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Abstract

The paper deals with existence, uniqueness and iterative approximation of solutions to boundary value problems for
second-order differential equations on bounded sets in a Banach space. The tools are an extension of Granas’ continuation
principle for contraction mappings to spaces endowed with two metrics and a computational procedure accompanying the
continuation principle. ©) 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction
This paper deals with existence, uniqueness and iterative approximation of solutions to problems
of the form

u' = f(tuu'), tel=][0,1], (1.1)

Vitu)=by, Va(u)=0b, (1.2)

in a Banach space E, where b,,b, € E, V},V, are linear continuous mappings from C!(/;E) into E
and f is defined on a bounded subset of I x EZ.

Boundary value problems of this form with particular boundary conditions occur frequently when
modelling real processes and have been studied, with varying degrees of generality, by many authors.
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For recent results and references see the paper by Lee and O’Regan [5] which was the first motivation
of the present article.

The approach to (1.1)—(1.2) is a fixed-point one. We express (1.1)—(1.2) as a fixed point problem
for a certain mapping A from a subset of C!(/; E) into C'(I; E). As usually, if E is finite dimensional
and f is a Carathéodory function, then, by the Ascoli-Arzela theorem, A4 is completely continuous
and under some additional assumptions guaranteeing the a priori boundedness of solutions, the Leray—
Schauder continuation principle for compact mappings applies. When E is infinite dimensional,
the complete continuity of A fails. Then, assuming that f satisfies a Lipschitz condition we can
arrange that 4 become a contraction mapping and so that the continuation principle for contractions
applies. Also, since any contraction mapping on a subset of a Banach space is a set contraction in
Darbo’s sense, the continuation principle for set contractions equally applies. However, we can take
advantage from the application of the first one in the same way that we obtain more information from
Banach contraction principle than from Darbo fixed point theorem, namely the iterative procedure for
approximating the unique fixed point. In this respect, in Section 2, we give a discrete version of the
Granas continuation principle for contractions on metric spaces [2]. Notice that an elementary proof
of a continuation principle for contractions on closed subsets of a Banach space is due to Gatica and
Kirk [1]. Discrete continuation methods for solving nonlinear operator equations on finite or infinite
dimensional spaces have been also described in connection to particular numerical procedures. For
example, in [9], a discrete continuation method is presented in combination with Newton’s method.

In addition, in our version of the continuation principle for contraction mappings, the Lipschitz
condition is asked with respect to a noncomplete metric provided that suitable topological compatibil-
ities between homotopy, the noncomplete metric and a complete metric hold. Here, the unusual term
of a complete (resp., noncomplete) metric d on a set X is used to show that the metric space (X,d)
is complete (resp., incomplete). The idea of using two metrics, one complete and other noncomplete,
is patterned from Maia [6], where a version of Banach contraction principle is given for spaces en-
dowed with two metrics. In studying (1.1)—(1.2), our continuation principle makes possible, even
if f is defined only on a bounded subset of I x E?, to use together a (complete) sup-norm and an
(noncomplete) LP-norm on C'(/; E) in order that the contraction condition be relaxed. The technique
has already been used to integral and differential equations (see Rus [12] and Petracovici [10]) but
only together with a fixed point theorem for self-mappings of a metric space whose application to
(1.1)—(1.2) requires that f be defined on the entire set / x E>.

2. The iterative discrete continuation principle in a space with two metrics

Given a space X endowed with two metrics d and 9, in order to precise the metric with respect
to which a topological notion is considered, we shall indicate the corresponding metric in front of
that notion. So, we shall speak about d-Cauchy and §-Cauchy sequences, d-open, d-open, d-closed,
o-closed sets, d-closure, d-closure, d-interior and d-neighborhood. Also, we shall say that 4: D — X
is (d, d)-continuous (resp., (9, d)-continuous), where D C X or D C X x[0, 1], if 4 is continuous from
D into (X, 0), with respect to the topology induced by d (resp., 6) on D. The meaning of the notion
of an uniformly (d, d)-continuous mapping will be similar.

