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1. Introduction

It is well known that the most usual methods for approximating a solution of a nonlin-
ear equation in R (Newton’s method, Chebyshev’s method, chord method and different
generalizations of these) are obtained in an unitary manner by Lagrange-Hermite-type
inverse interpolation.

The inverse interpolatory polynomials, by a proper choice of the nodes, also lead to
Aitken-Steffensen-type methods.

In this paper we approach two aspects concerning the optimality problems arising from
the consideration of the iterative methods for approximating the solutions of equations
by inverse interpolation. The first aspect concerns the construction of some algorithms
having optimal convergence orders, while the second addresses the optimal complexity of
calculus concerning the inverse interpolation iterative methods.

We adopt the efficiency index (see [6]) as a measure of the complexity of the iterative
methods.

This paper represents a synthesis of the results obtained by us in the papers [3], [4], [7],
[10], [11].

We shall begin by presenting some definitions and results (some of them are known)
concerning the convergence order and the efficiency index of an iterative method. We
briefly present then the inverse interpolatory methods and the iterative methods generated
by them. We consider different classes of interpolatory methods determining for each class
the methods having the optimal convergence order. Finally, we determine the methods
having the optimal efficiency indexes.
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2. Convergence orders and efficiency indexes

Denote I = [a, b] , a, b ∈ R, a < b, and consider the equation

(2.1) f (x) = 0

where f : I → R is given. We shall assume for simplicity in the following that the above
equation has a unique solution x̄ ∈ I. Let g : I → I be a function having a unique fixed
point and let that point be x̄.

For approximating the solution x̄ we shall consider the elements of the sequence (xp)p≥0

generated by the iterations

(2.2) xs+1 = g (xs) , s = 0, 1, . . . , x0 ∈ I,

More general, if G : Ik → I is a function of k variables whose restriction to the diagonal
of Ik coincides with g, i.e.

G (x, x, . . . , x) = g (x) , ∀x ∈ I

then we may consider the iterations

(2.3) xs+k = G (xs, xs+1, . . . , xs+k−1) , s = 0, 1, . . . , x0, . . . , xk−1 ∈ I.

The convergence orders of the sequences (xp)p≥1 generated by (2.2) and (2.3) depend on

some properties of the function f, g, resp. G.
The amount of time needed by a computer to obtain a convenient approximation de-

pends both on the convergence order of (xp)p≥0 and on the number of elementary oper-

ations that must be performed at each iteration step in (2.2) or (2.3). The convergence
order of the methods of the form (2.2) and (2.3) may be determined exactly under some
circumstances, but the number of elementary operations needed at each iteration step may
be hard or even impossible to evaluate. A simplification of this problem may be obtained
(see [6]) by taking into account the number of function evaluations needed at each iteration
step.

It is obvious that this criterion may be, at the first sight, contested, since some functions
may be simpler and others may be more complicated from the calculus viewpoint.

This inconvenient does not affect our viewpoint on optimal efficiency, because it refers
on classes of iterative methods which are applied for solving an equation in which the
functions are well determined by the form of equation (2.1), and by g, resp. G.

Let (xp)p≥0 be an arbitrary sequence which together with f and g satisfies

i. xs ∈ I and g (xs) ∈ I for s = 0, 1, . . . ;
ii. the sequence (xp)p≥0 converges and limxp = lim g (xp) = x̄;

iii. f is derivable at x̄;
iv. for any x, y ∈ I it follows 0 < |[x, y; f ]| ≤ m, for some m ∈ R, m > 0, where

[x, y; f ] denotes the first order divided difference of f on the nodes x and y.

Definition 2.1. The sequence (xp)p≥0 has the convergence order ω, ω ≥ 1, with respect
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to g if there exists the limit

(2.4) α = lim
p→∞

ln |g (xp)− x̄|
ln |xp − x̄|

and α = ω.

For a unitary treatment of the convergence orders of the studied methods we shall prove
the following lemmas.

Lemma 2.1. If the sequence (xp)p≥0 and the functions f and g satisfy properties i–iv then

the necessary and sufficient condition for this sequence to have the convergence order ω,
ω ≥ 1, is that there exists

(2.5) β = lim
ln |f (g (xp))|

ln |f (xp)|
and β = ω.

Proof. Assuming true one of the relations (2.4) and (2.5) and taking into account hypothe-
ses i–iv, we get

lim
ln |g (xp)− x̄|

ln |xp − x̄|
= lim

ln |f (g (xp))| − ln |[g (xp) , x̄; f ]|
ln |f (xp)| − ln |[xp, x̄; f ]|

= lim
ln |f (g (xp))|

ln |f (xp)|
·

1− ln|[g(xp),x̄;f ]|
ln|[f(g(xp))]|

1− ln|[xp,x̄;f ]|
ln|f(xp)|

= lim
ln |f (g (xp))|

ln |f (xp)|
.

�

Lemma 2.2. Assume that (up)p≥0 is a sequence of real positive numbers satisfying the

following properties:

i. the sequence (up)p≥0 is convergent and limup = 0;

ii. there exist the real nonnegative numbers α1, α2, . . . , αn+1 and a sequence (cp)p≥0

with cs > 0, s = 0, 1, . . . and 0 < inf{cp} ≤ sup{cp} ≤ m, which together with the
elements of the sequence (up)p≥0 satisfy

(2.6) us+n+1 = csu
α1
s u

α2
s+1 . . . u

αn+1
s+n , s = 0, 1, . . . ,

iii. there exists lim
lnup+1

lnup
= ω > 0.

Then ω is the positive root of the equation

(2.7) tn+1 − αn+1t
n − αntn−1 − . . .− α2t− α1 = 0.

Proof. By (2.6) we obtain

(2.8) lim
s→∞

lnun+s+1

lnun+s
= lim

s→∞

ln cs
lnun+1

+

n∑
i=0

αi+1 lim
s→∞

lnus+i
lnus+n
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The hypotheses imply

lim
s→∞

ln cs
lnun+s

= 0

and

lim
lnus+i
lnus+n

=
1

ωn−i
, i = 0, n,

whence, by (2.8) we get

ω =

n∑
i=0

αi+1
1

ωn−i
,

i.e.,

(2.9) ωn+1 −
n∑
i=0

αi+1ω
i = 0.

�

We turn now our attention to equation of the form (2.9).
Let a1, a2, . . . , an+1 ∈ R, ai ≥ 0 = 1, n+ 1.
We shall assume that the numbers ai, i = 1, . . . , n+ 1 are ordered:

(2.10) an+1 ≥ an ≥ . . . ≥ a2 > a1

and satisfy

(2.11) a1 + a2 + . . .+ an+1 > 1.

Consider the equations

(2.12) P (t) = tn+1 − an+1t
n − antn−1 − . . .− a2t− a1 = 0

(2.13) Q (t) = tn+1 − a1t
n − a2t

n−1 − . . .− ant− an+1 = 0

(2.14) R (t) = tn+1 − ai1tn − ai2tn−1 − . . .− aint− ain+1 = 0

where (i1, i2, . . . , in+1) is an arbitrary permutation of (1, 2, . . . , n+ 1) .

Lemma 2.3. If ai, i = 1, n+ 1 satisfy condition (2.11) then any equation of form (2.14)
has a unique root larger than 1. Moreover, if relations (2.10) are satisfied and if we denote
by a, b, c the positive roots of (2.12), (2.13) resp. (2.14), then

(2.15) 1 < b ≤ c ≤ a,

i.e., equation (2.12) has the largest root.

