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1. INTRODUCTION 

Let E be a real Banach space, K c E a cone, i.e. K is closed convex such that AK C K for all 
,l L 0 and Kf7 (-K) = (01, andletf: K, = {x E K; 1x1 _( r) -+ E(r > 0) be compact or at least 
a-condensing. The following results on the fixed points of f in K, or in a shell K,,r = 
(x E K, p I 1x1 5 r) (0 c p < r) were established by Deimling [l] under the assumption thatf 
is weakly inward on the conical boundary of K,, i.e. 

XEaK, 1x1 5 r, x* E K*, x*(x) = 0 imply x*(f(x)) 2 0. (1.1) 

THEOREM 1.1 [ 11. If f: K, + E is a-condensing and satisfies (1.1) and 

on 1x1 = r for all I > 1 (1.2) 

then f has a fixed point in K,. 

THEOREM 1.2 [ 11. If f: K,. + E is a-condensing and satisfies (1. l), (1.2) and 

x - f(x) f le on 1x1 = p for all rZ > 0 

for some p E (0, r) and e E K\(O), then f has a fixed point in Kp,r. 

(1.3) 

THEOREM 1.3 [l]. If K, is not compact, f: K, + E is compact and satisfies (1. l), (1.2) and 

f(x) f Ax on 1x1 = p for A E (0, 1) and ,‘;=f,lf(~~l > 0 (1.4) X 

for some p E (0, r), then f has a fixed point in Kp,r. 
Clearly, condition (1 .l) is satisfied if f maps K, into K, and in this case it is known (see 

12, Section 201) that such results are consequences of the properties of the topological index. As 
we shall see, in this case these results can be derived as well from the topological transversality 
theorem of Granas (see [3]) together with the Schauder-Sadovskii fixed point theorem, without 
using index theory. 

The purpose of this note is to show that under assumption (1.1) such results can still be 
derived in this way, but this time from the generalized topological transversality theorem given 
in [4] together with a Schauder-Sadovskii-type theorem for weakly inward maps. Briefly, the 
existence of a fixed point for f will be a consequence of the “essentiality” of I - f (I being the 
identity map) in a certain class of maps. By this method, we shall give new proofs for 
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theorems 1.1, 1.2 and 1.3 which are closer to the proofs (based on index theory) of the 
corresponding classical results than those in [l]. Moreover, by our method we show that such 
results as theorems 1.2 and 1.3 remain true if we replace the balls B,,(O) and B,(O) by any open 
bounded U, , U such that u, c U and 0 E U, . 

2. PRELIMINARIES 

(1) The Sadovskii-type fixed point theorem for weakly inward maps 

We denote by CY the Kuratowski measure of noncompactness. A map f: D + E, D c E, is 
called o-condensing if it is continuous bounded and a(f(il4)) < cr(M) for each bounded M c D 
with cr(M) > 0. 

A first tool in our proofs will be the following theorem. 

THEOREM 2.1 [2, theorem 18.31. Let E be a Banach space, D c E closed bounded convex, 
f: D -+ E a-condensing and weakly inward, i.e. 

f(x) E JD(x) for all x E D, (2.1) 

where J,(x) = lx + A(y - x); ,l 1 0, y E Dj. Then f has a fixed point. 

Recall that in the case where D is a cone, condition (2.1) becomes 

x E aK, x*EK*, x*(x) = 0 imply x*(f(x)) 2 0, 

where K* = (x* E E*; x*(x) L 0 on K) is the dual cone of K. 
Clearly, condition (2.1) holds if f(D) c D. In this case theorem 2.1 is just the Sadovskii fixed 

point theorem. 

(2) Generalized topological transversality 

Let X be a normal topological space, A a proper closed subset of X, Y a set and B a proper 
subset of Y. Consider a nonvoid class of maps 

Q. = @(X, Y) c (F: x + Y, F-‘(B) n A = @] 

whose elements are called admissible maps and let 

d: (F-‘(B); F E @2(X, Y)) U (01 --t A 

be any map with values in a nonempty set A. Denote 0 = d(0). An admissible map F is said 
to be d-essential if 

d(F-l(B)) = d(F’-l(B)) # 0 

for any admissible map F’ having the same restriction to A as F, i.e. FIA = F'IA . Otherwise, 
F is said to be d-inessential. Also consider an equivalence relation - on @ such that the follow- 
ing two conditions hold: 

(A) if FIA = F’I, then F - F’; 
(H) if F - F’ then there exists N: [0, l] x X -, Y such that cl(U(H(t, .)-l(B); t E [0, 11)) n 

A = 0, H(1, *) = F, H(0, *) = F’ and H@(s), *) E a for any continuous u: X + [0, l] 
satisfying q(x) = 1 for all x E A. 