First we state a slight extension of a result by Maia [6] (see also [11]).
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Lemma 2.1. Let (X,d) be a metric space and 6 a complete metric on X. Assume that for A : X —
X the following conditions are satisfied.
(a) there is 1 € [0,1) such that

d(A(x),A(y))<ld(x,y) forallx,y € X, (2.1)

(b) A is uniformly (d,d)-continuous;,
(c) A4 is (0, 90)-continuous.
Then A has a unique fixed point x*. Moreover, for any x € X, we have

k

d(A*(x), x <7 ! —d(eA@) (ke N) (2.2)

and
(A (x),x*) — 0 as k — oo. (2.3)

Proof. Let x € X. Denote x; = A(x), k € N. By (2.1), (x;) is d-Cauchy. Next, from d(x;,x;) =
0(A(xx—1),A(x;—1)) and (b), we deduce that (x;) is 6-Cauchy too. Since ¢ is a complete metric on X,
it follows that there exists x* € X with d(x;,x*) — 0 as k — oo. Then, by (c), (4(x;_1),A(x*)) — 0
as k — oo. But 0(4(x;_1),A(x*)) = 0(x;,A(x*)). Hence A(x*) =x*. By (2.1), x* is the unique fixed
point of 4 and so (2.3) is true for any x € X. Again by (2.1),

d(xp, x*) = d(A*(x), A" (x* ) < lFd(x,x*) - 0 as k — oo. 2.4)

Finally, (2.2) follows by a standard argument.

Second proof. Let (X, d) be the completion of (X,d) (see [4] for example). The elements of X
are classes of d-Cauchy sequences in X Wthh are equivalent in the following sense: (xk) ~ ( yk)
if d(xk,yk) — 0 as k — oo. Denote by (xk) the class of the sequence (x;). If &,y € X, é= (xk)
and n= (yk) then one sets d(&,n) = limy_ .. d(x;, y4). Now we define the extension 4 of 4 to X
by A((xk)) (A(xk)) The definition is correct because, by (2.1), (4(x;)) is d-Cauchy whenever (x;)
is. Clearly 4 is a contraction mapping on X and so, by Banach fixed point theorem, there exists
¢ e X with A(&)=¢. Let é = (/z\k) Then (z;) ~ (A(z;)). Since (z;) is d-Cauchy, by (b), it follows
that (A(z;)) is 6-Cauchy and so J-convergent to some x* € X. Then, by (c), (4%(z;)) is d-convergent
to A(x*). By (zx) ~ (A(zx)), that is d(z;,A(z;)) — 0, and (b), we obtain that 5(4(z;),4*(z;)) — O.
Consequently, o(x*,4(x*))=0 and so 4(x*)=x*. Finally, for any x € X, we have (2.4) and, by (b),
(A (x), A(x*)) = 6(A* ! (x),x*) — 0 too. [

The result in [6] corresponds to the case where § <d, when (b) is a consequence of (a).

The second proof shows that Maia’s theorem in X is Banach’s theorem in the completion X but
with the fixed point in X.

Before going to state the main result of this section, we introduce the following notation. For a
mapping H : D x [0,1] — X, where D C X, and any A € [0, 1], we denote by H, the mapping H(., 1)
from D into X.
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Theorem 2.2. Let (X,d) be a metric space and 6 a complete metric on X. Let D C X be d-closed
and U a d-open set of X with U CD. Let H : Dx[0,1] — X and assume that the following condi-
tions are satisfied.
(i) there is 1 € [0,1) such that
d(H(xv )“)5H(y’ )“)) < ld(x, y)
for all x,y € D and 4 € [0,1];
(ii) H(x,A) # x for all x € D\U and 1 € [0,1];
(iii) H is uniformly (d,d)-continuous;
(iv) H is (9,0)-continuous;
(v) H(x, 1) is d-continuous in 2, uniformly for x € U, i.e. for each ¢ >0 and A € [0, 1], there is
p >0 such that d(H(x,1),H(x, 1)) < & whenever x € U and |1 — u| < p.

In addition suppose that Hy has a fixed point. Then, for each 1 € [0,1], there exists a unique
fixed point x(A) of H;,. Moreover, x(1) depends d-continuously on A and there exists 0 < r<oo,
integers m,ny,na,...,Ny_ and numbers 0 < Ay < lo < -+ < Ap_1 < An=1 such that for any xy € X
satisfying d(xo,x(0))<r, the sequences (x;;)i>0, j =1,2,...,m,

X1,0 = Xo,
X k+1 :H)._,(xj,k)a k=0,1,...,
Xit1,0 :xj,,,_,, j:1,2,...,m— 1,

are well defined and satisfy
k

/
d(x,-,k,X(ij)Kmd(x,-,o,HM(xj,o)) (keN) (2.5)
and

0(xj 1, x(4;)) — 0 as k — oc. (2.6)

Remark 2.3. Obviously, we have
p=HE(H (. (H (%)) (k€ N),

d(x; x,x(4;)) — 0 and 6(x; 4, x(4;)) — 0 as k — oo (j=1,2,...,m). In particular, for j=m, (X, i )r=>0
is a sequence of successive approximations of x(1), with respect to both metrics d and 0.