Proof. Consider the (n+ 1)! equations of the form (2.14) and denote by s the largest
natural number for which ais 6= 0.
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We have ais+1 = ais+2 = . . . = ain+1 = 0. Consider the function Ψ (t) = R (t) /tn−s+1. It
can be seen by (2.11) that Ψ (1) = 1− ai1 − ai2 − . . .− ais < 0, and limt→∞Ψ (t) = +∞.
It follows that equation (2.14) has a unique positive root. The first part of the lemma is
proved. In order to prove inequality (2.15) it suffices to show that R (b) ≤ 0 and R (a) ≥ 0.
Indeed,

R (b) = R (b)−Q (b) = (a1 − ai1) bn + (a2 − ai2) bn−1 + . . .

. . .+ (an − ain) b+ an+1 − ain+1

= (b− 1) (a1 − ai1) bn−1 +
[
(a1 + a2 − ai1 − ai2) bn−2 + . . .

. . .+
(
a1 + a2 + . . .+ an−1 − ai1 − ai2 − . . .− ain−1

)
b

+ a1 + a2 + . . .+ an − ai1 − ai2 − . . .− ain ] ≤ 0,

since from (2.15) follow the inequalities

a1 + a2 + . . .+ as − ai1 − ai2 − . . .− ais ≤ 0, s = 1, 2, . . . , n,

and b > 1. The fact that R (a) ≥ 0 is shown in an analogous manner. �

Lemma 2.4. Let p1, p2, . . . pn+1 and α1, α2, . . . , αn+1, where pi ≥ 1, αi ≥ 1, i = 1, n+ 1,
be two sets of real numbers satisfying

(2.16) p1 ≥ p2 ≥ . . . ≥ pn+1, α1 ≤ α2 ≤ . . . ≤ αn+1.

Then, among all the numbers of the form

(2.17) α = αj1pk1 + αj2pk1pk2 + . . .+ αjn+1pk1pk2 . . . pkn+1

where (j1, j2, . . . , jn+1) and (k1, k2, . . . , kn+1) are arbitrary permutations of (1, 2, . . . , n+ 1) ,
the largest such number is given by

(2.18) αmax = α1p1 + α2p1p2 + . . .+ αn+1p1p2 . . . pn+1.

Proof. From the first set of inequalities (2.16) it follows that the inequality:

αj1pk1 + αj2pk1pk2 + . . .+ αjn+1pk1pk2 · . . . · pkn+1 ≤(2.19)

≤ αj1p1 + αj2p1p2 + . . .+ αjn+1p1p2 · . . . · pn+1

holds for any two permutations (j1, j2, . . . , jn+1) and (k1, k2, . . . , kn+1) of (1, 2, . . . , n+ 1) .
Let us denote

(2.20) bi = p1p2 . . . pi, i = 1, 2, . . . , n+ 1.

In order to prove the inequality

(2.21) αj1b1 + αj2b2 + . . .+ αjn+1bn+1 ≤ α1b1 + α2b2 + . . .+ αn+1bn+1

for every permutation (j1, j2, . . . , jn+1) , we shall proceed by induction. For n = 0 the
inequality (2.21) is obvious, since n + 1 = 1 and hence αj1 = α1. Suppose now that the
inequality is true for n pairs of numbers (α1, b1) , . . . , (αn, bn) , namely

(2.22) αj1b1 + αj2b2 + . . .+ αjnbn ≤ α1b1 + . . .+ αnbn,
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where α1 ≤ α2 ≤ . . . ≤ αn and b1 ≤ b2 ≤ . . . ≤ bn. Using the inequalities b1 ≤ b2 ≤ . . . ≤
bn ≤ bn+1 and α1 ≤ α2 ≤ . . . ≤ αn ≤ αn+1, as well as the induction hypothesis (2.22) and
assuming that j1 = i, 1 ≤ i ≤ n, we have

αj1b1 + αj2b2 + . . .+ αjn+1bn+1 =

= b1
(
αj1 + αj2 + . . .+ αjn+1

)
+ (b2 − b1)αj2 + (b3−b1)αj3 + . . .+ (bn+1 − b1)αjn+1

≤ b1 (α1 + α2 + . . .+ αn+1) + (b2 − b1)α1 + (b3 − b1)α2 + . . .

. . .+ (bi − b1)αi−1 + (bi+1 − b1)αi+1 + . . .+ (bn+1 − b1)αn+1

≤ b1 (α1 + α2 + . . .+ αn+1) + (b2 − b1)α3 + . . .

. . .+ (bi − b1)αi + (bi+1 − b1)αi+1 + . . .+ (bn+1 − b1)αn+1

= b1α1 + b2α2 + . . .+ bn+1αn+1.

�

We turn back our attention to the equation

(2.23) tn+1 − an+1t
n − antn−1 − . . .− a2t− a1 = 0

and we assume that ai ≥ 1, ai ∈ N, i = 1, n+ 1 and
∑n+1

i=1 ai = m+ 1, m ∈ N. Denote by
δn+1 the positive root of the above equation. The following result holds.

Lemma 2.5. [7] The positive solution δn+1 of equation (2.23) verifies the relation:

(m+ 1)

m+1

(n+1)(m+1)−
n+1∑
i=1

(i−1)αi ≤ δn+1 ≤ 1 + max
1≤i≤n+1

{αi}, n = 1, 2, . . .(2.24)

Proof. Let

(2.25) α = (m+ 1)

m+1

(n+1)(m+1)−
n+1∑
i=1

(i−1)αi

It is sufficient to prove that Pn+1 (α) ≤ 0, where Pn+1(t) = tn+1 − an+1t
n − · · ·−a2t− a1.

We shall use for this the inequality between the arithmetic mean and the geometric
mean, i.e.

n+1∑
i=1

αipi

n+1∑
i=1

pi

≥

(
n+1∏
i=1

αpii

) 1
n∑
i=1

pi
, αi > 0, pi ≥ 0, i = 1, n+ 1,

n+1∑
i=1

pi > 0.
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Using this inequality we obtain

Pn+1 (α) = αn+1 −
n+1∑
i=1

aiα
i−1 = αn+1 −

n+1∑
i=1

aiα
i−1

n+1∑
i=1

αi

·
n+1∑
i=1

ai

≤ αn+1 −

(
n+1∑
i=1

ai

)(
n+1∏
i=1

α(i−1)ai

) 1
n+1∑
i=1

ai

= αn+1 − (m+ 1)

(
n+1∏
i=1

α(i−1)αi

) 1
m+1

= αn+1 − (m+ 1)α

n+1∑
i=1

(i−1)αi

=

n+1∑
i=1

(i− 1) ai

m+ 1

α(n+1)

n+1∑
i=1

(i−1)ai

m+1 − (m+ 1)

 = 0,

i.e. Pn+1 (α) ≤ 0. �

Remark 2.1. It can be easily seen that the number α given by (2.25) can be expressed
using P ′n+1 (1) :

α = (m+ 1)
m+1

m(n+1)+P ′n+1(1)
.

The second part of relations (2.24) follows easily from the inequality Pn+1 (a) > 0, where
a = 1 + max1≤i≤n+1{αi}.

Some more specific results concerning the bounds for the root δn+1 of equation (2.23)
can be obtained in the case

(2.26) a1 = a2 = · · · =an+1 = q, q ≥ 1.

