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A CONVERGENCY THEOREM CONCERNING
THE CHORD METHOD

ION PĂVĂLOIU
(Cluj-Napoca)

Let X be a Banach space, and let f : X → X be a mapping to solve the
equation:

(1) f (x) = 0,

the chord method is well known, consisting of approximating the solution of
(1) by elements of the sequence (xn)n≥0 generated by the following relations:

(2) xn+1 = xn − [xn−1, xn; f ]−1 f (xn) , n = 1, 2, . . . , x0, x1 ∈ X,

where [x, y; f ] ∈ L (X) stands for the divided difference of f on x, y ∈ X. It
is clear that to generate the elements of the sequence (xn)n≥0 by means of
(2) we must ensure ourselves that at every iteration step the linear mapping
[xn−1, xn; f ] is invertible. The mathematical literature dealing with the
convergency of the chord method contains results which state by hypothesis
that the mapping [x, y; f ] admits a bounded inverse for every x, y ∈ D,
where D is a subset of X.

In this note we intend to establish convergency conditions for the method
(2), supposing the existence of the inverse mapping only for the divided
difference [x0, x1; f ] .

Let r > 0 be a real number, and write S (x0, r) = {x ∈ X : ‖x− x0‖ ≤ r}.

Theorem. If the mapping f : X → X, the real number r > 0 and the
element x1 ∈ X fulfil the conditions:

(i) the mapping [x0, x1; f ] admits a bounded inverse mapping, and
‖ [x0, x1; f ]−1 ‖ ≤ B < +∞;

(ii) the bilinear mapping [x, y, z; f ] (the second order divided differ-
ence of f on x, y, z) is bounded for every x, y, z ∈ S (x0, r) , that
is, ‖[x, y, z; f ]‖ ≤ L <∞;

(iii) 3BLr < 1;
(iv) ρ0 = α ‖f (x0)‖ < 1, ρ1 = α ‖f (x1)‖ ≤ ρt10 , where

α = LB2/ (1− 3BLr)2 and t1 = (1 +
√

5)/2;
(v) Bρ0/

[
α
(
1− ρt1−1

0
)

(1− 3BLr)
]
≤ r,

then the following properties hold:
(j) xn ∈ S (x0, r) for every n = 0, 1, . . . ;

(jj) the mapping [xi−1, xi; f ] admits bounded inverse for every i = 1, 2, . . . ;
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(jjj) equation (1) has at least one solution x∗ ∈ S (x0, r) ;
(jv) the sequence (xn)n≥0 is convergent, and lim xn = x∗;

(v) ‖x∗ − xn‖ ≤
Bρ

tn
1

0[
α(1−3BLr)

(
1−ρ

tn
1 (t1−1)

0

)] .
Proof. We shall firstly show that for every x, y ∈ S (x0, r) the following

inequality holds:
(3)

∥∥ [x0, x1; f ]−1 ([x0, x1; f ]− [x, y; f ])
∥∥ ≤ 3BLr < 1.

Taking into account hypothesis (ii) and the definition of the second order
divided difference [2], it results:
‖[x0, x1; f ]− [x, y, f ]‖ ≤ ‖[x0, x1; f ]− [x1, x; f ]‖+ ‖[x1, x; f ]− [x, y; f ]‖

≤ L ‖x− x0‖+ L ‖y − x1‖ < 3Lr.
From the above inequality and hypothesis (i) there follows (3).

Using Banach’s lemma on inverse mapping continuousness, it results from
(3) that there exists [x, y; f ]−1 , and:∥∥ [x, y; f ]−1 ∥∥ ≤ B/ (1− 3BLr) .
Suppose now that the following properties hold:

(a) xi ∈ S, i = 0, k;
(b) ρi = α ‖f (xi)‖ ≤ ρ

ti1
0 , i = 0, k;

and prove that they hold for i = k + 1, too.
Indeed, to prove that xn+1 ∈ S we estimate the difference:

‖xk+1 − x0‖ ≤
k∑
i=0
‖xi+1 − xi‖ ≤ Bα−1

1−3BLr

k∑
i=0

α ‖f (xi)‖

≤ Bρ0
[
α
(
1− ρt1−1

0
)

(1− 3BLr)
]−1 ≤ r

To prove (b) for i = k + 1 we use Newton’s identity:
(4) f (z) = f (x) + [x, y; f ] (z − x) + [x, y, z; f ] (z − x) (z − y)
and the obvious identity:
(5) x− [x, y; f ]−1 f (x) = y − [x, y; f ]−1 f (y) .
Applying (4) and taking into account (2) and (5), we deduce:

‖f (xk+1)‖ = ‖f (xk+1)− f (xk)− [xk−1, xk; f ] (xk+1 − xk)‖
≤ ‖[xk−1, xk, xk+1; f ]‖ · ‖xk+1 − xk‖ · ‖xk+1 − xk−1‖

≤ LB2 ‖f (xk)‖ · ‖f (xk−1)‖ · (1− 3BLr)−2

≤ LB2 (1− 3BLr)−2 · α−2ρkρk−1,

and writing ρk+1 = α ‖f (xk+1)‖ we obtain:

ρk+1 ≤ ρkρk−1 < ρ
tk1+tk−1

1
0 = ρ

tk+1
1

0

that is, the property (b) holds for i = k + 1, too.
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From (2) one obtains the following inequalities:

‖xn+1 − xn‖ ≤ Bα−1 (1− 3BLr)−1 ρn ≤
Bρ

tn
1

0
α(1−3BLr)

for every n = 0, 1, . . .
From these relations, for every m,n ∈ N we deduce:

‖xn+m − xn‖ ≤
m+n−1∑
i=n

Bρ
tn
1

0
α(1−3BLr)(6)

≤ Bρt
n
1

0 α
−1(1− 3BLr)−1

(
1− ρt

n(t1−1)
1

0

)−1

from which, taking into account the fact that t1 > 1, there follows that the
sequence (xn)n≥0 is fundamental.

At limit (m→∞) , (6) leads to

‖x∗ − xn‖ < Bρ
tn1
0 α
−1 (1− 3BLr)−1

(
1− ρt

n
1 (t1−1)

0

)−1

where x∗ = lim
n→∞

xn. For n = 0 follows that x∗ ∈ S (x0, r) .
It is obvious that f (x∗) = 0. �

Remark. In the conditions of the above proved theorem, it results form
(3) that x∗ is the unique solution of equation (1) in the sphere S (x0, r) .

Indeed, supposing that x∗ and y∗ are two solutions of equation (1) in
S (x0,r) , x∗ 6= y∗, and using the identities:

x∗ = x∗ − [x0, x1; f ]−1 f (x∗)
y∗ = y∗ − [x0, x1; f ]−1 f (y∗)

we deduce
x∗ − y∗ =

(
I − [x0, x1; f ]−1 [x∗, y∗; f ]

)
(x∗ − y∗)

from which, taking into account (3) it follows that:
‖x∗ − y∗‖ ≤ 3BLr ‖x∗ − y∗‖

but, since 3BLr < 1, it results that the relation x∗ 6= y∗ is impossible. �
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