Proof. (1) First we prove that for each A € [0,1], H; has a fixed point. Let
A={A€[0,1]; H(x, 1) =x for some x € U}.

We have 0 € A by the assumption that H, has a fixed point. Hence A is nonempty. We will show
that A is both closed and open in [0, 1] and so, by the connectedness of [0,1], 4 =0, 1].
To prove that A is closed, let /; € A with 4, — 1 as k — oo. Since A € A, there is x; € U so
that H(x, 4x) = x;. Then, by (i), we obtain
d(xi,x;) = d(H (xi, 4 ), H(xj, A7) <d(H (xi, 4 ), H (X, 1))
+d(H(xk= }V)aH(x]" j‘)) + d(H(x/’ j")al{('x_ﬁ /11))
< d(H (X, 240), H(x, ) + 1d (xi, ;) + d(H (x;, ), H(x;, 4;)).
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It follows that

(3 < - AH G5, 24, H i, ) + d(H 5, 20, H G 1))

This, by (v), it shows that (x; ) is d-Cauchy. Further, from o(xy,x;)= 6(H (xy, ), H(x;,4;)) and (iii),
we see that (x;) is also J-Cauchy. Thus, by the completeness of J, there is x € X with d(x;,x) — 0
as k — oo. Since x; € D and D is d-closed, we have x € D too. Then o(x;, H(x, 1)) — d(x, H(x, 1))
and, by (iv), o(xx, H(x, 1)) = 6(H (x;, A ), H(x, 4)) — 0. Hence d(x, H(x,4)) =0, that is H(x,1) = x.
By (ii), x € U and so 4 € A.

To prove that A is open in [0,1], let 4 € A and z € U such that H(z, u) =z. Since U is d-open,
there exists p > 0 such that

d(x,z)<p 1implies x € U.
Also, by (v), there is n =#(p) > 0 such that
d(z,H(z,A))=d(H(z,pn),H(z, A))<(1 = D)p 2.7)
for |4 — p| <#n. Consequently,
d(z,H(x,2)) < d(z,H(z,1)) +d(H(z,4),H(x, 1))
< (I —=Dp+ld(zx)<p,

whenever d(z,x)<p and |1 — u|<n. This shows that for |1 — u|<#, H; sends B into itself, where
B={x € X; d(z,x)<p}. Let B be the 5-closure of B. Since BC U CD and D is é-closed, we
also have B C D. Using (iv), it is easily seen that H,(B) C B for |/ — u|<n. Now we may apply
Lemma 2.1 to 4 = H,. Consequently, there is x(1) € BC D a fixed point of H; for |1 — u|<n. This
shows that u is an interior point of A and hence A is open in [0, 1]. Notice that for every x € B
and |4 — u| <5, we also have by Lemma 2.1, that the sequence (H¥(x));so is well defined,

A < - d ) (k€ N)

and 0(H¥(x),x(4)) — 0 as k — cc.
(2) The uniqueness of x(4) is a simple consequence of (i).
(3) x(4) is d-continuous on [0, 1]. Indeed,
d(x(4),x(n)) = d(H(x(2), ), H(x(p), 1))
< d(H(x(2), ), H(x(w), 2)) + d(H (x(p), 2), H(x(p), 1))
< 1d(x(4),x(p)) + d(H (x(p), ), H (x(p), ).
This, by (v), implies
1
d(x(4),x(p)) < T AH (W), A)Hx(p), 1)) — 0 as 4 — p.
(4) Obtention of r. For any u € [0, 1], denote

r() = inf{d(xx(1));x € X \U}.
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Since x(p) € U and U is d-open, »(u) > 0. We claim that
inf{r(p); u € [0,1]} > 0. (2.8)

To prove this, assume the contrary. Then, there are u; € [0,1] such that »(y,) — 0 as &k — oc.
Clearly, we may assume that y, — u for some u € [0,1]. Then, from the d-continuity of x(4), we
have

d(x(p),x(p)) < r(p)/2 for k=ky. (2.9)
On the other hand, since »(u;) — 0,

r(uy) < r(u)/2 for k=k,. (2.10)
Let ko = max{k;,k, }. By (2.10) and the definition of r(u,) as infimum, there is x € X \ U with

d(x, x (i ) < r(p)/2. (2.11)
Then, by (2.9) and (2.11), we obtain

d(x,x(1)) <d (x,x () + d(x(pag, ), x(1)) < 2r(p)/2 = r(p),

a contradiction. Thus (2.8) holds as claimed. Now we choose any » > 0 less than the infimum in
(2.8), with the convention that » = oo if the infimum equals infinity.