More precisely, denoting by γn (q) the positive root of equation

(2.27) tn+1 − qtn − qtn−1 − · · ·−qt− q = 0,

then the following relations hold (see [15]):

a) γn (q) < γn+1 (q) , n = 1, 2, . . .;
b) max{q, n+1

n+2 (q + 1)} < γn+1 (q) ≤ q + 1, n = 1, 2, . . .;

c) lim
n→∞

γn (q) = q + 1.

For q = 1, from relations a)–c) we get (see [6]):
a’) γn (1) ≤ γn+1 (1) , n = 1, 2, . . .

b’) 2(n+1)
n+2 < γn+1 (1) < 2, n = 1, 2, . . .;

c’) lim γn (1) = 2.



OPTIMAL ALGORITHMS 229

In the following we shall denote by mp the number of function evaluations that must
be performed when passing from step p to step p+ 1 in the iterative methods (2.2), resp.
(2.3), for p = 1, 2, . . .

Concerning the efficiency index of methods (2.2) and (2.3), taking into account Lemma
2.1 and the definition given in [6], we get

Definition 2.2. The real number E is called the efficiency index of the iterative method
(2.2) and (2.3) if there exists

L = lim

 ln |f (xp+1)|
1
mp

ln |f (xp)|


and L = E.

Remark 2.2. If for methods (2.2) and (2.3) there exists a natural number s0 such that
ms = r for all s > s0 and ω is the convergence order of these methods, then the efficiency
index E is given by the following expression:

(2.28) E = ω
1
r

�

3. Iterative methods of interpolatory type

In the following we shall briefly present the Lagrange-Hermite-type inverse interpolatory
polynomial. It is well known that this leads us to general classes of iterative methods from
which, by suitable particularizations we obtain usual methods as Newton’s method, chord
method, Chebyshev’s method, etc.

For the sake of simplicity we prefer to treat separately the Hermite polynomial and the
Lagrange polynomial, though the last is a particular case of the first.

As we shall see, a suitable choice of the nodes enables us to improve the convergence
orders of Lagrange-Hermite-type methods. We shall call such methods Steffensen-type
methods.

3.1. Lagrange-type inverse interpolation. Denote by F = f (I) the range of f for
x ∈ I. Suppose f is n+ 1 times differentiable and f ′ (x) 6= 0 for all x ∈ I. It follows that
f is invertible and there exists f−1 : F → I. Consider n+ 1 interpolation nodes in I :

(3.1) x1, x2, . . ., xn+1, xi 6= xj , for i, j = 1, n+ 1, i 6= j.

In the above hypotheses it follows that the solution x̄ of equation (2.1) is given by

x̄ = f−1 (0) .

Using the Lagrange interpolatory polynomial for the function f−1 at the nodes f (x1) , . . .,
f (xn+1) we shall determine an approximation for f−1 (0) , i.e. for x̄.
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Denote yi = f (xi) , i = 1, n+ 1 and let L
(
y1, y2, . . ., yn+1; f−1|y

)
be the mentioned

polynomial, which is known to have the form

L
(
y1, y2, . . ., yn+1; f−1|y

)
=

n∑
i=1

xiω1(y)
(y−yi)ω′1(yi)

,

where ω1 (y) =
n+1∏
i=1

(y − yi) .

The following equality holds

(3.2) f−1 (y) = L
(
y1, y2, . . ., yn+1; f−1|y

)
+R

(
f−1, y

)
where

R
(
f−1, y

)
=

[f−1(θ1)]
(n+1)

(n+1)! ω1 (y)

and min{y, f (x1) , . . ., f (xn+1)} < θ1 < max{y, f (x1) , . . ., f (xn+1)}.
It is also known that under the mentioned hypotheses concerning the derivability of f

on I, the function f−1 admits derivatives of any order k, 1 ≤ k ≤ n+ 1 for all y ∈ F and
the following equality holds [12], [16]:

[
f−1 (y)

](k)
=
∑

(2k−i1−2)!(−1)k+i1−1

i2!i3!...ik![f ′(x)]2k−1

(f ′(x)
1!

)i1(f ′′(x)
2!

)i2 . . .(f (k)(x)
k!

)ik , k = 1, n+ 1

(3.3)

where y = f (x) and the above sum extends over all nonnegative integer solutions of the
system {

i2 + 2i3 + . . .+ (k − 1) ik = k − 1
i1 + i2 + . . .+ik = k − 1.

From (3.2), neglecting R
(
f−1, 0

)
we obtain the following approximation for x̄

x̄ ' L
(
y1, y2, . . ., yn+1; f−1|0

)
.

Denoting

xn+2 = L
(
y1, y2, . . ., yn+1; f−1|0

)
,

we obtain

|xn+2 − x̄| =
∣∣∣[f−1(θ′1)]

(n+1)
∣∣∣

(n+1)! |ω1 (0)| ,

where min{0, f (x1) , . . ., f (xn+1)} < θ1 < max{0, f (x1) , . . ., f (xn+1)}.
It is clear that if xs, xs+1, . . ., xs+n are n + 1 distinct approximations of the solution x̄

of equation (2.1) then a new approximation xs+n+1 can be obtained as above, i.e.
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(3.4) xs+n+1 = L
(
ys, ys+1, . . ., ys+n; f−1|0

)
, s = 1, 2, . . .

with the error estimate given by

(3.5) |xs+n+1 − x̄| =
∣∣∣[f−1(θ′s)]

(n+1)
∣∣∣

(n+1)!

n∏
i=0

|f (xs+1)| , s = 1, 2, . . .

where θ′s belongs to the smallest open interval contianing 0, f (xs) , . . ., f (xs+n) .

If we replace in (3.5) |xs+n+1 − x̄| = |f(xs+n+1)|
|f ′(αs)| , we obtain for the sequence (f (xp))p≥0

the relations:

(3.6) |f (xs+n+1)| =
∣∣f ′ (αs)∣∣ ∣∣∣[f−1(θ′s)]

(n+1)
∣∣∣

(n+1)!

n∏
i=0

|f (xs+i)| ,

where αs, belongs to the open interval determined by x̄ and xs+n+1.

Suppose that cs = |f ′ (αs)|
∣∣∣[f−1(θ′s)]

(n+1)
∣∣∣

(n+1)! , s ∈ N, satisfies the hypotheses of Lemma 2.2

and that the sequence (f (xp))p≥0 , converges to zero, where (xp)p≥0 is generated by (3.4).

Then the converges order of this sequence is equal to the positive solution of the equation:

tn+1 − tn − tn−1 − . . .−t− 1 = 0.

3.2. Hermite-type inverse interpolation. Consider in the following, besides the in-
terpolation nodes (3.1), n+ 1 natural numbers a1, a2, . . ., an+1, where ai ≥ 1, i = 1, n+ 1
and

a1 + a2 + . . .+an+1 = m+ 1.

We shall suppose here too, for simplicity, that f is m+ 1 times differentiable on I. From
this and from f ′ (x) 6= 0 for all x ∈ I, it follows, by (3.3), that f−1 is also m + 1 times
differentiable on F. Denoting yi = f (xi) , i = 1, n+ 1, then the Hermite polynomial for
the nodes yi, i = 1, n+ 1, has the following form:

H
(
y1, a1; y2, a2; . . .; yn+1, an+1; f−1|y

)
=(3.7)

=
n+1∑
i=1

ai−1∑
j=0

ai−j−1∑
k=0

(
f−1 (yi)

)(j) 1
k!j!

(
(y−yi)ai
ω1(y)

)(k)

y=yi

ω1(y)

(y−yi)ai−j−k

where

ω1 (y) =
n+1∏
i=1

(y − yi)ai .

