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In [7], [8] M. Urabe studies the numerical convergence and error esti-
mation in the case of operatorial equation solution by means of iteration
methods. Urabe’s results refer to operatorial equations in complete metric
spaces, while as application the numerical convergence of Newton’s method
in Banach spaces is studied. Using Urabe’s results, M. Fujii [1] studies the
same problems for Steffensen’s method and the chord method applied to
equations with real functions. In [6] Urabe’s method is applied to a large
class of iteration methods with arbitrary convergence order.

We propose further down to extend Urabe’s results to the case of the
Gauss-Seidel method for systems of equations in metric spaces.

1.

For a unitary exposition of the problem, we shall firstly present the ideas
on which Urabe’s main results are based.

Let (E, ρ) be a metric space and let F ⊂ E a complete subset of E.
Consider the equation:
(1.1) x = T (x)
where T : F → E.

The following fixed point theorem is well known:

Theorem 1.1. If the following conditions:
(i1). ρ (T (x1) , T (x2)) ≤ Kρ (x1, x2) for every x1, x2 ∈ F , where 0 <

K < 1;
(ii1). there exists at least one element x0 ∈ F such that x1 = T (x0) ∈ F ;
(iii1). the set S =

{
x ∈ E|ρ (x, x1) ≤ K

1−K ρ (x1, x0)
}
⊆ F ,

is fulfilled, then the following properties hold:
(j1). the sequence (xn)n≥0, generated by the successive approximations

method:
(1.2) xn+1 = T (xn) , n = 0, 1, . . . ,

where x0 fulfils condition (ii1), is convergent, and if x̄ = lim
n→∞

xn,

then x̄ is the solution of equation (1.1);
(jj1). x̄ is the unique solution of equation (1.1) from the set S;
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(jjj1). the following inequality holds:

(1.3) ρ (x̄, xn) ≤ Kn

1−K ρ (x1, x0) .

The numerical solutions of equations (1.1) by means of the successive
approximations method oblige us to consider instead of T another mapping
T ∗ : F → E which approximates T . Equation (1.1) is replaced by an
approximant equation of the form:

(1.4) x = T ∗ (x) .

We shall suppose that for a given ε > 0 the mappings T and T ∗ fulfil the
condition:

(1.5) ρ (T ∗ (x) , T (x)) ≤ ε, for every x ∈ F.

Consider thus the iterative method:

(1.6) ξn+1 = T ∗ (ξn) , n = 0, 1, . . . , ξ0 = x0.

As to the sequence (ξn)n≥0, M. Urabe proved the following theorem:

Theorem 1.2. If the mapping T verifies the hypotheses of Theorem 1.1,
the mappings T and T ∗ fulfil condition (1.5), and the set

S∗ =
{
x ∈ E : ρ (x, ξ1) ≤ K

1−K ρ (ξ1, ξ0) + 2δ
}
⊆ F,

where δ = 1
1−K , then the elements of the sequence (ξn)n≥0 generated by (1.6)

are continued into the set S∗,ρ (xn, ξn) ≤ δ for every n = 0, 1, . . ., where
(xn)n≥0 is the sequence generated by (1.2), and the solution x̄ of equation
(1.1) belongs to the set

S = {x ∈ E : ρ (x, ξ1) ≤ ρ (ξ0, ξ1) + δ}.

Condition (1.5) imposed to the mapping T ∗ does not lead to the conclu-
sion that the sequence (ξn)n≥0 is convergent; that is why if we suppose that
the element ξn which approximates the solution x̄ of (1.1) is determined
with a condition of the form:

(1.7) ρ (ξn+1, ξn) ≤ η

where η > 0 is a given real number, then η cannot be chosen arbitrarily
small. In [7] it is shown that, if η > 2ε

1−K , then there exists a natural
number n′ ∈ N such that inequality (1.7) is fulfilled for every n > n′.
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Urabe shows that, if η > 2ε
1−K and ξn is determined by condition (1.7),

then the following inequality holds:

(1.8) ρ (x̄, ξn+1) ≤ ε+Kη
1−K .

Another situation which often occurs in the numerical solution of equations
by successive approximations is that in which the sequence (ξn)n≥0 becomes
periodic, that is, there exist two natural numbers m and n′′ such that:

(1.9) ξn = ξn+m,

for every n > n′′. In this case the error estimation is given by the following
theorem:

Theorem 1.3. If the mapping T fulfils the hypotheses of Theorem 1.1,
and if the elements of the sequence (ξn)≥0 verify the equalities (1.9), then
for every n > n′′ the following inequality holds:

(1.10) ρ (x̄, ξn) ≤ ε
1−K .