(5) Obtention of m and 0 < 4, < Ay <--- < 4,_1 < 1. Let A =n(r), where r was fixed at the
anterior step and #(r) is chosen as in (2.7). Then, by what was shown at the end of step (1), for
each p € [0,1],

d(x,x(p))<r and |4 — u|<h imply (Hf(x))i>o is well defined, (2.12)

k

A(HEC) X)) < 1 d(u H) (K € N)
and
O(Hf (x),x(4)) — 0 as k — oo.

Now we choose any partition 0=4) < 4y < -+ < 4,1 < 4, =1 of [0,1] such that 4;,; —4;<h, j=
0,1,...,m—1.

(6) Finding of integers ny,ny, ..., n, 1. From d(x10,x(0))=d(x9,x(0))<r and 1, — 1o <h, by (2.12),
we have that (x4 )r>0 is well defined and satisfies (2.5)—(2.6). By (2.5), we may choose n; € N such
that d(x;,,,,x(41))<r. Now d(x20,x(41))=d(x1.n,,x(41)) <r and 4, — 4, <h and we repeat the above
argument in order to show that (x,;);>0 is well defined and satisfies (2.5)—(2.6). In general, at step
J (1<j<m—1) we choose n; € N such that d(x;,,x(4;))<r. Then d(x;,10,x(4;))=d(x;,,x(4;))<r
and 4,11 —4;<h, by (2.12), imply that sequence (xﬁl,k)k)o is well defined and satisfies (2.5)—(2.6).
[

The above proof yields the following algorithm for the approximation of x(1) under the assumptions
of Theorem 2.2:
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Suppose we know » and 42 and we wish to obtain an approximation x; of x(1) with d(x;,x(1))<e.
Then we choose any partition 0=4) < A4y < /Ay <+ < Ay_y < Ap=10f [0,1] with 2,;, —4;<h, j=
0,1,...,m — 1, any element x, with d(x,x(0))<r and we follow the next

Iterative procedure:
Set ny:=0 and xq_,, :=X;
For j:=1tom—1 do
Xj0 - =Xj—1,n,_,
k:=0
While 7°(1 — 1)™'d(x;0, H;,(xj0)) > r
Xj k-+1 ::Hi/(xj,k)
ki=k+1
nj:=k
Set k:=0
While /5(1 — )" d(x,0, Hi(X1n0)) > €
X, k1 = Hy (X 1)
ki=k+1
Finally take X; = x,,, ;.

Remark 2.4. Clearly, if d <J on X, then it suffices that the estimates in the above algorithm be
made with respect to o.

Notice that when D =U =X and H, = A for all 1 € [0,1], Theorem 2.2 reduces to Lemma 2.1.
In this case, » = oo and m = 1.

In case that d =0, Theorem 2.2 yields the following computational version of Granas continuation
principle for contraction mappings on complete metric spaces.

Corollary 2.5. Let (X,d) be a complete metric space and U be an open set of X. Let H : U x
[0,1] — X and assume that the following conditions are satisfied.
(al) there is 1 € [0,1) such that
d(H(X, )")5H(y’ )”)) < ld(x, y)
for all x,y € U and 1. € [0,1];
(a2) H(x,A) # x for all x € 0U and A € [0,1];
(a3) H is continuous in 1, uniformly for x € U, i.e. for each ¢ >0 and ). € [0,1], there is p > 0
such that d(H(x,2),H(x, 1)) < ¢ whenever x € U and |}. — u| < p.

In addition suppose that Hy has a fixed point. Then, for each 1 € [0,1], there exists a unigue
fixed point x(1) of H,. Moreover, x(1) depends continuously on A and there exists 0 < r<oo,
integers m,ni,na,..., N,_1 and numbers 0 < Ay < Ay < -+ < An_1 < A, =1 such that for any x, €
X satisfying d(xy,x(0))<r, the sequences (X; i )ks0, j=1,2,...,m,

X1,0 = Xo,
X1 =H(x;5), k=0,1,...,

Xjt10 =Xjn, J=1,2,...,m—1,
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are well defined and satisfy
k

/
d(xj,kax()“j))<ﬁd(xj,mHi,-(xj,O)) (k € N).