If xs, xs+1, . . ., xs+n are n + 1 distinct approximations of the solution x̄ of the equation
(2.1), then the next approximation xs+n+1 can be obtained as before in the following way:
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(3.8) xs+n+1 = H
(
ys, a1; . . .; ys+n, an+1; f−1|0

)
, s = 1, 2, . . .

where, as in (3.7),

ωs (y) =

s+n∏
i=s

(y − yi)ai .

It can be easily seen that the following equality holds:

|f (xs+n+1)| =
∣∣f ′ (βs)∣∣ ∣∣∣[f−1(θ′′s )]

(m+1)
∣∣∣

(m+1)!

n∏
i=0

|f (xs+i)|ai+1 , s = 1, 2, . . .(3.9)

where θ′′s belongs to the smallest open interval containing 0, ys, ys+1, . . . , ys+n and βs be-
longs to the open interval determined by x̄ and xs+n+1.

If we suppose that

cs =
∣∣f ′ (βs)∣∣

∣∣∣[f−1 (θ′′s )
](m+1)

∣∣∣
(m+ 1)!

, s ∈ N,

verify the hypotheses of Lemma 2.2 and, moreover, lim
s→∞

f (xs) = 0, then it is clear that

the convergence order of the method (3.8) is given by the positive solution of the equation

(3.10) tn+1 − an+1t
n − antn−1 − · · ·−a2t− a1 = 0.

In the following we shall consider a particular case of (3.8).
For a1 = a2 = . . . = an+1 = q, from (3.8) we obtain

(3.11) xs+n+1 = H
(
ys, q; ys+1, q; . . .; ys+n, q; f

−1|0
)
,

method having the convergence order given by the positive solution of the equation

(3.12) tn+1 − qtn − qtn−1 − . . .−qt− q = 0.

3.3. Aitken-Steffensen type iterative methods. Let ϕi : I → R, i = 1, . . ., n + 1 be
n+ 1 functions having the following properties

α) ϕi (x̄) = x̄, i = 1, n+ 1, where x̄ is the solution of (2.1);
β) there exist n + 1 continuous functions gi : I → R, gi (x) ≥ 0 ∀x ∈ I, and the real

numbers pi > 1, i = 1, n+ 1 such that the following equalities hold:

(3.13) |f (ϕi (x))| = gi (x) |f (x)|pi , i = 1, n+ 1.

Denote u0 ∈ I an initial approximation of the root x̄ of (2.1). We construct the n+ 1
interpolation nodes x1

i , i = 1, n+ 1 in the following way:

(3.14) x1
1 = ϕ1 (u0) , x1

i+1 = ϕi+1

(
x1
i

)
, i = 1, n.

Next, we compute y1
i = f

(
x1
i

)
, i = 1, n+ 1 and we consider the natural numbers αi,

i = 1, n+ 1 such that



OPTIMAL ALGORITHMS 233

α1 + α2 + · · ·+ αn+1 = m+ 1.

Taking as interpolation nodes the numbers y1
i , i = 1, n+ 1 and the Hermite interpo-

latory polynomial determined by these nodes with the corresponding multiplicities αi,
i = 1, n+ 1, we obtain for x̄ the following approximation:

(3.15) u1 = H
(
y1
i , α1; y1

2, α2; . . .; y1
n+1, αn+1; f−1|0

)
.

The error is given by

(3.16) |x̄− u1| =
∣∣∣[f−1(ξ1)]

(m+1)
∣∣∣

(m+1)! |ω1 (0)|

where ξ1 is a point belonging to the smallest interval determined by the points 0, and
yi, i = 1, n+ 1, while ω1 has the following form:

(3.17) |ω1 (0)| =
∣∣f (x1

1

)∣∣αi · ∣∣f (x1
2

)∣∣α2 · . . . ·
∣∣f (x1

n+1

)∣∣αn+1 .

Taking into account hypothesis β) for the functions ϕi, we get∣∣f (x1
1

)∣∣ = |f (ϕ1 (x0))| = g1 (u0) |f (u0)|p1∣∣f (x1
2

)∣∣ = g2

(
x1

1

) ∣∣f (x1
1

)∣∣p2 ≤ g2

(
x1

1

)
gp21 (u0) |f (u0)|p1p2

and in general

∣∣f (x1
i+1

)∣∣ = gi+1(x1
i+1)

(
gi(x

1
i )
)pi+1 . . .

(
g1(x1

1)
)p2p3...pi+1 · |f (x0)|p1p2...pi+1 , i = 1, n.

(3.18)

Denote

α =
n+1∑
i=1

αi

i∏
j=1

pj

and

(3.19) ρ(u0) =

n+1∏
i=1

[
gi
(
x1
i

)]θi
where

θi = αi +
n+1∑
j=i+1

αj

j∏
k=i+1

pk.

With these notations, from (3.16)–(3.18) we obtain

(3.20) |x̄− u1| =
[f−1(ξ1)]

(m+1)·ρ0
(m+1)! |ρ (u0)|α .
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Let uk−1 be an arbitrary approximation of the solution x̄, obtained by the continuation
of the process given by (3.15). Then the next approximation is constructed in the following
way.

Consider the interpolation nodes xki , i = 1, n+ 1 given by the relations

xk1 = ϕ1 (uk−1) , xki+1 = ϕi+1

(
xki

)
, i = 1, n, k ≥ 2.

Then uk is given by

(3.21) uk = H
(
yk1 , α1; yk2 , ;α2; · · · ; ykn+1, αn+1; f−1|0

)
,

where yki = f
(
xki
)
, i = 1, n+ 1, with the error estimation

(3.22) |x̄− uk| =
ρk−1

[
f−1 (ξk)

](m+1)

(m+ 1)
· |f (uk−1)|α , k = 2, 3, . . .

where ξk is a point belonging to the smallest interval determined by 0 and yki , i = 1, n+ 1,
and ρk−1 has an analogous form with that given in (3.19) for ρ0,

From (3.22) we get

(3.23) |f (uk)| =
ρk−1[f−1(ξk)]

(m+1)
β

(m+1)! |f (uk−1)|α , k = 2, 3, . . .

where β = max
x∈I
|f ′ (x)| .

It is obvious now that if limuk = x̄, then the convergence order of the process (3.21) is
α, where

(3.24) α =
n+1∑
i=1

αi

i∏
j=1

pj .

We shall consider in the following the particular case when

ϕ1 = ϕ2 = . . . = ϕn+1 = ϕ and p1 = p2 = . . . pn+1 = 1.

We assume that f and ϕ satisfy

(3.25) |f (ϕ (x))| = g (x) |f (x)|

where g : I → R, g (x) > 0 for all x ∈ I.
Let xs ∈ I be an approximation for the solution x̄. Denote us = xs, us+1 = ϕ (us) , . . . ,

us+n = ϕ (us+n−1) and ȳs = f (us) , . . . , ȳs+n = f (us+n) . Taking into account the above
assumption, by (3.4) we get the following Steffensen type method:

(3.26) xs+1 = L
(
ȳs; ȳs+1, . . . , ȳs+n; f−1|0

)
, x1 ∈ I, s = 1, 2, . . .

Similarly, by (3.8) it follows:

xs+1 = H
(
ȳs, a1; ȳs+1; a2; . . . ; ȳs+n, an+1; f−1|0

)
, s = 1, 2, . . . , x1 ∈ I.(3.27)
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By (3.25) we obtain the following representations for ȳs+i, i = 1, n :

ȳs+i = f (us+i) = ps,i−1f (xs) , i = 1, n,

where

ps,i−1 =
s+i−1∏
j=s

g (uj) .