2.

In what follows, starting from the ideas exposed in the previous Section,
we shall attempt to obtain delimitations for error in the case of a Gauss-
Seidel-type method for the solution of a system of two equations in complete
metric spaces.

Denote by (Xi, ρi) , i = 1, 2 two complete metric spaces, and let X =
X1 × X2 the cartesian product of the spaces X1 and X2. Consider two
mappings, F1 : X → X1 and F2 : X → X2, which appear in the following
system of equations:

x1 = F1 (x1, x2) ,(2.1)
x2 = F2 (x1, x2) .

In order to solve system (2.1), we shall adopt the following Gauss-Seidel-
type method:

x
(n+1)
1 = F1

(
x

(n)
1 , x

(n)
2

)
,(2.2)

x
(n+1)
2 = F2

(
x

(n+1)
1 , x

(n)
2

)
, n = 0, 1, . . . ;x(0)

1 , x
(0)
2 ∈ X

In [4], [5], [6] we studied the convergence of the sequences
(
x

(n)
1
)
n≥0 and(

x
(n)
2
)
n≥0 generated by (2.2) with the assumption that the mappings F1 and

F2 fulfil Lipschitz-type conditions on the whole space X. But if
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for the numerical solution of system (2.1) we consider, as previously, the ap-
proached mappings F ∗1 and F ∗2 , and impose them to verify conditions of type
(1.5) on the whole space X, then such conditions can restrict considerably
their sphere of applicability, especially when the space X is unbounded. For
this reason it becomes necessary to study the convergence of the sequences(
x

(n)
1
)
n≥0 and

(
x

(n)
2
)
n≥0 with the hypothesis that the mappings F1, and F2

fulfil Lipschitz-type conditions on a set D = D1 ×D2, where D1 ⊂ X1 and
D2 ⊂ X2 are bounded sets.

Consider two sequences of real numbers, (fn)n≥0 and (gn)n≥0, whose
terms fulfil the conditions:

fn ≤ αfn−1 + βgn−1,(2.3)
gn ≤ afn + bgn−1, n = 1, 2, . . . ,

where α, β, a, b are nonnegative real numbers, while fn ≥ 0 and gn ≥ 0 for
every n = 0, 1, . . .

We associate to inequalities (2.3) the following system of equations with
the unknowns k and h:

α+ βh = kh,(2.4)
ak + b = kh.

In [6] we showed that if α, β, a, b verify the relations:

α+ b+ aβ < 2,(2.5)
(1− α) (1− b)− aβ > 0

b > 0, α > 0,

then the system (2.4) has the real solutions (hi, ki) , i = 1, 2 for which
0 < hiki < 1, i = 1, 2, and one of these solutions has both components
positive. Let h1 > 0 and k1 > 0 be the solution with both components
positive; then the elements of the sequences (fn)n≥0 and (gn)n≥0 verify the
relations:

fn ≤ chn−1
1 kn−1

1 ,(2.6)
gn ≤ chn1kn−1

1 , n = 1, 2, . . . ,

where c = max
{
αf0 + βg0,

af1+bg0
h1

}
.

If we write p1 = h1k1, then one sees immediately that p1 is one of the
roots of the equation

(2.7) p2 − (b+ βa+ α) p+ bα = 0.
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Let d1 > 0 be a real number chosen such that the sets:

S1 =
{
x ∈ X1 : ρ1

(
x, x0

1

)
≤ d1

(1−p1)

}
;(2.8)

S2 =
{
x ∈ X2 : ρ2

(
x, x0

2

)
≤ d1h1

(1−p1)

}
,

verify the relations S1 ⊆ D1 and S2 ⊆ D2.
With the above specifications we can state the following theorem:

Theorem 2.1. If the mappings F1 and F2 fulfil the conditions:
(i2). ρ1 (F1 (x1, y1) , F1 (x2, y2)) ≤ αρ1 (x1, x2) + βρ2 (y1, y2);

ρ2 (F2 (x1, y1) , F2 (x2, y2)) ≤ aρ1 (x1, x2) + bρ2 (y1, y2),
for every (x1, y1) , (x2, y2) ∈ D;