Obviously, for U=X and H;=4, /. € [0, 1], Corollary 2.5 reduces to Banach contraction principle.

3. Boundary value problems on bounded sets in Banach spaces

We denote C* = CH(I;E), C=C° C) ={u € C;V(u)=0, j=1,2} and Ci =C"nC,
(k=2). Similarly, C},={u € C'; V;(u)=b;, j=1,2} and C%=C"NC). Also, for an integer m>1
and a real 1< p<oo, we shortly denote L?” =LP(I;E), W™? = W™P(I;E), and Wy’ =W’ NC,,
Wyt =wmrnCL (m=2). Recall that W™r C C"~!.

In what follows we assume that the unique solution of " =0 which satisfies V(1) =0, j=1,2,
is the null function. Then, there is a unique solution to u” =0 such that V;(u) =b;, j = 1,2, say
uo(t), and there is a Green’s function ¢g(z,s) corresponding to operator u” and boundary conditions
Vi(u) =0, j=1,2. Moreover, for each p € [I,00], the operator L : W;’Op — L?, Lu=u" is invertible
and

L7 'v(t) = /1 g(t,s)v(s)ds.
0

The same is true for the operator L : C5, — C, Lu=u".
Also, we denote by ||.]];, the following complete norm on W'? (noncomplete on C')

1 1/p
[l = max{{ful |, [[W]],}, full, = (/O Iu(t)lpdt>
(1< p <) and by ||.||1. the usual complete norm on C',
[el1.00 = max{{lulloc, [[wfloc},  lulloo = suplu(2)].
Now we state a very general existence and uniqueness principle in a ball of CJ,.
Theorem 3.1. Let R >0, 1 < p<oco and A:Dy — W,” be any mapping, where Dy = {u €
CLi ||ulli0o <R}. Assume that ||u|| 0 < R and that the following conditions are satisfied:

(H1) A(Dg) is bounded in (C',||.||1~) and there is R’ > 0 such that |u"(t)| <R for a.e. t €I and
any u € A(Dg);

(H2) there exists a metric d on C), equivalent to the metric induced by ||.||,, satisfying
d(u,v)<collu— |, (3.1)
for all u,v € Cl, and some ¢, > 0, such that
[14(u) — A(v)|[1.00 Scd(u,v) (3.2)
and
d(A(u), A(v)) < ld(u, v) (3.3)

for all u,v € Dy and some ¢ >0, [ €[0,1),
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(H3) if u € Dg solves u= (1 — L)uy + 1A(u) for some 1 € [0,1], then ||u||1o <R.
Then A has a unique fixed point in Dg.

Proof. We shall apply Theorem 2.2. Denote by 6 the metric induced by ||.||; on C}. Recall
that V;, j = 1,2, were supposed continuous; consequently, (C},d) is a complete metric space. Let
Xo= co{{uo} UA(Dr)}, where “co” stands for the convex hull. Since uy € C}, A(Dr)C C), and C),
is convex, we also have X, C C}. Denote by X the d-closure of X, in Cj, and let D = X N Dy.
Obviously, D is d-closed in X.

From (H1), we see that any function u in X, satisfies |u”(¢)| <R’ for a.e. ¢t € I. This property is
the reason of the choice of X.

Define H:D x [0,1] — X, H(u,A) = (1 — Duy + A4(u). We now check that all the assumptions
of Theorem 2.2 are satisfied, where U is the d-interior of D in X.

Condition (i) follows from (3.3) since D C Dg. By (3.2), since 4(Dy) is bounded in C', we have

HH(U,/l) _H(Ua:u)Hl,OO < HH(M’)“) _H(D’)“)HI,OO + ||H(U’/l) _H(Ua:u)Hl,OO
< ||A(u) — A()||1.00 + |4 — | <cd(u,v) + |4 — pl, (3.4)

where ¢’ is a constant depending only on R. It follows that H is uniformly (d, J)-continuous, that
is (iii). By (3.1) and [|.]}1,, <||.||1.00, from (3.4) also follows (iv). Now, if in (3.4) we put u = v,
then we obtain

d(H(u’;“)7H(u’“)) < C()HH(LI, /1) - H(u,,u)HLp
< col [H (u, 2) = H(u, )] 1,00 S €oc| 2 — .