Taking into account the above considerations, by (3.6) we obtain:

|f (xs+1)| = |f ′
(
α′s
)
| |[f
−1(µs)](n+1)|

(n+1)!

n∏
i=1

ps,i−1 |f (xs)|n+1 , s = 1, 2, . . . ,(3.28)

and analogously, by (3.9) we get

|f (xs+1)| =
∣∣f ′ (β′s)∣∣

∣∣∣[f−1(µ′s)]
(m+1)

∣∣∣
(m+1)!

n+1∏
i=1

pais,i−1 |f (xs)|m+1 , s = 1, 2, . . . ,(3.29)

From Lemma 2.1, it follows that methods (3.28) and (3.29) have the convergence orders
n+ 1, respectively m+ 1.

3.4. Some particular cases. In what follows we shall discuss some particular cases.
The case n = 0. From (3.7) one obtains the Taylor inverse interpolating polynomial:

T (y) = x1 +
[f−1(y1)]

′

1! (y − y1) + · · ·+ [f−1(y1)]
(α1−1)

(α1−1)! (y − y1)α1−1(3.30)

while, from (3.3), we obtain the following expressions for the successive derivatives[
f−1 (y)

](k)
, k = 1, 2, 3, 4 :

(3.31)
[
f−1 (y)

]′
=

1

f ′ (x)
,

(3.32)
[
f−1 (y)

]′′
= − f ′′ (x)

[f ′ (x)]3
,

(3.33)
[
f−1 (y)

]′′′
= −f

′′′ (x) f ′ (x)− 3 [f ′′ (x)]2

[f ′ (x)]5
,
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[
f−1 (y)

](4)
=

[f ′ (x)]2 f (4) (x) + 10f ′ (x) f ′′ (x) f ′′′ (x)− 15 [f ′′ (x)]3

[f ′ (x)]7
(3.34)

From (3.31) and (3.30) for α1 = 2 we obtain:

T (y) = x1 + 1
f ′(x1) (y − f (x1)) ,

which, for y = 0, leads to the approximation x2 of x̄ given by the expression

(3.35) x2 = x1 − f(x1)
f ′(x1) ,

i.e., to the Newton’s method.
From (3.31), (3.32) and (3.30) for α1 = 3 we obtain Chebyshev’s method, i.e.:

(3.36) x2 = x1 − f(x1)
f ′(x1) −

1
2

f ′′(x1f2(x1))
[f ′(x1)]3

.

Finally, from (3.31), (3.32) (3.33) and (3.30) for α1 = 4 we obtain:

x2 = x1 − f(x1)
f ′(x1) −

1
2
f ′′(x1)f2(x1)

[f ′(x1)]3
+ f ′′′(x)f ′(x1)−3[f ′′(x1)]2

6[f ′(x1)]5
.(3.37)

From the above methods one obtains by iterations the corresponding sequence of approx-
imations, which has the convergence orders 2, 3 and respectively 4.

As one may notice from (3.34) and (3.8), for α1 ≥ 5 the expressions for the derivatives[
f−1 (y)

](k)
, k ≥ 4, have a more complex from. That is why the methods following from

(3.30) in these cases are also complex.
The case n = 1. In this case, from (3.7) it follows:

(3.38) P (y) =

2∑
i=1

αi−1∑
j=0

αi−j−1∑
k=0

[
f−1 (yi)

](j) 1
k!j!

[
(y−yi)αi
ω(y)

](k)

y=yi
· ω(y)

(y−yi)αi−j−k

where:

(3.39) ω (y) = (y − y1)α1 · (y − y2)α2 .

From (3.38) one obtains two iterative methods; namely denoting as above by
H
(
y1, α1; y2, α2; f−1|y

)
the Hermite inverse interpolating polynomial (3.38), we find:

(3.40)

 x3 = H
(
y1, α1; y2, α2; f−1|0

)
,

x1, x2 ∈ I, y1 = f (x1) , y2 = f (x2) ,
xn+1 = H

(
yn−1, α1; yn, α2; f−1|0

)
, n = 3, 4, . . . ,
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or

(3.41)

 x3 = H
(
y1, α2; y2, α1; f−1|0

)
,

x1, x2 ∈ I, y1 = f (x1, ) y2 = f (x2) ,
xn+1 = H

(
yn−1, α2; yn, α1; f−1|0

)
, n = 3, 4, . . . ,

The characteristic equations which provide the convergence orders for the two methods
are:

(3.42) t2 − α2t− α1 = 0

for method (3.40), and:

(3.43) t2 − α1t− α2 = 0

for the method (3.41).
If we denote by ω1 and respectively ω2, the positive roots of equations (3.42) and (3.43),

then it is clear that α2 ≥ α1 implies ω2 ≥ ω1; so, the method with optimal convergence
order is the method (3.40).

Now, we shall briefly discuss some particular cases.
From (3.38), for α1 = α2 = 1, we obtain

(3.44) P1 (y) = (y1 − y2)−1 [(y − y2) f−1 (y1)− (y − y1) f−1 (y2)
]

whence, taking into account the fact f−1 (y1) = x1 and f−1 (y2) = x2, we find for y = 0

(3.45) x3 = x1 − x2−x1
f(x2)−f(x1)f (x1) = x1 − f(x1)

[x1,x2;f ] ,

where [x1, x2; f ] stands for the first order divided difference of the function f on the nodes
x1 and x2 and in general,

(3.46) xn+1 = xn−1 − f(xn−1)
[xn−1,xn;f ] , n = 3, 4, . . . ,

which is the chord method. In this case, since α1 = α2, the above method has the same
convergence order as the other one, which follows from (3.46), i.e.:

(3.47) xn+1 = xn −
f (xn)

[xn−1, xn; f ]
, n = 2, 3, . . . .

The convergence order of the method (3.46) is ω1 = 1
2

(
1 +
√

5
)
.

Now we shall discuss the case α1 = 1, α2 = 2. In this particular case, we obtain from
(3.38) the following iterative methods:

xn+2 =xn − xn+1−xn
f(xn+1)−f(xn)f (xn) + f(xn+1)−f(xn)−(xn+1−xn)f ′(xn+1)

[f(xn+1)−f(xn)]2f ′(xn+1)
f (xn) · f (xn+1) ,

(3.48)

n = 1, 2, . . . , x1, x2 ∈ I
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and

xn+2 = xn+1 − xn−xn+1

f(xn)−f(xn+1)f (xn+1) + f(xn)−f(xn+1)−(xn−xn+1)f ′(xn)

[f(xn)−f(xn+1)]2f ′(xn)
f (xn) · f (xn+1) .

(3.49)

Solving the corresponding characteristic equations, we find the convergence orders ω1 =
1 +
√

2for the method (3.48) and ω2 = 2 for the method (3.49).
As we showed above, the Hermite inverse interpolating polynomial leads to a large

class of iterative methods. The convergence order of each method depends on the number
of interpolating nodes, the order of multiplicity of these ones, and essentially, on the
interpolating node replaced at each iteration step by that calculated at the previous one.

As Steffensen noticed, in the case of method (3.46), the convergence order of this method
can be increased if at each iteration step the element xn depends in a certain manner on
xn−1. More exactly, if we consider a function ϕ : I → R having the property ϕ (x̄) = x̄,
where x̄ is the root of the equation (2.1), and if we put xn = ϕ (xn−1) into (3.46), then we
obtain the sequence (xn)n≥1 generated by Steffensen’s method:

xn = xn−1 −
f (xn−1)

[xn−1, ϕ (xn−1) ; f ]
, n = 2, 3, . . . ,

which has, as it is well known, the convergence order 2.

