A MÖNCH TYPE GENERALIZATION OF THE EILENBERG-MONTGOMERY FIXED POINT THEOREM

Radu Precup

Department of Applied Mathematics "Babeş-Bolyai" University Cluj-Napoca, Romania

E-mail: r.precup@math.ubbcluj.ro

Abstract. We establish a Mönch type generalization of the Eilenberg-Montgomery fixed point theorem for multi-valued maps with acyclic values.

Key words: Fixed point, acyclic set, multi-valued map **AMS Subject classification**: 54H25, 47H10, 55M20

In [1] Eilenberg and Montgomery established the following extension of the Bohnenblust-Karlin fixed point theorem for multi-valued maps.

Theorem 1 Let Ξ be an acyclic, absolute neighborhood retract, Θ a compact metric space, $r:\Theta\to\Xi$ a continuous single valued map and $T:\Xi\to 2^\Theta\setminus\{\emptyset\}$ an upper semicontinuous map such that all the sets T(x) are acyclic for $x\in\Xi$. Then the combined multi-valued map $rT:\Xi\to 2^\Xi$ has a fixed point.

An extension of this theorem for condensing (noncompact) maps rT is due to Fitzpatrick and Petryshyn [2].

The aim of this note is to prove the following generalization of the Eilenberg-Montgomery theorem.

Theorem 2 Let D be a closed, convex subset of a Banach space X, Y a metric space, $T:D\to 2^Y\setminus\{\emptyset\}$ a map with acyclic values, and $r:Y\to D$ continuous. Assume graph (T) is closed, T maps compact sets into relatively compact sets and that for some $x_0\in D$ one has

$$\left. \begin{array}{l} M \subset D, \ M = conv \left(\left\{ x_0 \right\} \cup rT \left(M \right) \right) \\ and \ \overline{M} = \overline{C} \ \ with \ C \subset M, \ C \ \ countable \end{array} \right\} \Longrightarrow \overline{M} \ \ compact. \end{array} \right. \tag{1}$$

Then there exists $x \in D$ with $x \in rT(x)$.

Proof. First note since r is continuous, the map N := rT also has a closed graph and maps compact sets into relatively compact sets.

Following the steps (a) and (b) of the proof of Theorem 3.1 in [4], we find a convex set $M \subset D$ with $M = \operatorname{conv}(\{x_0\} \cup rT(M))$ and $K := \overline{M}$ compact. Next, instead of steps (c)-(d) of the above mentioned proof, we follow:

- (c*) Proof of inclusion $rT(K) \subset K$. Let $\varepsilon > 0$ be fixed. According to Theorem 1.2.23 in [3], rT is upper semicontinuous. Consequently, for each $x \in M$ there exists an open neighborhood V_x of x such that $rT(y) \subset rT(x) + B_{\varepsilon}(0)$ for all $y \in V_x$. Since for $x \in M$, one has $rT(x) \subset K$, it follows that $rT(y) \subset K_{\varepsilon} := K + B_{\varepsilon}(0)$ for every $y \in V_x$. M being dense in K, we have that $\{V_x : x \in M\}$ is a cover of K. Consequently, $rT(K) \subset K_{\varepsilon}$. Hence $rT(K) \subset \bigcap_{\varepsilon} K_{\varepsilon} = K$.
- (d*) Application of the Eilenberg-Montgomery theorem. Since every compact and convex subset of a Banach space is an absolute neighborhood retract and is acyclic, we may apply Theorem 1 to: $\Xi := K$ and $\Theta := T(K)$.

Remarks. (a) Under the assumptions of Theorem 2 the values of $\,T\,$ are nonempty, compact and acyclic.

(b) Theorem 2 is in particular true if $T:D\to 2^Y$ has nonempty, compact and acyclic values and T is upper semicontinuous.

The next result is the continuation type version of Theorem 2.