(ii2). the numbers α, β, a, b fulfil conditions (2.5);
(iii2). the elements x(1)

1 and x(1)
2 of the sequences

(
x

(n)
1
)
n≥0,

(
x

(n)
2
)
n≥0 gen-

erated by (2.2) verify the conditions

ρ1
(
x

(0)
1 , x

(1)
1
)
≤ d1, ρ2

(
x

(0)
2 , x

(1)
2
)
≤ d1h1,

then the following properties hold:
(j2). the sequences

(
x

(n)
1
)
n≥0 and

(
x

(n)
2
)
n≥0 generated by (2.2) are conver-

gent;
(jj2). if we write x̄1 = lim

n→∞
x

(n)
1 and x̄ = lim

n→∞
x

(n)
2 , then (x̄1, x̄2) ∈ S =

S1 × S2, and (x̄1, x̄2) is the unique solution of the system (2.1) con-
tained into the set S;

(jjj2). the following inequalities hold:

ρ1
(
x̄1, x

(n)
1
)
≤ d1pn

1
1−p1

;(2.9)

ρ2
(
x̄2, x

(n)
2
)
≤ d1h1pn

1
1−p1

.

Proof. From (iii2) follows x(1)
1 ∈ S1 and x(1)

2 ∈ S2. With this, with (2.2),
and with the hypothesis (i2), we have:

ρ1
(
x

(2)
1 , x

(1)
1
)
≤ αρ1

(
x

(1)
1 , x

(0)
1
)

+ βρ2
(
x

(1)
2 , x

(0)
2
)
≤ αd1 + βd1h1

= d1 (α+ βh1) = d1p1;

ρ2
(
x

(2)
2 , x

(1)
2
)
≤ aρ1

(
x

(2)
1 , x

(1)
1
)

+ bρ2
(
x

(1)
2 , x

(0)
2
)
S ≤ ad1p1 + bd1h1

= ad1h1k1 + bd1h1 = d1h1 (ak1 + b) = d1p1h1.

Using the above inequalities and the hypothesis (iii2), we have:

ρ1
(
x

(2)
1 , x

(0)
1
)
≤ ρ1

(
x

(2)
1 , x

(1)
1
)

+ ρ1
(
x

(1)
1 , x

(0)
1
)
≤ d1 + d1p1 ≤ d1

1−p1
;

ρ2
(
x

(2)
2 , x

(0)
2
)
≤ ρ2

(
x

(2)
2 , x

(1)
2
)

+ ρ2
(
x

(1)
2 , x

(0)
2
)
≤ d1p1h1 + d1h1 ≤ d1h1

1−p .

From these inequalities it follows that x(2)
1 ∈ S1 and x

(2)
2 ∈ S2.
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Suppose now that x(i)
1 ∈ S1, x

(i)
2 ∈ S2 for every i = 1, 2, . . . , k, and

ρ1
(
x

(i)
1 , x

(i−1)
1

)
≤ d1p

i−1
1 ,ρ2

(
x

(i)
2 , x

(i−1)
2

)
≤ d1h1p

i−1
1 for 1 = 1, 2, . . . , k.

Using these hypotheses, and (i2) together with (2.2), we deduce:

ρ1
(
x

(k+1)
1 , x

(k)
1
)
≤ αρ1

(
x

(k)
1 , x

(k−1)
1

)
+ βρ2

(
x

(k)
2 , x

(k−1)
2

)
≤ d1p

k−1
1 (α+ βh1) = d1p

k
1.

Analogously, and taking also into account the above inequality we deduce:

ρ2
(
x

(k+1)
2 , x

(k)
2
)
≤ d1h1p

k
1.

From the above inequalities it easily results that x(k+1)
1 ∈ S1 and x

(k+1)
2 ∈

S2.
The previously proved relations and the induction principle show that

the following relations hold:

ρ1
(
x

(n+1)
1 , x

(n)
1
)
≤ d1p

n
1 ,

ρ2
(
x

(n+1)
2 , x

(n)
2
)
≤ d1h1p

n
1 ,

x
(n)
1 ∈ S1, x

(n)
2 ∈ S2, for every n ∈ N.

By virtue of the last relations we deduce that for every n, s ∈ N the following
inequalities hold:

ρ1
(
x

(n+s)
1 , x

(n)
1
)
≤ d1pn

1
1−p1

;

ρ2
(
x

(n+s)
2 , x

(n)
2
)
≤ d1h1pn

1
1−p1

,

from which, taking into account the fact that 0 < p1 < 1, it follows that the
sequence

(
x

(n)
1
)
n≥0 and

(
x

(n)
2
)
n≥0 are fundamental.

