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Abstract

The paper deals with existence, uniqueness and iterative approximation of solutions to boundary value problems for
second-order di�erential equations on bounded sets in a Banach space. The tools are an extension of Granas’ continuation
principle for contraction mappings to spaces endowed with two metrics and a computational procedure accompanying the
continuation principle. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper deals with existence, uniqueness and iterative approximation of solutions to problems
of the form

u′′ = f(t; u; u′); t ∈ I = [0; 1]; (1.1)

V1(u) = b1; V2(u) = b2 (1.2)

in a Banach space E; where b1; b2 ∈ E; V1; V2 are linear continuous mappings from C1(I ;E) into E
and f is de�ned on a bounded subset of I × E2:
Boundary value problems of this form with particular boundary conditions occur frequently when

modelling real processes and have been studied, with varying degrees of generality, by many authors.
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For recent results and references see the paper by Lee and O’Regan [5] which was the �rst motivation
of the present article.
The approach to (1.1)–(1.2) is a �xed-point one. We express (1.1)–(1.2) as a �xed point problem

for a certain mapping A from a subset of C1(I ;E) into C1(I ;E): As usually, if E is �nite dimensional
and f is a Carath�eodory function, then, by the Ascoli–Arzela theorem, A is completely continuous
and under some additional assumptions guaranteeing the a priori boundedness of solutions, the Leray–
Schauder continuation principle for compact mappings applies. When E is in�nite dimensional,
the complete continuity of A fails. Then, assuming that f satis�es a Lipschitz condition we can
arrange that A become a contraction mapping and so that the continuation principle for contractions
applies. Also, since any contraction mapping on a subset of a Banach space is a set contraction in
Darbo’s sense, the continuation principle for set contractions equally applies. However, we can take
advantage from the application of the �rst one in the same way that we obtain more information from
Banach contraction principle than from Darbo �xed point theorem, namely the iterative procedure for
approximating the unique �xed point. In this respect, in Section 2, we give a discrete version of the
Granas continuation principle for contractions on metric spaces [2]. Notice that an elementary proof
of a continuation principle for contractions on closed subsets of a Banach space is due to Gatica and
Kirk [1]. Discrete continuation methods for solving nonlinear operator equations on �nite or in�nite
dimensional spaces have been also described in connection to particular numerical procedures. For
example, in [9], a discrete continuation method is presented in combination with Newton’s method.
In addition, in our version of the continuation principle for contraction mappings, the Lipschitz

condition is asked with respect to a noncomplete metric provided that suitable topological compatibil-
ities between homotopy, the noncomplete metric and a complete metric hold. Here, the unusual term
of a complete (resp., noncomplete) metric d on a set X is used to show that the metric space (X; d)
is complete (resp., incomplete). The idea of using two metrics, one complete and other noncomplete,
is patterned from Maia [6], where a version of Banach contraction principle is given for spaces en-
dowed with two metrics. In studying (1.1)–(1.2), our continuation principle makes possible, even
if f is de�ned only on a bounded subset of I × E2; to use together a (complete) sup-norm and an
(noncomplete) Lp-norm on C1(I ;E) in order that the contraction condition be relaxed. The technique
has already been used to integral and di�erential equations (see Rus [12] and Petracovici [10]) but
only together with a �xed point theorem for self-mappings of a metric space whose application to
(1.1)–(1.2) requires that f be de�ned on the entire set I × E2:

2. The iterative discrete continuation principle in a space with two metrics

Given a space X endowed with two metrics d and �; in order to precise the metric with respect
to which a topological notion is considered, we shall indicate the corresponding metric in front of
that notion. So, we shall speak about d-Cauchy and �-Cauchy sequences, d-open, �-open, d-closed,
�-closed sets, d-closure, �-closure, d-interior and d-neighborhood. Also, we shall say that A :D → X
is (d; �)-continuous (resp., (�; �)-continuous), where D⊂X or D⊂X ×[0; 1]; if A is continuous from
D into (X; �); with respect to the topology induced by d (resp., �) on D: The meaning of the notion
of an uniformly (d; �)-continuous mapping will be similar.
First we state a slight extension of a result by Maia [6] (see also [11]).
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Lemma 2.1. Let (X; d) be a metric space and � a complete metric on X. Assume that for A : X →
X the following conditions are satis�ed:
(a) there is l ∈ [0; 1) such that

d(A(x); A(y))6ld(x; y) for all x; y ∈ X; (2.1)

(b) A is uniformly (d; �)-continuous;
(c) A is (�; �)-continuous.
Then A has a unique �xed point x∗: Moreover; for any x ∈ X; we have

d(Ak(x); x∗)6
lk

1− l
d(x; A(x)) (k ∈ N) (2.2)

and

�(Ak(x); x∗)→ 0 as k → ∞: (2.3)

Proof. Let x ∈ X: Denote xk = Ak(x); k ∈ N: By (2.1), (xk) is d-Cauchy. Next, from �(xk ; xj) =
�(A(xk−1); A(xj−1)) and (b), we deduce that (xk) is �-Cauchy too. Since � is a complete metric on X;
it follows that there exists x∗ ∈ X with �(xk ; x∗)→ 0 as k → ∞: Then, by (c), �(A(xk−1); A(x∗))→ 0
as k → ∞: But �(A(xk−1); A(x∗)) = �(xk ; A(x∗)): Hence A(x∗) = x∗: By (2.1), x∗ is the unique �xed
point of A and so (2.3) is true for any x ∈ X: Again by (2.1),

d(xk ; x∗) = d(Ak(x); Ak(x∗))6lkd(x; x∗)→ 0 as k → ∞: (2.4)

Finally, (2.2) follows by a standard argument.