This proves (v).
It is clear that (ii) follows from (H3) if we prove that

ueD and |ulli« <R impliesu € U. (3.5)

So let u € D with ||u||; . <R. We have to show that there exists » > 0 such that v € X and
||[v — u||,,, < r imply v € Dg. Suppose the contrary. Then, there is a sequence (u;) CX with |[u; —
ully,, < 1/k and w;, & Dg. Then, |ui(¢)] > R or |u;(¢)| > R for some ¢ € I. On the other hand, if we
denote Ry = ||u||1 0, then Ry < R and |u(t)| <Ry, |u'(t)| <R, for all ¢ € I. Consequently, for each k
there is at least one ¢ such that:
(1) fu(@) = u(@)| = |u(1)| = [u(@)] = ux ()] = Ro > R — Ry

or
) () = u' (O] Z (D] — |/ (D] = | ()] — Ro > R — Ry,

We shall derive a contradiction by using the following result.

Lemma 3.2. Let y € C'(I;E). If

7(8)|=a > 0 for some ¢ € I and |y'(¢t)|<M for all t € I, then

/ l lx(s)| ds =>min{a/2,3a*/(8M)}.
0
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L. First suppose that |u,(¢t) —u/(¢)| <R — R, for all ¢ € I and for infinitely many values of k. Then,
passing if necessary to a subsequence, we may assume that for any k, we have

lup(t) — u'(¢)| <R — R, forall z €I and
lup(¢) — u(t)] > R — Ry, for at least one ¢.
Then, by Lemma 3.2, it follows that

/01 |ur(s) — u(s)|ds=3(R — Ry)/8 >0
for all k. This yields ||uy —ul|;, - 0 as k — oo, a contradiction.
II. In the opposite case to I, we may suppose that for any k, we have
luj(t) —u'(¢)] > R — R, for at least one ¢.
Let ¢ > 0. Since u,u; € X, there are u,u; € X, such that
|i,(t) — @' (t)] >R — R, for at least one ¢,

1 1
/ luj(s) — i, (s)|ds<e/2 and / |u'(s) — @' (s)] ds <e/2.
0 0
From #,1, € X,, we also have
Z(1) — @' () <|@l(0)| + i (1) <2R' forall t € I.
Then, by Lemma 3.2,

1
/ |d,(s) —d@'(s)|ds=C >0
0

for all k£, where C depends only on R — Ry and R’. Thus, we have

c</ i(s) — #(s)] ds<e + / i) — (o) ds

< et [l —ullip

Hence ||u; — ul|;,,=>C — ¢ for all k. Choosing ¢ < C this yields ||uy — ul|;, - 0 as k — oo, a
contradiction.
Thus (3.5) holds and Theorem 2.2 can be applied. [

Proof of Lemma 3.2. We have
x| = x| <[x(@®) — x(s)| <Mt —s| forall .5 € 1. (3.6)

Two cases are possible:
(1) For all ¢ € I, |x(¢)|=a/2. Then, clearly,

/ )] ds a2
0

(2) There are t,,t, € I with |y(t,)| =a/2, |x(t2)| =a and |x(¢)| € [a/2,a] for all ¢ between ¢, and
t,. Suppose #; < t,. Then, if we choose t=1# and s=#¢ in (3.6), we get &, —t; =a/(2M). Also, again
by (3.6),

O Z2(8) =Mt —t)=a—M(t, —t) forall t€[t),1].
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Integration from £, — a/ (2M) to t, yields

1 5]
/ lx(s)| ds> / lx(s)| ds=3a*/(8M). O
0 t—al2M)

Remark 3.3. In particular, if d is the metric on C}, induced by [|.||;, and in addition there is
r€(0,R) such that in (H3), ||u||1.c <R —r for any solution of u = (1 — L)uy + 24(u), A€[0,1],
then the unique fixed point of 4 can be approximated by means of the iterative procedure described
in Section 2, where we may use this 7 and the first approximation x, = u,.

Remark 3.4. For p = 0o, d and § are equivalent metrics on C}, and Theorem 3.1 is a direct
consequence of Corollary 2.5.