Using this remark and the completeness of the spaces X1 and X2, it
results that lim

n→∞
x

(n)
1 = x̄1 and lim

n→∞
x

(n)
2 = x̄2 do exist, and the following

inequalities hold:

ρ1
(
x̄1, x

(n)
1
)
≤ d1p

n
1

1− p1
,

ρ2
(
x̄2, x

(n)
2
)
≤ d1h1p

n
1

1− p1
.
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One deduces easily that x̄1 and x̄2 form the slution of the system (2.1)
and x̄ ∈ S1,x̄2 ∈ S2.

The uniqueness of the solution (x̄1, x̄2) in S = S1 × S2 is verified by
reductio ad absurdum, taking into account the fact that

0 < βa
(1−α)(1−b) < 1.

�

Consider now two mappings, F ∗1 : D → X1 and F ∗2 : D → X2, where
D = D1×D2. Suppose that the mappings F1, F2.F

∗
1 , F

∗
2 verify the relations

ρ1
(
F1 (u, v) , F ∗1 (u, v)

)
≤ δ1,(2.10)

ρ2
(
F2 (u, v) , F ∗2 (u, v)

)
≤ δ2,

for every (u, v) ∈ D, where δ1 > 0, δ2 > 0 are given numbers.
In order to solve the system (2.1), consider now the approximate proce-

dure:

ξ
(n+1)
1 = F ∗1

(
ξ

(n)
1 , ξ

(n)
2
)
,(2.11)

ξ
(n+1)
2 = F ∗2

(
ξ

(n+1)
1 , ξ

(n)
2
)
, n = 0, 1 . . . ,

where ξ(0)
1 = x

(0)
1 , ξ

(0)
2 = x

(0)
2 .

Write:

θ1 = βδ2+(1−b)δ1
(1−α)(1−b)−aβ ,(2.12)

θ2 = (1−α)δ2+aδ1
(1−α)(1−b)−aβ ,

and consider the sets:

S∗1 =
{
x ∈ X1 : ρ1

(
x, x

(0)
1
)
≤ d1 + d1

1−p1
+ θ1

}
,(2.13)

S∗2 =
{
x ∈ X2 : ρ2

(
x, x

(0)
2
)
≤ d1h1 + d1h1

1−p + θ2
}
.

The following theorem holds:

Theorem 2.2. If the hypotheses of Theorem 2.1 and the additional con-
ditions:

(i3). the mappings F1, F2, F
∗
1 , F

∗
2 fulfil relations (2.10);

(ii3). S∗1 ⊆ D1, S
∗
2 ⊆ D2

are verified, then for every real numbers ε1 and ε2 which verify the relations
ε1 > 2θ1, ε2 > 2θ2 there exists a natural number n′ ∈ N such that for every
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n > n′ the inequalities ρ1
(
ξ

(n+1)
1 , ξ

(n)
1
)
< ε1 and ρ2

(
ξ

(n+1)
2 , ξ

(n)
2
)
< ε2 hold,

and the additional properties hold, two:
(j3). ξ(n)

1 ∈ S∗1 , ξ
(n)
2 ∈ S∗2 for every n = 0, 1, . . .;

(jj3). the following inequalities hold:

ρ1
(
x̄1, ξ

(n+1)
1

)
≤ β (aε1 + bε2) + αε1 (1− b)

(1− α) (1− b)− aβ + ε1
2 ,(2.14)

ρ2
(
x̄2, ξ

(n+1)
2

)
≤ a (αε1 + βε2) + bε2 (1− α)

(1− α) (1− b)− aβ + ε2
2

for every n > n′, where (x̄1, x̄2) is the solution of system (2.1).

Proof. We show that the relations (j3) hold. Indeed, by (2.11) and (2.10)
it results:

ρ1
(
x

(1)
1 , ξ

(1)
1
)

= ρ1
(
F1
(
x

(0)
1 , x

(0)
2
)
, F ∗1

(
ξ

(0)
1 , ξ

(0)
2
))
≤ δ1,

since we assumed that x(0)
1 = ξ

(0)
1 and x

(0)
2 = ξ

(0)
2 .