Second proof. Let ( X̃ ; d̃) be the completion of (X; d) (see [4] for example). The elements of X̃
are classes of d-Cauchy sequences in X which are equivalent in the following sense: (xk) ∼ (yk)
if d(xk ; yk) → 0 as k → ∞: Denote by (̂xk) the class of the sequence (xk). If �; � ∈ X̃ ; � = (̂xk)
and � = (̂yk); then one sets d̃(�; �) = limk→∞ d(xk ; yk): Now we de�ne the extension Ã of A to X̃
by Ã((̂xk))= [(A(xk)): The de�nition is correct because, by (2.1), (A(xk)) is d-Cauchy whenever (xk)
is. Clearly Ã is a contraction mapping on X̃ and so, by Banach �xed point theorem, there exists
� ∈ X̃ with Ã(�) = �: Let �= (̂zk): Then (zk) ∼ (A(zk)): Since (zk) is d-Cauchy, by (b), it follows
that (A(zk)) is �-Cauchy and so �-convergent to some x∗ ∈ X: Then, by (c), (A2(zk)) is �-convergent
to A(x∗): By (zk) ∼ (A(zk)); that is d(zk ; A(zk)) → 0; and (b), we obtain that �(A(zk); A2(zk)) → 0:
Consequently, �(x∗; A(x∗))=0 and so A(x∗)= x∗: Finally, for any x ∈ X; we have (2.4) and, by (b),
�(Ak+1(x); A(x∗)) = �(Ak+1(x); x∗)→ 0 too.

The result in [6] corresponds to the case where �6d; when (b) is a consequence of (a).
The second proof shows that Maia’s theorem in X is Banach’s theorem in the completion X̃ but

with the �xed point in X:
Before going to state the main result of this section, we introduce the following notation. For a

mapping H : D× [0; 1]→ X; where D⊂X; and any � ∈ [0; 1]; we denote by H� the mapping H (:; �)
from D into X:
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Theorem 2.2. Let (X; d) be a metric space and � a complete metric on X. Let D⊂X be �-closed
and U a d-open set of X with U ⊂D: Let H : D× [0; 1]→ X and assume that the following condi-
tions are satis�ed:
(i) there is l ∈ [0; 1) such that

d(H (x; �); H (y; �))6ld(x; y)

for all x; y ∈ D and � ∈ [0; 1];
(ii) H (x; �) 6= x for all x ∈ D \U and � ∈ [0; 1];
(iii) H is uniformly (d; �)-continuous;
(iv) H is (�; �)-continuous;
(v) H (x; �) is d-continuous in �; uniformly for x ∈ U; i.e. for each �¿ 0 and � ∈ [0; 1]; there is

�¿ 0 such that d(H (x; �); H (x; �))¡� whenever x ∈ U and |�− �|¡�:
In addition suppose that H0 has a �xed point. Then; for each � ∈ [0; 1]; there exists a unique

�xed point x(�) of H�: Moreover; x(�) depends d-continuously on � and there exists 0¡r6∞;
integers m; n1; n2; : : : ; nm−1 and numbers 0¡�1¡�2¡ · · ·¡�m−1¡�m=1 such that for any x0 ∈ X
satisfying d(x0; x(0))6r; the sequences (xj; k)k¿0; j = 1; 2; : : : ; m;

x1;0 = x0;
xj; k+1 = H�j(xj; k); k = 0; 1; : : : ;
xj+1;0 = xj;nj ; j = 1; 2; : : : ; m− 1;

are well de�ned and satisfy

d(xj; k ; x(�j))6
lk

1− l
d(xj;0; H�j(xj;0)) (k ∈ N) (2.5)

and

�(xj; k ; x(�j))→ 0 as k → ∞: (2.6)

Remark 2.3. Obviously, we have

xj; k = Hk
�j(H

nj−1

�j−1
(: : : (Hn1

�1 (x0)) : : :)) (k ∈ N);
d(xj; k ; x(�j))→ 0 and �(xj; k ; x(�j))→ 0 as k → ∞ (j=1; 2; : : : ; m). In particular, for j=m; (xm; k)k¿0
is a sequence of successive approximations of x(1); with respect to both metrics d and �.