A second tool in our proofs will be the following theorem. 
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THEOREM 2.2 [4]. If F and F’ are two admissible maps such that F - F’, then F and F’ are both 
d-essential or both d-inessential, and in the first case one has 

d(F-l(B)) = d(F’-l(B)) # 0. (2.2) 

When we deal only with the existence of solutions to the inclusion F(x) E B and we do not 
have to “measure” the set F-‘(B) of all solutions, it is sufficient to take as d the simplest 
indicator function 

d(0) = 0 and d(M) = 1 for M # 0, (2.3) 

taking A = 10, 1) and 8 = 0. In the case where d is given by (2.3), we shortly speak about 
essentiality instead of d-essentiality (see [5]). This will be the case throughout the paper except 
in remarks 3.5 and 3.6. 

As an example, let C C E be closed convex, U c C be bounded open in C, 0 E C and u and 
aU denote the closure and the boundary of U in C. Then, if we set: X = 0, A = au, Y = E, 

B = (01, 

@ = a;,(& E) = (F = I - g; g: u + C is a-condensing and x # g(x) for x E JU) (2.4) 

and F = I - g - F’ = Z - g’ if and only if 

there exists h: [0, I] x f’ --t C a-condensing such that 
h(0, .) = g’, h(1, a) = g and x # h(t, x) for t E [0, l] and x E au; 

then theorem 2.2 (with d given by (2.3)) reduces to the transversality theorem of Granas (see [3]) 
adapted for a-condensing maps. Also, the map I is essential in the class (2.4) as follows by the 
Sadovskii fixed point theorem. 

3. RESULTS 

We start with a Leray-Schauder-type continuation theorem which extends theorem 1.1. 

THEOREM 3.1. Let U c E be open bounded, x,, E U n K = Ku and h: [0, l] x KU -+ E 
a-condensing such that h(0, x) = x0 for all x E KU and for each t E [0, l] the map 
g = h(t, a) satisfies 

XE UnaK, x* E K*, x*(x) = 0 imply x*(g(x)) 2 0 

and 

g(x) # x for all x E K fl NJ. 

Then there exists x E Ku such that h(1, x) = x. 

(3.1) 

(3.2) 

Proof. We shall apply theorem 2.2 where: X = KU, A = K fl NJ, Y = E, B = (01, 

a = &-,au(&~,E) 

= (F = I - g; g: I?” -+ E is a-condensing and satisfies (3.1) and(3.2)) (3.3) 
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and F = I - g - F’ = I - g’ if and only if 

there is h: [0, l] x Kr, -+ E a-condensing such that 
h(0, *) = g’, h(1, .) = g and h(t, *) satisfies (3.1), (3.2) for each t E [0, 11. (3.4) 

It is easy to see that conditions (A) and (H) are satisfied for H(t, .) = Z - h(t, *). Also, 
F = Z - h(1, -) - F’ = I - x0. Hence in order to prove the existence of a zero for F it is 
sufficient to prove that F’ = Z - x0 is essential or, equivalently, that any a-condensing map 
g: Ku --* E which satisfies (3.1) and equals x0 on K n W, has a fixed point. Indeed, denote 
g’: KR --* E, where R > 0 is such that U c (x E E; 1x1 < RJ, the map defined by g(x) = g(x) for 
x E K, and g(x) = x0 otherwise. Clearly, S is o-condensing and weakly inward on KR . Thus, by 
theorem 2.1, &! has a fixed point in KR which, obviously, is a fixed point of g. The proof is 
complete. 

Remark 3.1. Theorem 1 .l follows from theorem 3.1 if we take: U = (x E E; 1x1 < r], x0 = 0 
and h(t, -) = tf. Consequently, we get a new proof of theorem 1.1 which is essentially different 
from the original one in [l]. 

Next we shall give a common generalization to theorems 1.2 and 1.3. 

THEOREM 3.2. Let Ur , U be open bounded such that Ur c U c E, x0 E U, fl K, h: [0, l] x 
Ku -+ E be as in theorem 3.1, and let h, : [0, l] x Ku1 + E a-condensing satisfying (3.1) and 
(3.2) (with U, instead of U). Suppose also that h,(l, x) = h(1, x) for all x E K n aU, and 
hr(0, x) # x for all x E Ku,. Then there exists x E K fl (U\uJ such that h(1, x) = x. 

Proof. Additionally to the class a in (3.3), let us consider a, = @.gnarr,(Ku,, E) endowed 
with the equivalence relation -r defined by (3.4) with U, instead of U, and also the following 
class of maps from K n (o\U,) into E 

=(I-g;g:R,~Eisa-condensing,satisfies(3.1)andg(x)#xforx~Kn(aUUaU,)j. 
(3.5) 

Now, by theorem 3.1, the map F = I - h(1, -) is essential in a. On the other hand, by the same 
theorem, since F -1 I - h,(O, .) and hi(0, x) # x for all x E Ku,, we have that F is inessential 
in a,. Consequently, F is essential in a,. Therefore, h(1, -) has a fixed point in K n (U\oJ. 