Taking into account the hypothesis (iii2) of Theorem 2.1, we shall have:

ρ1
(
ξ

(1)
1 , x

(0)
1

)
≤ ρ1

(
ξ

(1)
1 , x

(1)
1

)
+ ρ1

(
x

(1)
1 , x

(0)
1

)
≤ δ1 + d1 < d1 + d1

1−p1
+ θ1

since from (2.12) it follows δ1 < θ1. From the last inequality it follows
ξ

(1)
1 ∈ S∗1 .

Analogously we have:

ρ2
(
x

(1)
2 , ξ

(1)
2

)
≤ ρ2

(
F2
(
x

(1)
1 , x

(0)
2
)
, F ∗2

(
ξ

(1)
2 , ξ

(0)
2
))

≤ δ2 + aρ1
(
ξ

(1)
1 , x

(1)
1

)
+ bρ2

(
ξ

(0)
2 , x

(0)
2

)
≤ δ2 + aδ1,

from which, taking into account (iii2), it follows:

ρ2
(
ξ

(1)
2 , x

(0)
2

)
≤ ρ2

(
ξ

(1)
2 , x

(1)
2

)
+ ρ2

(
x

(1)
2 , x

(0)
2

)
≤ δ2 + aδ1 + d1h1,

but one can easily verify that δ2 + aδ1 ≤ θ2, and hence:

ρ2
(
ξ

(1)
2 , x

(0)
2

)
≤ h1d1 + h1d1

1−p1
+ θ2,

therefore ξ(1)
2 ∈ S∗2 .

Suppose now that ξ(n−1)
1 ∈ S∗1 and ξ

(n−1)
2 ∈ S∗2 for an n ≥ 2. Then we

have:
ρ1
(
ξ

(n)
1 , x

(n)
1

)
= ρ1

(
F ∗1
(
ξ

(n−1)
1 , ξ

(n−1)
2

)
, F1

(
x

(n−1)
1 , x

(n−1)
2

))
≤ αρ1

(
x

(n−1)
1 , ξ

(n−1)
1

)
+ βρ2

(
x

(n−1)
2 , ξ

(n−1)
2

)
+ δ1,

ρ2
(
ξ

(n)
2 , x

(n)
2

)
= ρ2

(
F ∗2
(
ξ

(n)
1 , ξ

(n−1)
2

)
, F2

(
x

(n)
1 , x

(n−1)
2

))
≤ aρ1

(
x

(n)
1 , ξ

(n)
1

)
+ bρ2

(
x

(n−1)
2 , ξ

(n−1)
2

)
+ δ2.
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Starting from the above relations, we deduce immediately:

ρ1
(
ξ

(n)
1 , x

(n)
1

)
≤ d1p

n−1
1 + θ1,(2.15)

ρ2
(
ξ

(n)
2 , x

(n)
2

)
≤ d1h1p

n−1
1 + θ2,

from which one easily obtains:

ρ1
(
ξ

(n)
1 , x

(0)
1

)
≤ ρ1

(
ξ

(n)
1 , x

(n)
1

)
+ ρ1

(
x

(n)
1 , x

(0)
1

)
≤ d1 + d1

1−p1
+ θ1,

ρ2
(
ξ

(n)
2 , x

(0)
2

)
≤ ρ2

(
ξ

(n)
2 , x

(n)
2

)
+ ρ2

(
x

(n)
2 , x

(0)
2

)
≤ d1h1 + d1h1

1−p1
+ θ2,

that is, ξ(n)
1 ∈ S∗1 and ξ

(n)
2 ∈ S∗2 .

From the above results it follows:

ρ1
(
ξ

(n+1)
1 , ξ

(n)
1

)
≤ αρ1

(
ξ

(n)
1 , ξ

(n−1)
1

)
+ βρ2

(
ξ

(n)
2 , ξ

(n−1)
2

)
+ 2δ1,

ρ2
(
ξ

(n+1)
2 , ξ

(n)
2

)
≤ aρ1

(
ξ

(n+1)
1 , ξ

(n)
1

)
+ bρ2

(
ξ

(n)
2 , ξ

(n−1)
2

)
+ 2δ2,

from which one deduces immediately by induction the inequalities:

ρ1
(
ξ

(n+1)
1 , ξ

(n)
1

)
≤ d1p

n−1
1 + 2θ1,(2.16)

ρ2
(
ξ

(n+1)
2 , ξ

(n)
2

)
≤ d1h1p

n−1
1 + 2θ2.