Proof. (1) First we prove that for each � ∈ [0; 1]; H� has a �xed point. Let

�= {� ∈ [0; 1];H (x; �) = x for some x ∈ U}:
We have 0 ∈ � by the assumption that H0 has a �xed point. Hence � is nonempty. We will show
that � is both closed and open in [0; 1] and so, by the connectedness of [0; 1]; �= [0; 1]:
To prove that � is closed, let �k ∈ � with �k → � as k → ∞: Since �k ∈ �; there is xk ∈ U so

that H (xk ; �k) = xk : Then, by (i), we obtain

d(xk ; xj) = d(H (xk ; �k); H (xj; �j))6d(H (xk ; �k); H (xk ; �))

+d(H (xk ; �); H (xj; �)) + d(H (xj; �); H (xj; �j))

6 d(H (xk ; �k); H (xk ; �)) + ld(xk ; xj) + d(H (xj; �); H (xj; �j)):
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It follows that

d(xk ; xj)6
1

1− l
[d(H (xk ; �k); H (xk ; �)) + d(H (xj; �); H (xj; �j))]:

This, by (v), it shows that (xk) is d-Cauchy. Further, from �(xk ; xj)= �(H (xk ; �k); H (xj; �j)) and (iii),
we see that (xk) is also �-Cauchy. Thus, by the completeness of �; there is x ∈ X with �(xk ; x)→ 0
as k → ∞: Since xk ∈ D and D is �-closed, we have x ∈ D too. Then �(xk ; H (x; �))→ �(x; H (x; �))
and, by (iv), �(xk ; H (x; �)) = �(H (xk ; �k); H (x; �))→ 0: Hence �(x; H (x; �)) = 0; that is H (x; �) = x:
By (ii), x ∈ U and so � ∈ �:
To prove that � is open in [0; 1]; let � ∈ � and z ∈ U such that H (z; �) = z: Since U is d-open,

there exists �¿ 0 such that

d(x; z)6� implies x ∈ U:

Also, by (v), there is �= �(�)¿ 0 such that

d(z; H (z; �)) = d(H (z; �); H (z; �))6(1− l)� (2.7)

for |�− �|6�: Consequently,

d(z; H (x; �))6 d(z; H (z; �)) + d(H (z; �); H (x; �))

6 (1− l)�+ ld(z; x)6�;

whenever d(z; x)6� and |� − �|6�: This shows that for |� − �|6�; H� sends B into itself, where
B = {x ∈ X ; d(z; x)6�}: Let �B be the �-closure of B: Since B⊂U ⊂D and D is �-closed, we
also have �B⊂D: Using (iv), it is easily seen that H�( �B)⊂ �B for |� − �|6�: Now we may apply
Lemma 2.1 to A=H�: Consequently, there is x(�) ∈ �B⊂D a �xed point of H� for |�− �|6�: This
shows that � is an interior point of � and hence � is open in [0; 1]. Notice that for every x ∈ B
and |�− �|6�, we also have by Lemma 2.1, that the sequence (Hk

� (x))k¿0 is well de�ned,

d(Hk
� (x); x(�))6

lk

1− l
d(x; H�(x)) (k ∈ N)

and �(Hk
� (x); x(�))→ 0 as k → ∞:

(2) The uniqueness of x(�) is a simple consequence of (i).
(3) x(�) is d-continuous on [0; 1]: Indeed,

d(x(�); x(�)) = d(H (x(�); �); H (x(�); �))

6 d(H (x(�); �); H (x(�); �)) + d(H (x(�); �); H (x(�); �))

6 ld(x(�); x(�)) + d(H (x(�); �); H (x(�); �)):

This, by (v), implies

d(x(�); x(�))6
1

1− l
d(H (x(�); �); H (x(�); �))→ 0 as � → �:

(4) Obtention of r: For any � ∈ [0; 1]; denote
r(�) = inf{d(x; x(�)); x ∈ X \U}:
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Since x(�) ∈ U and U is d-open; r(�)¿ 0: We claim that

inf{r(�); � ∈ [0; 1]}¿ 0: (2.8)

To prove this, assume the contrary. Then, there are �k ∈ [0; 1] such that r(�k) → 0 as k → ∞:
Clearly, we may assume that �k → � for some � ∈ [0; 1]: Then, from the d-continuity of x(�), we
have

d(x(�k); x(�))¡r(�)=2 for k¿k1: (2.9)

On the other hand, since r(�k)→ 0;

r(�k)¡r(�)=2 for k¿k2: (2.10)

Let k0 = max{k1; k2}: By (2:10) and the de�nition of r(�k0) as in�mum, there is x ∈ X \U with

d(x; x(�k0))¡r(�)=2: (2.11)

Then, by (2:9) and (2:11), we obtain

d(x; x(�))6d(x; x(�k0)) + d(x(�k0); x(�))¡ 2r(�)=2 = r(�);

a contradiction. Thus (2.8) holds as claimed. Now we choose any r ¿ 0 less than the in�mum in
(2.8), with the convention that r =∞ if the in�mum equals in�nity.
(5) Obtention of m and 0¡�1¡�2¡ · · ·¡�m−1¡ 1: Let h = �(r); where r was �xed at the

anterior step and �(r) is chosen as in (2.7). Then, by what was shown at the end of step (1), for
each � ∈ [0; 1];

d(x; x(�))6r and |�− �|6h imply (Hk
� (x))k¿0 is well de�ned; (2.12)

d(Hk
� (x); x(�))6

lk

1− l
d(x; H�(x)) (k ∈ N)

and

�(Hk
� (x); x(�))→ 0 as k → ∞:

Now we choose any partition 0=�0¡�1¡ · · ·¡�m−1¡�m=1 of [0; 1] such that �j+1−�j6h; j=
0; 1; : : : ; m− 1:
(6) Finding of integers n1; n2; : : : ; nm−1: From d(x1;0; x(0))=d(x0; x(0))6r and �1−�06h; by (2.12),

we have that (x1;k)k¿0 is well de�ned and satis�es (2.5)–(2.6). By (2.5), we may choose n1 ∈ N such
that d(x1; n1 ; x(�1))6r: Now d(x2;0; x(�1))=d(x1; n1 ; x(�1))6r and �2−�16h and we repeat the above
argument in order to show that (x2;k)k¿0 is well de�ned and satis�es (2.5)–(2.6). In general, at step
j (16j6m−1) we choose nj ∈ N such that d(xj;nj ; x(�j))6r: Then d(xj+1;0; x(�j))=d(xj;nj ; x(�j))6r
and �j+1−�j6h; by (2.12), imply that sequence (xj+1;k)k¿0 is well de�ned and satis�es (2.5)–(2.6).

The above proof yields the following algorithm for the approximation of x(1) under the assumptions
of Theorem 2.2:
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Suppose we know r and h and we wish to obtain an approximation �x1 of x(1) with d( �x1; x(1))6�:
Then we choose any partition 0=�0¡�1¡�2¡ · · ·¡�m−1¡�m=1 of [0; 1] with �j+1−�j6h; j=
0; 1; : : : ; m− 1; any element x0 with d(x0; x(0))6r and we follow the next

Iterative procedure:
Set n0 := 0 and x0; n0 := x0;
For j := 1 to m− 1 do

xj;0 := xj−1; nj−1

k := 0
While lk(1− l)−1d(xj;0; H�j(xj;0))¿r

xj; k+1 :=H�j(xj; k)
k := k + 1

nj := k
Set k := 0
While lk(1− l)−1d(xm;0; H1(xm;0))¿�

xm; k+1 :=H1(xm; k)
k := k + 1

Finally take �x1 = xm; k :

Remark 2.4. Clearly, if d6� on X; then it su�ces that the estimates in the above algorithm be
made with respect to �:

Notice that when D = U = X and H� = A for all � ∈ [0; 1]; Theorem 2.2 reduces to Lemma 2.1.
In this case, r =∞ and m= 1:
In case that d=�; Theorem 2.2 yields the following computational version of Granas continuation

principle for contraction mappings on complete metric spaces.

Corollary 2.5. Let (X; d) be a complete metric space and U be an open set of X . Let H : �U ×
[0; 1]→ X and assume that the following conditions are satis�ed:
(a1) there is l ∈ [0; 1) such that

d(H (x; �); H (y; �))6ld(x; y)

for all x; y ∈ �U and � ∈ [0; 1];
(a2) H (x; �) 6= x for all x ∈ @U and � ∈ [0; 1];
(a3) H is continuous in �; uniformly for x ∈ �U; i.e. for each �¿ 0 and � ∈ [0; 1]; there is �¿ 0

such that d(H (x; �); H (x; �))¡� whenever x ∈ �U and |�− �|¡�:
In addition suppose that H0 has a �xed point. Then; for each � ∈ [0; 1]; there exists a unique

�xed point x(�) of H�: Moreover; x(�) depends continuously on � and there exists 0¡r6∞;
integers m; n1; n2; : : : ; nm−1 and numbers 0¡�1¡�2¡ · · ·¡�m−1¡�m =1 such that for any x0 ∈
X satisfying d(x0; x(0))6r; the sequences (xj; k)k¿0; j = 1; 2; : : : ; m;

x1;0 = x0;

xj; k+1 = H�j(xj; k); k = 0; 1; : : : ;

xj+1;0 = xj;nj ; j = 1; 2; : : : ; m− 1;
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are well de�ned and satisfy

d(xj; k ; x(�j))6
lk

1− l
d(xj;0; H�j(xj;0)) (k ∈ N):

Obviously, for U=X and H�=A; � ∈ [0; 1]; Corollary 2.5 reduces to Banach contraction principle.

3. Boundary value problems on bounded sets in Banach spaces

We denote Ck = Ck(I ;E); C = C0; C1
B0
= {u ∈ C1;Vj(u) = 0; j = 1; 2} and Ck

B0
= Ck ∩ C1

B0

(k¿2). Similarly, C1
B= {u ∈ C1; Vj(u)= bj; j=1; 2} and Ck

B=Ck ∩C1
B: Also, for an integer m¿1

and a real 16p6∞; we shortly denote Lp = Lp(I ;E); Wm;p =Wm;p(I ;E); and Wm;p
B0
=Wm;p ∩ C1

B0
;

Wm;p
B =Wm;p ∩ C1

B (m¿2). Recall that W
m;p ⊂Cm−1.

