeneous variables, and the arithmetic mean
over P space points 〈ul(xp)〉P = 1

P

∑P

p=1
ul(xp). Because

the realizations of the velocity computed at different space
points belong to the same statistical ensemble, the order of
the space and ensemble averages can be interchanged and
due to the statistical homogeneity, we have the relations
〈〈ul〉P 〉 = 〈〈ul〉〉P = 〈ul〉 = 0 and 〈〈u2

l 〉P 〉 = 〈〈u2
l 〉〉P = 〈u2

l 〉.
The average over realizations of the variance defined through
space averages,

〈〈u2
l 〉P − 〈ul〉2P 〉 = 〈u2

l 〉 − 〈〈ul〉2P 〉,
underestimates the true variance σ2

ul
= 〈u2

l 〉 of the homo-
geneous variable ul with the term 〈〈ul〉2P 〉, which is the
variance of the space mean 〈ul〉P . The last quantity van-
ishes only when the space mean equals the ensemble mean
〈ul〉P = 〈ul〉 = 0. The numerical fields have poor ergodic
properties and, as already noted by Bellin et al. [1992], they
are not strictly statistically homogeneous. Therefore, the
statistical properties of the numerical velocity fields should
be investigated through ensemble averages followed by space
averages. This procedure allows the estimation of the non-
homogeneity. For instance, the mean velocity 〈ul〉 is esti-
mated through space averages 〈〈ul〉〉P , with the standard
error of the mean given by√

〈〈ul〉2〉P − 〈〈ul〉〉2P
P − 1

.

In our present numerical investigations we used such stan-
dard errors to estimate the precision for the velocity mo-
ments.

[64] Using 512 velocity values generated by Kraichnan
routine, at 512 different space points inside a square the
side of which was 10 λy, the velocity probability densities
were found to be very close to Gaussian homogeneous dis-
tributions. The first three moments of the longitudinal and
transverse velocity are presented in table B1. The first and
third moment are close to zero. The longitudinal and trans-
verse variances (the second line in table B1) are respectively
	 3

8
σ2

y and 	 1
8
σ2

y, in agreement with the first order asymp-
totic expansions of the Darcy and the continuity equations
[Dagan, 1984].

Table B1. The first three moments of the longitudinal and
transverse velocity components.

l = 1 l = 2
〈〈ul〉〉P 0.00214 ± 0.00033 −0.00051 ± 0.00021
〈〈(ul − 〈ul〉)2〉〉P 0.03801 ± 0.00010 0.01268 ± 0.00004
〈〈(ul − 〈ul〉)3〉〉P −0.00014 ± 0.00003 0.00000 ± 0.00001

[65] The velocity correlations

rll(x) = 〈〈ul(x01, x02)ul(x01 + x, x02)〉〉P , l = 1, 2,

were computed as averages over 512 realizations of the veloc-
ity and over P = 11011 points (x01, x02) (all the grid points
in a band of λy×100λy, which corresponds to the largest ini-
tial plume in the present simulations). The integrals of the
correlation functions rll give the numerical estimation of the
second terms in (4), which describe the contribution of the
velocity fluctuations to the up-scaled diffusion coefficients,

Jll(t) =
∫ t

0
rll(Ut′)dt′ =

1

U

∫ Ut

0
rll(x)dx.
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The numerical integrations between 0 and t = 5000λy/U
of the correlation functions are presented in the figure B4.
The values of Jll are close to the theoretical values (6),
J∗

11 = D∗
11 − D = 0.1 m2/day and J∗

11 = D∗
22 − D = 0

m2/day. Because the correlations computed by ensemble
averages 〈ul(x01, x02)ul(x01 + x, x02)〉 differ from point to
point, i.e. the random field is not strictly homogeneous, at
large distances the upper estimate of rll (i.e. space mean
plus standard error) is mainly positive and the lower esti-
mate mainly negative. As a direct consequence, the confi-
dence intervals of Jll grow linearly with x (see thin lines in
figure B4). Since the standard errors decrease as (P−1)−1/2,
reliable estimations of the up-scaled effective dispersion co-
efficients require averaging over large space domains. This
remark is valid not only in the case of numerical fields gen-
erated by the Kraichnan algorithm but also for all large
scale numerical simulations, where the accumulation of the
numerical errors can result in large uncertainty of the nu-
merical estimations.
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