4. Optimal convergence order

4.1. Optimal convergence order of the iterative methods of Hermite type. As
we have seen in the particular cases presented at §3.4, in the case n = 1, the Hermite
inverse interpolation polynomial for α1 6= α2, leads to two different iterative methods
(see (3.40) and (3.41)). From these two, methods (3.40) has a convergence order greater
than the other one. In the following we shall use Lemma 2.3 in order to generalize the
iterative methods (3.40) and (3.41). It is clear that the convergence order of method
(3.8) depends on the multiplicity of the interpolation nodes which are replaced at each
iteration step such that we are led to different configurations of the coefficients in equation
(3.10). Formula (3.8) generates (n+ 1)! iterative methods, with respect to the algorithm
of changing the interpolation nodes at each iteration step. Among those (n+ 1)! methods,
we shall determine in the following the method with the highest convergence order, i.e.
the optimal method. For this purpose we shall do as follows.

Consider the permutation i1, i2, . . . , in+1 of the numbers 1, 2, . . . , n + 1 for which the
natural numbers α1, α2, . . . , αn+1 satisfying the equality α1 + α2 + · · · + αn+1 = m + 1,
can be increasingly ordered, namely:

(4.1) αi1 ≤ αi2 ≤ · · · ≤ αin ≤ αin+1 .

We renumber, accordingly, the elements of the set E, i.e. we consider:

E = {xi1 , xi2 , . . . , xin+1}.



OPTIMAL ALGORITHMS 239

For the sake of clearness we shall set:

(4.2) as = αis , s = 1, 2, . . . , n+ 1

and

(4.3) us = xis , s = 1, 2, . . . , n+ 1,

and denote by H
(
y1, a1; y2, a2; . . . , yn+1, an+1; f−1|x

)
the Hermite interpolating polyno-

mial, corresponding to the nodes yi = f (ui) , i = 1, 2, . . . , n+ 1, having the multiplicities
a1, a2, . . . , an+1 respectively.

Let u1, u2, . . . , un+1 be the n + 1 initial approximation of the root x̄ of the equation
(2.1). We construct the sequence (up)p≥1 by means of the following iterative procedure:

(4.4)

{
un+2 = H

(
y1, a1; y2, a2; . . . ; yn+1, an+1; f−1|0

)
, . . . ,

un+s+1 = Hys, a1; ys+1, a2; . . . ; ys+n, an+1; f−1|0), s = 2, 3, . . .

Consider all (n+ 1)! permutations of the set {1, 2, . . . , n+1}. To each permutation i1, i2, . . . ,
in+1 it corresponds an iterative method of the form:
(4.5){

xn+2 = H
(
yi1 , αi1 ; yi2 , αi2 ; . . . ; yin+1 , αin+1 ; f |0

)
;

xn+s+2 = H
(
yi1+s, αi1 ; yi2+s, αi1 ; yi2+s, αi2 ; . . . ; yin+1+s, αin+1 ; f |0

)
, s = 1, 2, . . .

All together we have (n+ 1)! iterative methods.
Taking into account Lemma 2.3 and the results proved so far, we can state the following

theorem:

Theorem 4.1. Out of the (n+ 1)! iterative methods of the form (4.5), with the greatest
convergence order (namely these which provide the best upper limit for the absolute value of
the error) is that determined by the permutation i1, i2, . . . , in+1, which orders increasingly
the numbers αi1 , αi2 , . . . , αin+1 , namely αi1 ≤ αi2 ≤ . . . ≤ αin+1 .

4.2. Aitken-Steffensen-type optimal methods. In the following we shall solve an
optimization problem, analogous with the one treated at section 4.1, but now for the case
of the Aitken-Steffensen method.

We shall consider the methods of type (3.21), and for determining the optimal algorithm
we shall rely on Lemma 2.4.

Let (k1, k2, . . . , kn+1) and (j1, j2, . . . , jn+1) be two arbitrary permutations of numbers
1, 2, . . . , n+ 1. Also denote

H (y) = H
(
y1
k1 , αj1 ; y1

k2 , αj2 ; . . . ; y1
kn+1

, αjn+1 ; f |y
)

the Hermite inverse interpolating polynomial having the interpolating notes yki , with the
orders of multiplicity αji , i = 1, 2, . . . , n+ 1.
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With the above notations, let us consider the following class of iterative methods

(4.6) us = H
(
ysk1 , αj1 ; ysk2 , αj2 ; . . . ; yskn+1

, αjn+1 ; f |0
)
, s+ 1, 2, . . .

where

yski = f
(
xski
)
, i = 1, 2, . . . , n+ 1; s = 1, 2, . . . ,

and

xsk1 = ϕk1 (us−1) ,(4.7)

xski = ϕki

(
xski−1

)
, i = 2, 3, . . . , n+ 1; s = 1, 2, . . . ,

u0 being the given initial approximation.
To each couple of permutations (k1, k2, . . . , kn+1) and (j1, j2, . . . , jn+1) of the numbers

1, 2, . . . , (n+ 1)! there corresponds an iterative method of the form (4.6). All together we
have again iterative methods of this form.

We shall attempt to determine, out of the (n+ 1)! iterative methods , that one for
which the number α given by (3.24) is maximum.

Theorem 4.2. Out of all the (n+ 1)! iterative methods of the form (4.6)–(4.7), the one for
which the convergence order α given by (3.24) attains the maximum value, is the method
determined by the order of the numbers pi, αi, i = 1, 2, . . . , n+ 1, given by the inequalities
(2.16).

The proof of this theorem follows immediately from Lemma 2.4 and (3.24).

5. Optimal efficiency

We shall analyse in the following the efficiency index of each of the methods described
and in the hypotheses adopted below we shall determine the optimal methods, i.e. those
having the highest efficiency index.

As we have seen, the formulae for computing the derivatives of f−1 have a complicated
form and they depend on the successive derivatives of f. Though, in the case where the
orders of the derivatives of f−1 are low, the values of these derivatives are obtained by
only a few elementary operations. Taking into account the generality of the problem we
shall consider each computation of the values of any derivative of f−1 by (3.3) as a single
function evaluation. For similar reasons we shall also consider each computation of the
inverse interpolatory polynomials as a single function evaluation.

As it will follow from our reasonings, the methods having the optimal efficiency index
are generally the simple ones, using one or two interpolation nodes and the derivatives of
f−1 up to the second order.

Remark that in our case we can use for the efficiency index relation (2.28).
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5.1. Optimal Chebyshev-type methods. Taking n = 0 in (3.8) we obtain again
Chebyshev’s method, i.e.

xs+1 = xs −
[f−1(ys)]

′

1! f (xs) +
[f−1(ys)]

′′

2! f2 (xs) + · · ·+ (−1)m
[f−1(ys)]

(m)

m! fm (xs) ,(5.1)

s = 1, 2, . . . , where ys = f (xs) , the convergence order being m+ 1.
Observe that for passing from the s− th iteration step to the s+ 1, in method (5.1) the

following evaluations must be performed:

f (xs) , f
′ (xs) , . . . , f

(m) (xs) ,

i.e. m+ 1 values.
Then, by (3.3), we perform the following m function evaluations:

[
f−1 (ys)

]′
,
[
f−1 (ys)

]′′
, . . . ,

[
f−1 (ys)

](m)
,

where ys = f (xs) . Finally, for the right-hand expression of relation (5.1) we perform
another function evaluation, so that 2 (m+ 1) function evaluations must be performed.