In what follows we assume that the unique solution of u′′ = 0 which satis�es Vj(u) = 0; j = 1; 2;
is the null function. Then, there is a unique solution to u′′ = 0 such that Vj(u) = bj; j = 1; 2, say
u0(t); and there is a Green’s function g(t; s) corresponding to operator u′′ and boundary conditions
Vj(u)= 0; j=1; 2: Moreover, for each p ∈ [1;∞]; the operator L : W 2;p

B0
→ Lp; Lu= u′′ is invertible

and

L−1v(t) =
∫ 1

0
g(t; s)v(s) ds:

The same is true for the operator L : C2
B0

→ C; Lu= u′′:
Also, we denote by || : ||1;p the following complete norm on W 1;p (noncomplete on C1)

||u||1;p =max{||u||p; ||u′||p}; ||u||p =
(∫ 1

0
|u(t)|p dt

)1=p
(16p¡∞) and by || : ||1;∞ the usual complete norm on C1;

||u||1;∞ =max{||u||∞; ||u′||∞}; ||u||∞ = sup
t∈I

|u(t)|:

Now we state a very general existence and uniqueness principle in a ball of C1
B.

Theorem 3.1. Let R¿ 0; 1¡p6∞ and A :DR → W 2;p
B be any mapping; where DR = {u ∈

C1
B; ||u||1;∞6R}: Assume that ||u0||1;∞ ¡R and that the following conditions are satis�ed:

(H1) A(DR) is bounded in (C1; || : ||1;∞) and there is R′ ¿ 0 such that |u′′(t)|6R′ for a.e. t ∈ I and
any u ∈ A(DR);

(H2) there exists a metric d on C1
B equivalent to the metric induced by || : ||1;p satisfying

d(u; v)6c0||u− v||1;p (3.1)

for all u; v ∈ C1
B and some c0¿ 0; such that

||A(u)− A(v)||1;∞6cd(u; v) (3.2)

and

d(A(u); A(v))6ld(u; v) (3.3)

for all u; v ∈ DR and some c¿ 0; l ∈ [0; 1);
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(H3) if u ∈ DR solves u= (1− �)u0 + �A(u) for some � ∈ [0; 1]; then ||u||1;∞ ¡R:
Then A has a unique �xed point in DR:

Proof. We shall apply Theorem 2.2. Denote by � the metric induced by || : ||1;∞ on C1
B. Recall

that Vj; j = 1; 2; were supposed continuous; consequently, (C1
B; �) is a complete metric space. Let

X0= co{{u0} ∪ A(DR)}; where “co” stands for the convex hull. Since u0 ∈C1
B; A(DR)⊂C1

B and C1
B

is convex, we also have X0⊂C1
B: Denote by X the �-closure of X0 in C1

B and let D = X ∩ DR:
Obviously, D is �-closed in X:
From (H1), we see that any function u in X0 satis�es |u′′(t)|6R′ for a.e. t ∈ I: This property is

the reason of the choice of X:
De�ne H :D × [0; 1] → X; H (u; �) = (1 − �)u0 + �A(u). We now check that all the assumptions

of Theorem 2.2 are satis�ed, where U is the d-interior of D in X:
Condition (i) follows from (3.3) since D⊂DR: By (3.2), since A(DR) is bounded in C1; we have

||H (u; �)− H (v; �)||1;∞6 ||H (u; �)− H (v; �)||1;∞ + ||H (v; �)− H (v; �)||1;∞
6 ||A(u)− A(v)||1;∞ + c′|�− �|6cd(u; v) + c′|�− �|; (3.4)

where c′ is a constant depending only on R: It follows that H is uniformly (d; �)-continuous, that
is (iii). By (3:1) and || : ||1;p6|| : ||1;∞; from (3.4) also follows (iv). Now, if in (3.4) we put u= v;
then we obtain

d(H (u; �); H (u; �))6 c0||H (u; �)− H (u; �)||1;p
6 c0||H (u; �)− H (u; �)||1;∞6c0c′|�− �|:

This proves (v).
It is clear that (ii) follows from (H3) if we prove that

u ∈ D and ||u||1;∞ ¡R implies u ∈ U: (3.5)

So let u ∈ D with ||u||1;∞ ¡R: We have to show that there exists r ¿ 0 such that v ∈ X and
||v− u||1;p ¡ r imply v ∈ DR: Suppose the contrary. Then, there is a sequence (uk)⊂X with ||uk −
u||1;p ¡ 1=k and uk 6∈ DR: Then, |uk(t)|¿R or |u′k(t)|¿R for some t ∈ I: On the other hand, if we
denote R0 = ||u||1;∞; then R0¡R and |u(t)|6R0; |u′(t)|6R0 for all t ∈ I: Consequently, for each k
there is at least one t such that:

(1) |uk(t)− u(t)|¿|uk(t)| − |u(t)|¿|uk(t)| − R0¿R− R0
or

(2) |u′k(t)− u′(t)|¿|u′k(t)| − |u′(t)|¿|u′k(t)| − R0¿R− R0:
We shall derive a contradiction by using the following result.