Denote By = {u € E; |u|<R}. Let f:1 x B; — E. Recall that f is said to be L?-Carathéodory if
f(z,.) is continuous for a.e. t €1; f(.,u,v) is measurable for all (u,v) € Z§,23 and there exists 4 € LP([)
such that | f(¢,u,v)| <h(t) a.e. t € I, whenever u,v € Bg. If f is continuous (resp., L?-Carathéodory),
then the operator

Fu)(t) = f(tu(@),u'(t)), tel
is well defined from Dy into C (resp., L?) and a function u € Dy, is a classical (resp., Carathéodory)
solution of (1.1)—(1.2) if and only if u = A(u), where

A(u) = ug + L™ 'F(u).

In order to state an existence and uniqueness principle for (1.1)—(1.2), we embed this problem
into an one-parameter family of problems

u' = 2f(tuu'), tel, (3.7)

Vitu)=by,  Va(u) = by, (3.8)
where 4 €[0,1].

Theorem 3.5. Let f:1 X B; — E. Assume that ||ug||1.c <R and the following conditions are
satisfied.
(h1) f is continuous (resp., f(.,u,v) is measurable for all (u,v)eéi and f(.,0,0)€ L>([;E)),
(h2) there exist numbers Ky, K, >0, function ¢ € L>°(I;1) and p € (1,00] such that
|/ (Gu0) — (18,8)| < HOKolu — ] + KiJo — 7] (3.9)
for a.e. t€l and all u,,v,7 € By, and

pla I/p

/ (/ rg(z,s)|q¢(s>4ds) i
0 0
1 1 pla I/p
/(/ Igt(t,s)l‘%(s)‘fds) dt] <1, (3.10)
0 0

lp:KO

+ K,
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where 1/p+1/g=1 (for p= o,

Lo = Komax [ 1g(65)/¢()ds + Kimax [ 10,0990 do).

(h3) if u € Dy solves (3.7)~(3.8) for some A€ [0,1], then ||u||;- <R.
Then (1.1)—(1.2) has a unique classical (resp., Carathéodory) solution in Dy.

Proof. We shall apply Theorem 3.1. We first note that from (3.9) and f(-,0,0) € L>(I; E), it follows
that f is L°°-Carathéodory. Now we immediately see that the operator A(u)=uy+ L~'F(u) is well
defined from Dy into W_”, A(Dy) is bounded with respect to ||.||;.c and that there is R’ > 0 such
that |u”(¢)| <R’ a.e. on I, for any u € A(Dy). Hence condition (H1) is satisfied.

Without loss of generality, we may assume that K, > 0 and K; > 0. Otherwise, we take K, + ¢
and K, + ¢ instead of Ky, K; with ¢ > 0 small enough that inequality (3.10) remain true. Then, we
define a modified L”-norm on C' by

[|ul| = Kol[ul|, + Kul|ad[] -
Clearly, norms ||.|| and ||.]|; , are equivalent. Let d be the metric induced by ||-|| on Cj,. We now
check (3.2) and (3.3). Let u,v € Dz. Then using (3.9), we obtain
1
|AQu)(1) — A(v)(2)] </0 |g(6, )] |/ (s,u(s),u'(s)) — f(s,0(s),V'(s))| ds

< / 19(.9)| ) Kolu(s) — o(s)] + Kt/ (s) — v'(s)]) ds

1 1/q
< ( / \g(t,s)%(s)qas) [ — ]|

Also

A (1) — A(v) (1)] </0 |9:(t:9)| |/ (s,u(s),u'(s)) — f(s,0(s),0'(s))| ds

I 1/q
< (/0 !gt(t,S)\%(S)qu) || — |-

These clearly yield (3.2). By (3.10), they also imply (3.3), where / =/,. Hence (H2) is satisfied
too. Finally (H3) follows from (h3) since a function u € Dy solves (3.7)—(3.8) if and only if u =
(1 — Dug + 2A(u). Thus, Theorem 3.1 can be applied. [

Remark 3.6. (1) For p =00 and ¢ = 1, the result in Theorem 3.5 follows from [5, Theorem 3.6].
(2) We will compare the contraction condition /, < 1 for p=o00 and p=2. Suppose V;(u)=u(0)
and V>(u)=u(1) and ¢=1. Then, direct computation yields /.. =K,/8+K,/2 while /,=K,/(3v/10)+
K/ v/6. Thus the contraction condition /, < 1 is less restrictive than /., < 1.
(3) Other modified L”-norms on C'! are possible and are expected to relax the contraction condition
(3.10). For example, we may take the norm

[l | = Kol[pul |, + Kal [y,
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where y € C(/; R} ). In this case, the contraction condition becomes