By (2.28) the efficiency index of method (5.1) has the form

E (m) = (m+ 1)
1

2(m+1) , E : N→ R.

Considering the function h : (0,∞) → R, h (t) = t
1
2t , we observe that it attains its

maximum at t = e, so that the maximum value of E is attained for m = 2. We have
proved the following result:

Theorem 5.1. Among the Chebyshev-type iterative methods having the form (5.1), the
method with the highest efficiency index is the third order method, i.e.

xs+1 = xs −
f (xs)

f ′ (xs)
− 1

2

f ′′ (xs) f
2 (xs)

[f ′ (xs)]
3 , s = 0, 1, . . . , x0 ∈ I.(5.2)

In the following table some approximate values of E are listed:

m 1 2 3 4 5
E (m) 1.1892 1.2009 1.1892 1.1746 1.1610

Table 1.

We note that E (2) ' 1.2009.
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5.2. The efficiency of Lagrange-type methods. We shall study the methods of the
form (3.4), for which the convergence order verifies a’)–c’) from §2. Taking into account
Remark 2.1, it can be easily seen that we can use relation (2.28) for the efficiency index
of these methods. For each s+n+ 1 step s ≥ 2, in (3.4) in order to pass to the next step,
only f (xs+n+1) must be evaluated, the other values from (3.4) being already computed.
We have also another function evaluation in computing the right-hand side of relation
(3.4). So two function evaluations are needed. Taking into account that the convergence
order γn+1(1) of each method satisfies a’)–c’), and denoting by En+1 the corresponding
efficiency index, we have

En+1 = [γn+1 (1)]
1
2 , n = 1, 2, . . . ,

En < En+1, n = 2, 3, . . .

and

limEn =
√

2.

We have proved:

Theorem 5.2. For the class of iterative methods of the form (3.4) the efficiency index is
increasing with respect to the number of interpolation nodes, and we have the equality

limEn =
√

2.

5.3. Optimal Hermite-type particular methods. We shall study the class of iterative
methods of the form (3.11) for q > 1.

Taking into account Remark 2.2 it is clear that we can use again relation (2.28) for the
efficiency index.

If xn+j is an approximation for the solution x̄ obtained by (3.11) then for passing to
the following iteration step we need

f (xn+j) , f
′ (xn+j) , . . . , f

(q−1) (xn+j) ,

i.e. q function evaluations. Then, by (3.3) we must compute the derivatives of the inverse

function
[
f (yn+j)

−1
](i)

, i = 1, q − 1, where yn+j = f (xn+j) . Another function evaluation

is needed for computing the right-hand side of relation (3.11). We totally have 2q function
evaluations, the other values in (3.11) being already computed.

By a)–c) from Remark 2.2 and denoting by E (γn+1 (q) , q) the efficiency of methods, of
the form (3.11), we get:

(5.3) E (γn+1 (q) , q) > E (γn (q) , q) , n ≥ 1, q > 1;

(
max{q, n+1

n+2 (q + 1)}
) 1

2q
< E (γn+1 (q) , q) < (q + 1)

1
2q , n ≥ 1, q > 1.(5.4)
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For a fixed q, by (5.3) it follows that the efficiency index is an increasing function with
respect to n and

limE (γn+1 (q) , q) = (q + 1)
1
2q .

In the following we shall study E (γn (q) , q) as a function of q > 1 and n ≥ 2, q, n ∈ N.
By (5.4) we have

q
1
2q < E (γn+1 (q) , q) < (q + 1)

1
2q , for q ≥ n+ 1

and [
n+1
n+2 (q + 1)

] 1
2q
< E (γn+1 (q) , q) < (q + 1)

1
2q , for q < n+ 1.(5.5)

For q ≥ n + 1 consider the functions h : (0,+∞) → R, h (t) = t
1
2t and l : (0,+∞) → R,

l (t) = (t+ 1)
1
2t .

Some elementary considerations show that h and l satisfy lim
t↘0

h (t) = 0, lim
t→∞

h (t) =

1, h is increasing on (0, e) and decreasing in (0,+∞) and lim
t↘0

l (t) = e
1
2 , lim
t→∞

l (t) = 1, l

isdecreasing on (0,∞) . The maximum value of h is h (e) = e
1
2e .

Let t̄ be the solution of the equation

(5.6) (t+ 1)
1
2t − e

1
2e = 0.

It can be easily seen that t̄ exists and it is the unique solution for equation (5.6). For

t > t̄, l (t) > e
1
2e , so it is clear that the maximum value of E (γn+1 (q) , q) can be obtained

for q ≤ t̄, q ∈ N. It is easy to prove that t̄ ∈ (4, 5) and t̄ ' 4.76. Taking into account
the properties of h and l it is clear that in order to determine the greatest value of
E (γn+1 (q) , q) it will be sufficient to consider only those q ∈ N verifying 1 < q ≤ 4, and
n ≤ q − 1.

Table 2 contains the approximate values of the efficiency indexes corresponding to these
values of q and n.

q/n 1 2 3
2 1.2856
3 1.2487 1.2573
4 1.2175 1.2218 1.2226

Table 2.

The highest value for the efficiency index is hence obtained for q = 2 and n = 1. We
shall specify explicitly the method (3.11) for these values. For this purpose it is convenient
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to use the divided differences on multiple nodes. The following table contains the divided
differences for the inverse function f−1 on the nodes ys = f (xs) , ys+1 = f (xs+1) having
the multiplicity orders 2.

f (x) x
[
u, v; f−1

] [
u, v, ω; f−1

] [
u, v, ω, z; f−1

]
ys xs . . .
ys xs

[
ys, ys; f

−1
]

. .
ys+1 xs+1

[
ys, ys+1; f−1

] [
ys, ys, ys+1; f−1

]
.

ys+1 xs+1 ys+1, ys+1; f−1 ys, ys+1, ys+1; f−1
[
ys, ys, ys+1, ys+1; f−1

]
Table 3.

Here
[
ys, ys; f

−1
]

= 1
f ′(xs)

,
[
ys+1, ys+1; f−1

]
= 1

f ′(xs+1) ,
[
ys, ys+1; f−1

]
= 1

[xs,xs+1;f ] , and

the other divided differences are computed using the well-known recurrence formula.
In this case the method has the following form:

xs+2 = xs −
[
ys, ys; f

−1
]
ys +

[
ys, ys, ys+1; f−1

]
y2
s −

[
ys, ys, ys+1, ys+1; f−1

]
y2
sys+1,(5.7)

s = 1, 2, . . . , x1, x2 ∈ I.
The following theorem holds:

Theorem 5.3. Among the methods given by relation (3.11) for n ≥ 1 and q ≥ n + 1,
the method with the highest efficiency index is given by (5.7) and corresponds to the case
n = 1 and q = 2.

We shall analyze the case q < n+ 1. In this case the efficiency index verifies (5.5).
We also consider, besides the function l already defined, the function pn : (0,+∞) →

R, pn (t) +
[
n+1
n+2 (t+ 1)

] 1
2t
, which satisfies the following properties: lim

t↘0
pn (t) = 0,

lim
t→∞

pn (t) = 1 and

p′n (t) = 1
2

[
n+1
n+2 (t+ 1)

] 1
2t

t
t+1 − ln n+1

n+2 (t+ 1)

t2
.