Lemma 3.2. Let � ∈ C1(I ;E): If |�(t)|¿a¿ 0 for some t ∈ I and |�′(t)|6M for all t ∈ I; then∫ 1

0
|�(s)| ds¿min{a=2; 3a2=(8M)}:
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I. First suppose that |u′k(t)−u′(t)|6R−R0 for all t ∈ I and for in�nitely many values of k: Then,
passing if necessary to a subsequence, we may assume that for any k; we have

|u′k(t)− u′(t)|6R− R0 for all t ∈ I and

|uk(t)− u(t)|¿R− R0 for at least one t:

Then, by Lemma 3.2, it follows that∫ 1

0
|uk(s)− u(s)| ds¿3(R− R0)=8¿ 0

for all k: This yields ||uk − u||1;p 9 0 as k → ∞; a contradiction.
II. In the opposite case to I, we may suppose that for any k, we have

|u′k(t)− u′(t)|¿R− R0 for at least one t:

Let �¿ 0: Since u; uk ∈ X; there are ũ; ũ k ∈ X0 such that

|ũ′k(t)− ũ′(t)|¿R− R0 for at least one t;∫ 1

0
|u′k(s)− ũ′k(s)| ds6�=2 and

∫ 1

0
|u′(s)− ũ′(s)| ds6�=2:

From ũ; ũ k ∈ X0; we also have

|ũ′′k(t)− ũ′′(t)|6|ũ′′k(t)|+ |ũ′′(t)|62R′ for all t ∈ I:

Then, by Lemma 3.2,∫ 1

0
|ũ′k(s)− ũ′(s)| ds¿C ¿ 0

for all k; where C depends only on R− R0 and R′: Thus, we have

C6
∫ 1

0
|ũ′k(s)− ũ′(s)| ds6�+

∫ 1

0
|u′k(s)− u′(s)| ds

6 �+ ||uk − u||1;p:
Hence ||uk − u||1;p¿C − � for all k: Choosing �¡C this yields ||uk − u||1;p 9 0 as k → ∞; a
contradiction.
Thus (3.5) holds and Theorem 2.2 can be applied.

Proof of Lemma 3.2. We have

||�(t)| − |�(s)||6|�(t)− �(s)|6M |t − s| for all t; s ∈ I: (3.6)

Two cases are possible:
(1) For all t ∈ I; |�(t)|¿a=2: Then, clearly,∫ 1

0
|�(s)| ds¿a=2:

(2) There are t1; t2 ∈ I with |�(t1)|= a=2; |�(t2)|= a and |�(t)| ∈ [a=2; a] for all t between t1 and
t2. Suppose t1¡t2: Then, if we choose t= t1 and s= t2 in (3.6), we get t2− t1¿a=(2M). Also, again
by (3.6),

|�(t)|¿|�(t2)| −M (t2 − t) = a−M (t2 − t) for all t ∈ [t1; t2]:
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Integration from t2 − a= (2M) to t2 yields∫ 1

0
|�(s)| ds¿

∫ t2

t2−a=(2M)
|�(s)| ds¿3a2=(8M):

Remark 3.3. In particular, if d is the metric on C1
B induced by || : ||1;p and in addition there is

r ∈ (0; R) such that in (H3), ||u||1;∞ ¡R − r for any solution of u = (1 − �)u0 + �A(u); �∈ [0; 1],
then the unique �xed point of A can be approximated by means of the iterative procedure described
in Section 2, where we may use this r and the �rst approximation x0 = u0.

Remark 3.4. For p = ∞; d and � are equivalent metrics on C1
B and Theorem 3.1 is a direct

consequence of Corollary 2.5.

Denote �BR = {u∈E; |u|6R}. Let f : I × �B
2
R → E. Recall that f is said to be Lp-Carath�eodory if

f(t; :) is continuous for a.e. t ∈ I ; f(:; u; v) is measurable for all (u; v)∈ �B2R and there exists h∈Lp(I)
such that |f(t; u; v)|6h(t) a.e. t ∈ I; whenever u; v∈ �BR. If f is continuous (resp., Lp-Carath�eodory),
then the operator

F(u)(t) = f(t; u(t); u′(t)); t ∈ I

is well de�ned from DR into C (resp., Lp) and a function u∈DR is a classical (resp., Carath�eodory)
solution of (1.1)–(1.2) if and only if u= A(u), where

A(u) = u0 + L−1F(u):

In order to state an existence and uniqueness principle for (1.1)–(1.2), we embed this problem
into an one-parameter family of problems

u′′ = �f(t; u; u′); t ∈ I; (3.7)

V1(u) = b1; V2(u) = b2; (3.8)

where �∈ [0; 1].

Theorem 3.5. Let f : I × �B
2
R → E. Assume that ||u0||1;∞ ¡R and the following conditions are

satis�ed:
(h1) f is continuous (resp.; f(:; u; v) is measurable for all (u; v)∈ �B2R and f(:; 0; 0)∈L∞(I ;E));
(h2) there exist numbers K0; K1¿0; function �∈L∞(I ; I) and p∈ (1;∞] such that

|f(t; u; v)− f(t; u; �v)|6�(t)[K0|u− u|+ K1|v− �v|] (3.9)

for a.e. t ∈ I and all u; u; v; �v∈ �BR; and

lp=K0

∫ 1

0

(∫ 1

0
|g(t; s)|q�(s)q ds

)p=q

dt

1=p

+K1

∫ 1

0

(∫ 1

0
|gt(t; s)|q�(s)q ds

)p=q

dt

1=p ¡ 1; (3.10)
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where 1=p+ 1=q= 1 (for p=∞;

l∞ = K0 max
t∈I

∫ 1

0
|g(t; s)|�(s) ds+ K1 max

t∈I

∫ 1

0
|gt(t; s)|�(s) ds):

(h3) if u∈DR solves (3:7)–(3:8) for some �∈ [0; 1]; then ||u||1;∞ ¡R.
Then (1.1)–(1.2) has a unique classical (resp.; Carath�eodory) solution in DR.