A first consequence of theorem 3.2 is an extension of theorem 1.2. 

COROLLARY 3.1. Let U, , U be open bounded such that U, C U C E, x0 E U, fl K and 
f: RU -+ E a-condensing satisfying (3. l), 

f(x) - x0 # W - x0) f0rxEKnau and A>1 (3.6) 

and 

x - f(x) # Ae for x E Kn au, and I > 0, (3.7) 

for some e E K\(O). Then f has a fixed point in K fl (o\U,). 
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Proof. Let us suppose f(x) # x for x E W U iW, . Then we may apply theorem 3.2, where 
h(t, *) = (1 - t)xc + tf and h,(t, *) = f + (1 - t)l2e, with A > 0 large enough that 
f(x) + le # x for all x E &, . 

Another consequence of theorem 3.2 is the following extension of theorem 1.3 and of 
theorem 20.2 in [2]. 

COROLLARY 3.2. Let Vi, U be open bounded such that 0, c U c E, x0 E U, fl K and 
f: i’?” + E compact satisfying (3.1), (3.6) and 

f(x) # Ax for x E K n NJ,, 1 E (0, 1). (3.8) 

Assume that there exists e E K\ (0) such that -Ae $ f(K fl NJ,) for all L 2 0. Thenfhas a fixed 
point in K fl (o\U,). 

Proof. Let us suppose f(x) # x for x E Xl U XJ, . Then we may apply theorem 3.2 where 
h(t, *) = (1 - t)x, + tf and h,(t, *) = f + pI + (1 - 2t)Le for 0 5 t 5 l/2 and h,(t, -) = 
f + 2(1 - t)plfor l/2 I t I 1, with some suitablep E [0, 1) and 1 > 0. First we choose L > 0 
such that hi(0, x) = f(x) + ,ux + IZe # x for all x E &_,I and any p E [0, 11. Next we observe 
that, since f is compact and pI (0 ‘: p < 1) is a contraction, we have that hi is a-condensing. 
Clearly, h,(t, -) satisfies (3.1) (with U, instead of U). As regards condition (3.2), observe that 
for t E [l/2, I], by (3.8), we trivially have h,(t, x) # x on K n au,, while for t E [0, l/2) the 
condition hl(t, x) # x or equivalently, -(1 - 2t)Ae .# f(x) - (1 - &x, is satisfied on K fl NJ, 
if we choose ,u E [0, 1) close enough to 1. 

Remark 3.2. The conditions 

XEp~au 1 f(x)/ > 0 and K1 is not compact 
1 

are sufficient for the assumption “there exists e E K\(O) such that -2e $ f(K fl Xl,) for 
A 2 0” to be satisfied (see [I]). In case f&) c K, this assumption is equivalent 

i$nfarr If(x)1 > 0. 
1 

all 
to 

Remark 3.3. The tricks from [I] (see also [6]) can be used to show the inessentiality of I - fin 
the class a, = @inav (&, E) (where U = B,(O), U, = B,(O)) directly, starting from the 
definition, without us&g homotopy (continuation) methods. Because of their geometrical 
rather than topological nature, those tricks do not work for general open bounded sets U, , U 
(see [6, remark 21). 

Remark 3.4. In the classical case, i.e. f(Ku) C K, we may require that all maps in classes (3.3), 
(3.5) and in the definitions of relations - and -i , take values into K. Then, the main tools in 
our proofs are the classical topological transversality theorem of Granas and the fixed point 
theorem of Sadovskii. Therefore, we get new proofs of the classical results without using index 
theory and different than those in [l]. 
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Remark 3.5. The proofs based on index theory for the classical results can be found too from 
our proofs if instead of the notion “essential” we use “d-essential” with d defined by 

d(F_‘(O)) = i(f, n, K) (3.9) 

where Q C K is open bounded, F = Z - f, f: d --t K is o-condensing with f(x) # x on aQ and 
i denotes the fixed point index. Then, the d-essentiality of F means that i(f, Cl, K) # 0 (= 0) and 
theorem 2.2 expresses the homotopy invariance of the index. 

Remark 3.6. In case E is reflexive and the maps are supposed completely continuous, we may 
also use (3.9), where i(f, Sz, K) is the fixed point index for weakly inward maps recently defined 
in [7]. 

Acknowledgement-The author thanks the referee for his remarks which have led to an improved presentation of the 
paper. 
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