Theorem 3 Let K be a closed, convex subset of a Banach space X, U a convex, relatively open subset of K, Y a metric space, $T: \overline{U} \to 2^Y \setminus \{\emptyset\}$ with acyclic values and $r: Y \to K$ continuous. Assume graph (T) is closed, T maps compact sets into relatively compact sets and that for some $x_0 \in U$, the following two conditions are satisfied:

$$x \notin (1 - \lambda) x_0 + \lambda r T(x) \tag{3}$$

for all $x \in \overline{U} \setminus U$, $\lambda \in (0,1)$. Then there exists $x \in \overline{U}$ with $x \in rT(x)$.

Proof. Let $D = \overline{\operatorname{conv}}\left(\{x_0\} \cup rT\left(\overline{U}\right)\right)$. Clearly, $x_0 \in D \subset K$. Let $P: K \to \overline{U}$ be given by

$$P(x) = \begin{cases} x \text{ for } x \in \overline{U} \\ \overline{x} \text{ for } x \in K \setminus \overline{U} \end{cases}$$

Here $\overline{x} = (1 - \lambda) x_0 + \lambda x \in \overline{U} \setminus U$, $\lambda \in (0, 1)$. It is easy to see that P is continuous. Let $\widetilde{T}: D \to 2^Y$, be given by $\widetilde{T}(x) = T(P(x))$. Clearly its values are nonempty and acyclic. Also, it is easily seen that graph (\widetilde{T}) is closed and \widetilde{T} maps compact sets into relatively compact sets. Next we check (1) for $r\widetilde{T}$. Let $M \subset D$ be such that $M = \text{conv}(\{x_0\} \cup r\widetilde{T}(M))$ and $\overline{M} = \overline{C}$ for some countable set $C \subset M$. Since

$$P(M) \subset \operatorname{conv}(\{x_0\} \cup M) \subset \operatorname{conv}(\{x_0\} \cup r\widetilde{T}(M))$$

= $\operatorname{conv}(\{x_0\} \cup rTP(M)),$ (4)

A Mönch Type Generalization of the Eilenberg-Montgomery Fixed Point Theorem 71

$$\overline{P\left(M\right)}=\overline{P\left(C\right)}$$
 , $P\left(C\right)\subset P\left(M\right)$ and $P\left(C\right)$ is countable,

from (2) we deduce that P(M) is relatively compact. Then $r\widetilde{T}(M) = rTP(M)$ is relatively compact and Mazur's lemma implies that \overline{M} is compact. Thus (1) holds for $r\widetilde{T}$.

Now we apply Theorem 2 to deduce that there exists an $x \in D \subset \overline{U}$ with $x \in r\widetilde{T}(x)$. We claim that $x \in D \cap \overline{U}$. Assume the contrary, that is $x \in D \setminus \overline{U}$. Then $x \in rT(\overline{x})$, where $\overline{x} = (1 - \lambda) x_0 + \lambda x \in \overline{U} \setminus U$, $\lambda \in (0, 1)$. Then $x = (1/\lambda) \overline{x} + (1 - 1/\lambda) x_0 \in rT(\overline{x})$. Hence $\overline{x} \in (1 - \lambda) x_0 + \lambda rT(\overline{x})$, which contradicts (3). Thus $x \in D \cap \overline{U}$ and so $x \in rT(x)$.

References

- [1] S. Eilenberg and D. Montgomery, Fixed point theorems for multivalued transformations, *Amer. J. Math.* **68** (1946), 214-222.
- [2] P.M. Fitzpatrick and W.V. Petryshyn, Fixed point theorems for multivalued noncompact acyclic mappings, *Pacific J. Math.* **54** (1974), 17-23.
- [3] S. Hu and N.S. Papageorgiou, "Handbook of Multivalued Analysis, Vol. I: Theory", Kluwer Academic Publishers, Dordrecht-Boston-London, 1997.
- [4] D. O'Regan and R. Precup, Fixed point theorems for set-valued maps and existence principles for integral inclusions, *J. Math. Anal. Appl.* **245** (2000), 594-612.