Proof. We shall apply Theorem 3.1. We �rst note that from (3.9) and f(·; 0; 0)∈L∞(I ;E), it follows
that f is L∞-Carath�eodory. Now we immediately see that the operator A(u) = u0 + L−1F(u) is well
de�ned from DR into W 2;p

B ; A(DR) is bounded with respect to || : ||1;∞ and that there is R′ ¿ 0 such
that |u′′(t)|6R′ a.e. on I; for any u∈A(DR). Hence condition (H1) is satis�ed.
Without loss of generality, we may assume that K0¿ 0 and K1¿ 0: Otherwise, we take K0 + �

and K1 + � instead of K0; K1 with �¿ 0 small enough that inequality (3.10) remain true. Then, we
de�ne a modi�ed Lp-norm on C1 by

||u||= K0||u||p + K1||u′||p:
Clearly, norms || : || and || : ||1;p are equivalent. Let d be the metric induced by || · || on C1

B. We now
check (3.2) and (3.3). Let u; v∈DR. Then using (3.9), we obtain

|A(u)(t)− A(v)(t)|6
∫ 1

0
|g(t; s)| |f(s; u(s); u′(s))− f(s; v(s); v′(s))| ds

6
∫ 1

0
|g(t; s)|�(s)(K0|u(s)− v(s)|+ K1|u′(s)− v′(s)|) ds

6

(∫ 1

0
|g(t; s)|q�(s)q ds

)1=q
||u− v||:

Also

|A(u)′(t)− A(v)′(t)|6
∫ 1

0
|gt(t; s)| |f(s; u(s); u′(s))− f(s; v(s); v′(s))| ds

6

(∫ 1

0
|gt(t; s)|q�(s)q ds

)1=q
||u− v||:

These clearly yield (3.2). By (3.10), they also imply (3.3), where l = lp. Hence (H2) is satis�ed
too. Finally (H3) follows from (h3) since a function u∈DR solves (3.7)–(3.8) if and only if u =
(1− �)u0 + �A(u). Thus, Theorem 3.1 can be applied.

Remark 3.6. (1) For p=∞ and �= 1; the result in Theorem 3.5 follows from [5, Theorem 3:6].
(2) We will compare the contraction condition lp ¡ 1 for p=∞ and p=2. Suppose V1(u)=u(0)

and V2(u)=u(1) and �=1. Then, direct computation yields l∞=K0=8+K1=2 while l2=K0=(3
√
10)+

K1=
√
6. Thus the contraction condition l2¡ 1 is less restrictive than l∞ ¡ 1.

(3) Other modi�ed Lp-norms on C1 are possible and are expected to relax the contraction condition
(3.10). For example, we may take the norm

||u||= K0|| u||p + K1|| u′||p;
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where  ∈C(I ;R∗
+). In this case, the contraction condition becomes

K0

∫ 1

0
 (t)p

(∫ 1

0
|g(t; s)|q�(s)q (s)−q ds

)p=q

dt

1=p

+K1

∫ 1

0
 (t)p

(∫ 1

0
|gt(t; s)|q�(s)q (s)−q ds

)p=q

dt

1=p ¡ 1

for p¡∞, and

K0 max
t∈I

∫ 1

0
 (t)|g(t; s)|�(s) (s)−1 ds

+K1 max
t∈I

∫ 1

0
 (t)|gt(t; s)|�(s) (s)−1 ds¡ 1

for p=∞.
For such tricks of contraction, we refer the interested reader to [3].
(4) Another interested choice of the norm || : ||, based on Wirtinger’s inequality, is possible in the

case of the homogeneous Dirichlet conditions u(0) = u(1) = 0, when C1
B is simply denoted by C1

0 .
There are well known: Wirtinger’s inequality

||u||261
� ||u

′||2; u∈C1
0 ; (3.11)

and Opial’s inequality (see [8] for example)∫ 1

0
|u(t)| |u′(t)| dt61

4

∫ 1

0
|u′(t)|2 dt; u∈C1

0 :

Also,

||L−1v||26 1
�2 ||v||2; v∈L2: (3.12)

Recall that �2 is here the �rst eigenvalue corresponding to the di�erential operator −u′′ and to the
Dirichlet boundary conditions. Now, if f : I × �B

2
R → E satis�es (h1), (h3) and the Lipschitz inequa-

lity (3.9) with �= 1; then the contraction condition (3.10) can be replaced by

K2
0

�4 +
K2
1

�2 +
K0K1
2�2 ¡ 1: (3.13)