From relations (2.16) it follows that, if ε1 > 2θ1 and ε2 > 2θ2, then
there exists a natural number n′ ∈ N such that for n > n′ the relations
ρ1
(
ξ

(n+1)
1 , ξ

(n)
1

)
≤ ε1 and ρ2

(
ξ

(n+1)
2 , ξ

(n)
2

)
≤ ε2 hold, namely the approxi-

mating iterative procedure (2.11) can be stopped when the distance between
two successive iterations becomes smaller than a given number.

Suppose that ε1 and ε2 were chosen such that for n > n′ the inequalities
ρ1
(
ξ

(n+1)
1 , ξ

(n)
1

)
< ε1 and ρ2

(
ξ

(n+1)
2 , ξ

(n)
2

)
< ε2 are verified. Then, for

n > n′, we have:

ρ1
(
x̄1, ξ

(n+1)
1

)
≤ αρ1

(
x̄1, ξ

(n)
1

)
+ βρ2

(
x̄2, ξ

(n)
2

)
+ δ1,

ρ2
(
x̄2, ξ

(n+1)
2

)
≤ aρ1

(
x̄1, ξ

(n+1)
1

)
+ bρ2

(
x̄2, ξ

(n)
2

)
+ δ2,
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from which it follows:

(1− α) ρ1
(
x̄1, ξ

(n+1)
2

)
≤ αε1 + βρ2

(
x̄2, ξ

(n)
2

)
+ δ1,

(1− b) ρ2
(
x̄2, ξ

(n+1)
2

)
≤ bε2 + aρ1

(
x̄1, ξ

(n+1)
1

)
+ δ2,

namely:

ρ2
(
x̄2, ξ

(n+1)
2

)
≤ a(αε1+βε2)+b(1−α)ε2

(1−α)(1−b)−aβ + ε2
2 ,

and using this inequality we have:

ρ1
(
x̄1, ξ

(n+1)
1

)
≤ β(aε1+bε2)+α(1−b)ε1

(1−α)(1−b)−aβ + ε1
2 .

�

3.

We present further down an application of Theorem 2.1 For this purpose,
consider the linear system:

(3.1) x = Ax+ b,

where bT ∈ Rn, A ∈Mn (R) , and xT ∈ Rn.
In order to solve system (3.1), we shall use a method exposed by R. Varga

in [9].
Decompose the matrix A into four blocks of matrices:

M1 ∈Ms,s (R) , M2 ∈Ms,n−s (R) , M3 ∈Mn−s,s (R) , M4 ∈Mn−s,n−s (R) ,

where 1 ≤ s < n. The matrix A will then have the form:

A =
(
M1 M2
M3 M4

)
.

Write x =
(u
v

)
and b =

( b′

b′′
)
, with uT ∈ Rs b′T ∈ Rs, vT ∈ Rn−s, b′′T ∈ Rn−s.

With these notations system (3.1) will acquire the form:

u = M1u+M2v + b′,(3.2)
v = M3u+M4v + b′′.

In order to solve the system (3.2), we apply the Gauss-Seidel method, that
is:

ui = M1ui−1 +M2vi−1 + b′,(3.3)
vi = M3ui +M4vi−1 + b′′, (u0, v0) ∈ Rs × Rn−s, i = 1, 2, . . .
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If we put in Theorem 2.1X1 = Rs, X2 = Rn−s, α = ‖M1‖ , β = ‖M2‖ , a =
‖M3‖ , b = ‖M4‖, where the above norms are of the same kind and are every
time considered on the metrics corresponding spaces, then as a consequence
of this theorem, we can state the following theorem:

Theorem 3.1. If the inequalities:

‖M1‖+ ‖M4‖+ ‖M2‖ ‖M3‖ < 2,(3.4)
(1− ‖M1‖) (1− ‖M4‖) > ‖M3‖ · ‖M2‖

hold, then the system (3.1) has only one solution x̄ = (ū, v̄) ∈ Rs × Rn−s
which is obtained as limit of the sequences (un)n≥0 and (vn)n≥0 generated
by the iterative procedure (3.3).