. . pla VP
/ Wty ( / |g<r,s)|‘f<z><s>w(s>—qu) dt]
0 0
1/p

1 1 rlq
[ oy ( / |g,(r,s>rq¢(s)w<s)qu> dt] <1
0 0

for p < oo, and

Ko

+K;

Komax [ p(0lg(t)/o()0(s)" ds

+ K, max / Ol )| (s)  ds < 1
el J

for p = o0.
For such tricks of contraction, we refer the interested reader to [3].
(4) Another interested choice of the norm ||. ||, based on Wirtinger’s inequality, is possible in the

case of the homogeneous Dirichlet conditions u(0) = u(1) =0, when CJ, is simply denoted by Cj.
There are well known: Wirtinger’s inequality

1
Hu‘|2<EHu/H25 ueCy, (3.11)

and Opial’s inequality (see [8] for example)

1 1 1
/|u(t)] ]u'(t)\dt<2/ W' (H)|*dt, ueC,.
0 0
Also,
1
HLilUH2<;HUH2, vel’. (3.12)

Recall that 7* is here the first eigenvalue corresponding to the differential operator —u” and to the

Dirichlet boundary conditions. Now, if f : /1 X E; — E satisfies (hl), (h3) and the Lipschitz inequa-
lity (3.9) with ¢ = 1, then the contraction condition (3.10) can be replaced by

KK Kk

mt m 2m?
Indeed, if we choose as d the metric on C; induced by the norm ||u||=||«/||,, then all the assumptions
of Theorem 3.1 are satisfied for p = 2. For example, (3.3) follows by (3.11)—(3.12):

d(A(u), A(v)) = |[(L7(F(u) = F©))) ]2
1
= {(F(v) = F(u), L' (F(u = F(v))):}'*< CEG) = F()l2

<1 (3.13)

12

1 1
< - l/ (Kolu — v| + K |u' — v'|)*dt
T (Jo
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{ KK 1/2
< o RBll— olf + Ko = o1+ S5 o
1/2 12
K2 K? KoK, o K2 K? KK,
<<F+F+ > ||lu' — V'], = F—i—;—i— e d(u,v).

We mention that (3.13) was obtained by Hai and Schmitt [3] and used in case that f is defined on
the entire set / x E? (see also the paper of Mawhin [7]). Therefore, our technique based on the use
of two metrics makes possible that certain results involving conditions derived when working with
energy L?-norms can be extended to the case where f is defined, or has the required properties,
only on a bounded region.

(5) As we have already remarked, for p = oo, Theorem 3.1 is a consequence of Corollary 2.5.
For an arbitrary p < oo, according to the second proof of Lemma 2.1, we could think to use also
Corollary 2.5, working in the completion of C} with respect to d. For example, when % means
u(0) =u(1) =0, the completion of C; is the Sobolev space WOl P(I,E). Tt is easily seen that such
an approach has a major impediment, namely the bounded domain of A.

(6) In case that f is independent of &’ and V;, j=1,2, are linear continuous from C into E, we can
regard A as a mapping from D} ={u € Cy; ||u||co <R} CCy into Cy, where C={ucC; V;(u)=
b;, j=1,2}. This leads variants of Theorems 3.1 and 3.5 in which all reference to u’ is dropped
and the norms ||.||s, ||.||, are used instead of ||.||;~ and ||.||;, respectively.

Example. Consider the boundary value problem

u' = f(u), tel,

u(0)=u(1)=0. (3.14)

Assume that for some R > 0, f € C(Bg;E),
sup{| f(u)l; |u| <R} <8R

and there exists K, < 34/10 such that
| f(u) — f(v)| <Kolu—v| for all u,v € By.

Then (3.14) has a unique solution (with sup-norm at most R). If in addition,
sup{|f(w)]; [ul <R} <8(R—7r)

for some 0 < r < R, then the unique solution can be approximated by the iterative procedure de-
scribed in Section 2, where: / :Ko/(3\/m), xo =0, H(.,A)=24 and d is the metric on C, induced
by ||.]|». According to Remark 2.4, since ||. || <||. ||, it suffices that the estimates in the iterative
procedure be made with respect to metric ¢ induced by ||.||.

The above example shows in what way the continuation principle for contractions applies to
problems with superlinear nonlinearity provided that a Lipschitz condition holds in some bounded
set. In particular, problem (3.14) for £ =R and f(u) = —e" which comes from thermodynamics,
was discussed in [5].
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