In can be easily shown that the equation p′n (t) = 0 has a unique positive solution, denoted
by τn. We also have p′n (t) > 0 for t > τn and p′n (t) < 0 for t > τn, i.e. pn attains its
maximum value at t = τn.

We also have that pn+1 (τn) < 0, showing that τn+1 < τn for all n ≥ 2. But since
1 < q < n + 1 it follows that we must examine only the cases when n ≥ 2. Taking into
account that τn is the solution of the equation p′n (t) = 0 we get that the maximum of the

function pn is equal to e
1

2(τn+1) .
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Let vn : (0,+∞) → ∞, vn (t) = (t+ 1)
1
2t − e

1
2(τn+1) . An elementary reasoning leads us

to the following conclusions: vn is decreasing on (0,+∞); the equation vn (x) = 0 has a
unique solution µn, on the interval (0,+∞) and µn+1 < µn.

Since for t > µn we have pn (τn) > pn (t) , it follows that the values of n and q for which
E attains maximum must be searched in the set

(5.8) {q ∈ N : 2 ≤ q < min{n+ 1, µn}}.

Table 4 below contains the approximate values of the solutions τn and µn, the error being
smaller than 10−2.

n τn µn
2 1.3816 3.6711
3 1.1201 2.8679
4 0.9566 2.3871
5 0.8436 2.0649
6 0.7601 1.8327

Table 4.

Since q ∈ N, we shall be interested only in the integer parts of the solutions µn.
From the above table and by (5.8) we can see that E (γn+1 (q) , q) attains its maximum

at q = 2. Taking into account that E (γn (2) , 2) < E (γn+1 (2) , 2) for n ≥ 2 then we
observe that E is increasing with respect to n.

Hence the following theorem holds:

Theorem 5.4. Taking q < n + 1 in (3.11), the greatest values of the efficiency indexes
E (γn+1 (q) , q) , n > 2, are obtained for q = 2. In this case the efficiency index is increasing
with respect to n, and we have:

limE (γn (2) , 2) =
4
√

3.

5.4. Bounds for the efficiency index of the general Hermite-type methods. As it
was shown in Lemma 2.3, the method (3.8) have the highest convergence order when the
natural numbers a1, a2, . . . , an+1 verify the inequalities a1 ≤ a2 ≤ · · · an+1. More exactly
consider the equations:

(5.9) tn+1 − an+1t
n − antn−1 − · · · a2t− a1 = 0;

(5.10) tn+1 − a1t
n − a2t

n−1 − · · · − ant− an+1 = 0;
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(5.11) tn+1 = ai1t
n − ai2tn−1 − · · · − aint− ain+1 = 0,

where ai ≥ 0, i = 1, n+ 1,
n+1∑
i=1

ai > 1 and (i1, i2, . . . , in+1) is an arbitrary permutation of

the numbers 1, 2, . . . , n+ 1.
If a, b, c are the corresponding positive solutions for equations (5.9)–(5.11) and if a1 ≤

a2 ≤ · · · ≤ an+1, then 1 < b ≤ c ≤ a.
In the following we shall assume that the multiplicity orders of the interpolation nodes

of the Hermite polynomial which leads to method (3.8) satisfying

a1 ≤ a2 ≤ · · · ≤ an+1.

From the above assumptions, at each iteration step 2an+1 function evaluations must be
performed. Denoting by E (δn+1) the efficiency index of (3.8) and taking into account
Lemma 2.5, we get:

Theorem 5.5. If a1 ≤ a2 ≤ · · · ≤ an+1 and δn+1 is the positive solution of (3.10) then
the efficiency index of the method (3.8) satisfies

(5.12) (m+ 1)

m+1

2[m(n+1)+P ′n+1(1)]an+1 ≤ E (δn+1) ≤ (1 + an+1)
1

2an+1 .

Taking into account the properties of the function l given in (5.3) and that an+1 > 1, it

follows that the expression (1 + an+1)
1

2an+1 attains its maximum value for an+1 = 2. Taking

account the inequalities from (5.12) the fact that (1 + an+1)
1

2an+1 attains its maximum
value at an+1 = 2 do not imply the maximality of E (δn+1) .

5.5. Optimal Steffensen-type methods. In the following we shall determine the op-
timal efficiency index for the class of iterative methods given by (3.27). First, we ob-
serve that at each iteration step s in (3.27), we must compute n values of the function
ϕ, us+i = ϕ (us+i−1) , i = 1, n, us = xs being an already computed approximation of the
solution x̄.

We then compute ȳs+i = f (us+i) , i = 0, n, i.e. n+ 1 function evaluations. In order to
compute the successive values of f and f−1 at the nodes us+i, i = 0, n we need 2 (m− n)
function evaluations. Finally, there is another function evaluation in computing the right-
hand side of (3.27). Totally there are 2 (m+ 1) function evaluations.

If we denote by E (m) the efficiency index of (3.27). then

E (m) = (m+ 1)
1

2(m+1) ,

which, taking into account the results from §5.1, attains its maximum at m = 2.

Remark 5.1. If we take ai ≥ 1 in (3.27) the method (3.26) is a particular case of (3.27),
since for a1 = a2 = . . . = an+1 = 1 in (3.27) we get (3.26). �
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By the above remark, if m = 2 then from a1 + a2 + · · ·+ an+1 = 3, it follows n ≤ 2.
Hence we have to analyze the following cases:

i) a1 + a2 + a3 = 3, i.e. a1 = a2 = a3 = 1;
ii) a1 + a2 = 3, i.e. a1 = 1, a2 = 2 or a1 = 2; a2 = 1;
iii) a1 = 3.

i) For a1 = a2 = a3 = 1, by (3.26) we get the following method:

xk+1 = xk −
f (xk)

[xk, ϕ (xk) ; f ]
− [xk, ϕ (xk) , ϕ (ϕ (xk)) ; f ] f (xk) f (ϕ (xk))

[xk, ϕ (xk; f)] [xk, ϕ, (ϕ (xk)) ; f ] [ϕ (xk) , ϕ (ϕ (xk)) ; f ]
,

(5.13)

k = 0, 1, . . . , x0 ∈ I.
ii) For a1 = 2, a2 = 1 we get the method

xk+1 = xk −
f (xk)

f ′ (xk)
− [xk, xk, ϕ (xk) ; f ] f2 (xk)

f ′ (xk) [xk, ϕ (xk) ; f ]2
, k = 0, 1, . . . , x0 ∈ I(5.14)

and for a1 = 1, a2 = 2 we get

xk+1 = xk −
f (xk)

[xk, ϕ (xk) ; f ]
− [xk, ϕ (xk) , ϕ (xk) ; f ] f (xk) f (ϕ (xk))

[xk, ϕ (xk) ; f ]2 f ′ (ϕ, xk)
, k = 0, 1, . . . , x0 ∈ I

(5.15)

iii) For a1 = 3 we get method (5.1), i.e. the Chebyshev’s methods of third order.
We have proved the following theorem:

Theorem 5.6. Among Steffensen-type iterative methods, those given by methods (5.13)–
(5.14) have the optimal efficiency index.

Remark 5.2. In the particular case when a1 = a2 = . . . = an+1 = q the condition imposed
to obtain an optimal method leads us to two possibilities, namely: q = 3 and n = 0, i.e.
method (5.2) or q = 1 and n = 2, i.e. method (5.13). �
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Numér. Théor. Approx., 24 (1995) no. 1, pp. 201–214.
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