Also from Theorem 2.1 one deduces that (ū, v̄) ∈ Ŝ1 × Ŝ2, where

Ŝ1 =
{
u ∈ Rs : ‖u− u0‖ ≤ d̂1

1−p̂1

}
and Ŝ2 =

{
v ∈ Rn−s : ‖v − v0‖ ≥ d̂1ĥ1

1−p̂1

}
,

d̂1 is a positive number for which ‖u1 − u0‖ ≤ d̂1 and ‖v1 − v0‖ ≤ d̂1ĥ1, p̂1 =
ĥ1k̂1, while

(
ĥ1, k̂1

)
is the solution with positive components of the system

of equations:

‖M1‖+ ‖M2‖h = hk,(3.5)
‖M3‖ k + ‖M4‖ = hk.

Let now M∗1 ∈ Ms,s (R) , M∗2 ∈ Ms,n−s (R) , M∗3 ∈ Mn−s,s (R) and M∗4 ∈
Mn−s,n−s (R) be four matrices for which:

‖Mi −M∗i ‖ ≤ ε, i = 1, 2, 3, 4, ε > 0,

and let b′∗ ∈ R, b′′∗ ∈ Rn−s for which we also have ‖b′ − b′∗‖ < ε and
‖b′′ − b′′∗‖ < ε. Thus, if we consider instead of the procedure (3.3) the
approximate procedure:

ξ
(i)
1 = M∗1 ξ

(i−1)
1 +M∗2 ξ

(i−1)
2 + b′∗,(3.6)

ξ
(i)
2 = M∗3 ξ

(i)
1 +M∗4 ξ

(i−1)
2 + b′′∗, i = 1, 2, . . . ,

ξ
(0)
1 = u0, ξ

(0)
2 = v0,

and put into (3.3) u0 = θ̄1, v0 = θ̄2, where θ̄1 is the null vector from Rs and
θ̄2 is the null vector from Rn−s, it results u1 = b′ and v1 = b′′ + M3b

′ and
we may consider d1 = max

{
‖b′‖ , ‖b′′‖ /ĥ1

}
.
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If we write:

F1 (u, v) = M1u+M2v + b′,

F2 (u, v) = M3u+M4v + b′′,

F ∗1 (u, v) = M∗1u+M∗2 v + b′∗,

F ∗2 (u, v) = M∗3u+M∗4 v + b′′∗,

and take into account the above hypotheses, we shall have:

(3.7) ‖Fi (u, v)− F ∗i (u, v)‖ ≤ ε (‖u‖+ ‖v‖+ 1) , i = 1, 2

and if

1− ε 2 + a+ β − b− α
(1− α) (1− b)− aβ > 0,

then, denoting

δ =
(2−p̂

1−p̂ d̂1 (1 + h1) + 1
)

1− ε 2+a+β−b−α
(1−α)(1−b)−aβ

,

it follows from (3.7) that:

‖Fi (u, v)− F ∗i (u, v)‖ ≤ δ, i = 1, 2,

for (u, v) ∈ Ŝ∗1 × Ŝ∗2 , Ŝ∗1 and Ŝ∗2 being the sets:

Ŝ∗1 =
{
u ∈ Rs : ‖u‖ ≤ d̂1

2−p̂1
1−p̂1

+ θ̂1
}

Ŝ∗2 =
{
v ∈ Rn−s : ‖v‖ ≤ d̂1ĥ1

2−p̂1
1−p̂1

+ θ̂2
}

where:

θ̂1 = δ 1+β−b
(1−α)(1−b)−aβ ,

θ̂2 = 1+a−α
(1−α)(1−b)−aβ

Taking all this into account, if ε̂ > 2 max{θ̂1, θ̂2}, then there exists n̂ ∈ N
such that, for n > n̂,

∥∥ξ(n+1)
i − ξ(n)∥∥ < ε̂, i = 1, 2, and ξ

(n)
1 ∈ Ŝ∗1 , ξ

(n)
2 ∈ Ŝ∗2 ,

where
(
ξ

(n)
1

)
n≥0

and
(
ξ

(n)
2

)
n≥0

are the sequences generated by means of the
approximating procedure (3.6).
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Using the conclusions of Theorem 2.2, the following error estimations
hold: ∥∥ū− ξ(n+1)

1
∥∥ ≤ ε̂ [ aα+aβ+b−bα

(1−α)(1−b)−aβ + 1
2

]
,∥∥v̄ − ξ(n+1)

2
∥∥ ≤ ε̂ [ aβ+bβ+α−αb

(1−α)(1−b)−aβ + 1
2 ,
]

where, as we already specified, α = ‖M1‖ , β = ‖M2‖ , a = ‖M3‖ , b =
‖M4‖ .
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