Indeed, if we choose as d the metric on C1
0 induced by the norm ||u||=||u′||2, then all the assumptions

of Theorem 3.1 are satis�ed for p= 2. For example, (3.3) follows by (3.11)–(3.12):

d(A(u); A(v)) = ||(L−1(F(u)− F(v)))′||2
= {(F(v)− F(u); L−1(F(u− F(v)))2}1=261

� ||F(u)− F(v)||2

6
1
�

[∫ 1

0
(K0|u− v|+ K1|u′ − v′|)2 dt

]1=2
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6
1
�

[
K2
0 ||u− v||22 + K2

1 ||u′ − v′||22 +
K0K1
2

||u′ − v′||22
]1=2

6

(
K2
0

�4 +
K2
1

�2 +
K0K1
2�2

)1=2
||u′ − v′||2 =

(
K2
0

�4 +
K2
1

�2 +
K0K1
2�2

)1=2
d(u; v):

We mention that (3.13) was obtained by Hai and Schmitt [3] and used in case that f is de�ned on
the entire set I × E2 (see also the paper of Mawhin [7]). Therefore, our technique based on the use
of two metrics makes possible that certain results involving conditions derived when working with
energy Lp-norms can be extended to the case where f is de�ned, or has the required properties,
only on a bounded region.
(5) As we have already remarked, for p =∞, Theorem 3.1 is a consequence of Corollary 2.5.

For an arbitrary p¡∞, according to the second proof of Lemma 2.1, we could think to use also
Corollary 2.5, working in the completion of C1

B with respect to d. For example, when B means
u(0) = u(1) = 0, the completion of C1

0 is the Sobolev space W 1;p
0 (I ;E). It is easily seen that such

an approach has a major impediment, namely the bounded domain of A.
(6) In case that f is independent of u′ and Vj; j=1; 2; are linear continuous from C into E; we can

regard A as a mapping from D0
R= {u∈CB; ||u||∞6R} ⊂CB into CB, where CB= {u∈C; Vj(u)=

bj; j = 1; 2}. This leads variants of Theorems 3.1 and 3.5 in which all reference to u′ is dropped
and the norms || : ||∞; || : ||p are used instead of || : ||1;∞ and || : ||1;p respectively.

Example. Consider the boundary value problem

u′′ = f(u); t ∈ I;
u(0) = u(1) = 0: (3.14)

Assume that for some R¿ 0; f∈C( �BR;E),

sup{|f(u)|; |u|6R}68R
and there exists K0¡ 3

√
10 such that

|f(u)− f(v)|6K0|u− v| for all u; v∈ �BR:

Then (3.14) has a unique solution (with sup-norm at most R). If in addition,

sup{|f(u)|; |u|6R}¡ 8(R− r)

for some 0¡r¡R; then the unique solution can be approximated by the iterative procedure de-
scribed in Section 2, where: l=K0=(3

√
10); x0 ≡ 0; H (:; �)= �A and d is the metric on C0 induced

by || : ||2. According to Remark 2.4, since || : ||26|| : ||∞, it su�ces that the estimates in the iterative
procedure be made with respect to metric � induced by || : ||∞.

The above example shows in what way the continuation principle for contractions applies to
problems with superlinear nonlinearity provided that a Lipschitz condition holds in some bounded
set. In particular, problem (3.14) for E = R and f(u) = −eu which comes from thermodynamics,
was discussed in [5].



R. Precup / Journal of Computational and Applied Mathematics 113 (2000) 267–281 281

References

[1] J.A. Gatica, W.A. Kirk, Fixed point theorems for contraction mappings with applications to nonexpansive and
pseudo-contractive mappings, Rocky Mountain J. 4 (1974) 69–79.

[2] A. Granas, Continuation method for contractive maps, Topol. Methods Nonlinear Anal. 3 (1994) 375–379.
[3] D.D. Hai, K. Schmitt, Existence and uniqueness results for nonlinear boundary value problems, Rocky Mountain J.

24 (1994) 77–91.
[4] J.L. Kelley, General Topology, Van Nostrand, Princeton, 1964.
[5] J.W. Lee, D. O’Regan, Existence principles for di�erential equations and systems of equations, in: A. Granas,

M. Frigon (Eds.), Topological Methods in Di�erential Equations and Inclusions, Kluwer, Dordrecht, 1995, pp.
239–289.

[6] M.G. Maia, Un’obsservazione sulle contrazioni metriche, Rend. Sem. Mat. Univ. Padova 40 (1968) 139–143.
[7] J. Mawhin, Two point boundary value problems for nonlinear second order di�erential equations in Hilbert space,

Tôhoku Math. J. 32 (1980) 225–233.
[8] D.S. Mitrinovic, Analytic Inequalities, Springer, Berlin, 1970.
[9] R.E. Moore, Computational Functional Analysis, Ellis Horwood Ltd., Chichester; Halsted Press, Wiley, New York,

1985.
[10] B. Petracovici, Nonlinear two point boundary value problems, in: Seminar on Di�erential Equations, “Babe�s-Bolyai”

University, Faculty of Mathematics and Physics, Research Seminars, Preprint No. 3, 1989, pp. 1–12.
[11] R. Precup, A �xed point theorem of Maia type in syntopogenous spaces, in: Seminar on Fixed Point Theory,

“Babe�s-Bolyai” University, Faculty of Mathematics and Physics, Research Seminars, Preprint No. 3, 1988, pp.
49–70.

[12] I.A. Rus, On a �xed point theorem of Maia, Studia Univ. Babe�s-Bolyai Math. 22 (1) (1977) 40–42.


