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1 Introduction

In our recent paper [9], Granas’ continuation principle [2] (see also [8]) for
contractive mappings on complete metric spaces was extended to spaces en-
dowed with two metrics, and completed by an iterative approximation pro-
cedure in the spirit of [5, Ch. 19]. The result was used to discuss existence,
uniqueness and iterative approximation of solutions to some boundary value
problems for second order ordinary differential equations in a ball of a Ba-
nach space. In this specific case the two metrics were induced by a complete
max-norm and an incomplete Lp-norm, respectively. The contraction con-
dition was required with respect to the Lp-norm, which in general is less
restrictive than with respect to the max-norm.

The purpose of this paper is to extend the use of the above technique to
Urysohn integral equations of the form

u (t) =
∫ T

0
f (t, s, u (s)) ds, t ∈ [0, T ] , (1.1)
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in a Banach space (E, | . |) ; here the integral is understood in the sense of
Bochner (see [10]). We look for solutions in C ([0, T ] ;B) , where B is the
closed ball {x ∈ E; |x| ≤ R} .

For various results and methods on such equations in finite and infinite
dimensions we refer the reader to [1], [4], [6] and [7].

In the present paper, the approach to (1.1) is based on the following
continuation principle accompanying Banach contraction principle.

([9]) Let (X, δ) be a complete metric space and d another metric on
X. Let D ⊂ X be δ-closed and U a d-open set of X with U ⊂ D. Let
H : D × [0, 1] → X and assume that the following conditions are satisfied:

(i) there is l ∈ [0, 1) such that

d (H (x, λ) , H (y, λ)) ≤ l d (x, y)

for all x, y ∈ D and λ ∈ [0, 1] ;

(ii) H (x, λ) ̸= x for all x ∈ D \ U and λ ∈ [0, 1] ;

(iii) H is uniformly (d, δ)-continuous;

(iv) H is (δ, δ)-continuous;

(v) H (x, λ) is d-continuous in λ, uniformly for x ∈ U, i.e. for each ε > 0
and λ ∈ [0, 1] , there is ρ > 0 such that d (H (x, λ) , H (x, µ)) < ε
whenever x ∈ U and |λ− µ| < ρ.

In addition suppose that H0 has a fixed point. Then, for each λ ∈
[0, 1] , there exists a unique fixed point x (λ) of Hλ := H ( . , λ) . Moreover,
x (λ) depends d-continuously on λ and there exists 0 < r ≤ ∞, integers
m, n1, n2, ..., nm−1 and numbers 0 < λ1 < λ2 < ... < λm−1 < λm = 1 such
that for any x0 ∈ X satisfying d (x0, x (0)) ≤ r, the sequences (xj,k)k≥0,
j = 1, 2, ..., m,

x1,0 = x0
xj,k+1 = Hλj

(xj,k), k = 0, 1, ...
xj+1,0 = xj,nj

, j = 1, 2, ..., m− 1

are well defined and satisfy

d(xj,k, x(λj)) ≤
lk

1− l
d(xj,0, Hλj

(xj,0)) (k ∈ N)
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and
δ(xj,k, x(λj)) → 0 as k → ∞.

Throughout this paper we use the following notation:

∥u∥p =
(∫ T

0
|u (s)|p ds

)1/p

(u ∈ Lp ([0, T ] ;E) , 1 ≤ p <∞)

and

∥u∥∞ = inf {M ≥ 0; |u (t)| ≤M fora.e.t ∈ [0, T ]} (u ∈ L∞ ([0, T ] ;E)) .

It is clear that if u ∈ C ([0, T ] ;E) , then ∥u∥∞ = max
t∈[0,T ]

|u (t)| . When it will

be important, we shall denote ∥ . ∥p also by ∥ . ∥Lp([0,T ];E) .
We shall denote C ([0, T ] ;E) shortly by C. Let w : [0, T ] → R+ be

continuous at 0 and w (0) = 0. By Cw we mean the set

Cw = {u ∈ C; |u (t)− u (s)| ≤ w (|t− s|) forall t, s ∈ [0, T ]} .

2 Results

First we prove a general existence and uniqueness fixed point result in a
bounded region of the space C. It is of the same type as Theorem 3.1 [9].

Let K ⊂ C be closed and convex, R > 0 and A : KR → K, where
KR = {u ∈ K; ∥u∥∞ ≤ R} . Let w : [0, T ] → R+ be continuous at 0 with
w (0) = 0 and let u0 ∈ K ∩ Cw with ∥u0∥∞ < R. Suppose

(H1) A (KR) is bounded in (C, ∥ . ∥∞) and A (KR) ⊂ Cw ;

(H2) there exists a metric d on K equivalent to the metric induced by
∥ . ∥p satisfying

d (u, v) ≤ c0 ∥u− v∥p (2.1)

for all u, v ∈ K and some c0 > 0, such that

∥A (u)− A (v)∥∞ ≤ c d (u, v) (2.2)

and
d (A (u) , A (v)) ≤ l d (u, v) (2.3)

for all u, v ∈ KR and some c > 0, l ∈ [0, 1);
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(H3) for each λ ∈ (0, 1) , each possible solution u ∈ KR of equation u =
(1− λ)u0 + λA (u) is such that ∥u∥∞ < R.

Then A has a unique fixed point in KR.
ProofWe shall apply Theorem 1.1. Let δ be the metric induced by ∥ . ∥∞

on K. Since K is closed, (K, δ) is a complete metric space. Let

X0 = co {{u0} ∪ A (KR)} .

Since u0 ∈ K, A (KR) ⊂ K and K is convex, we have X0 ⊂ K. Let X be
the δ-closure of X0 and let D = X ∩KR. Obviously, D is δ-closed in X.

Notice u0 ∈ Cw and A (KR) ⊂ Cw imply X ⊂ Cw.
Let H : D × [0, 1] → X be given by H (u, λ) = (1− λ)u0 + λA (u) and

let U be the d-interior of D in X.
Check of (i) is immediate from (2.3).
Check of (ii): According to (H3) it is sufficient to show that

u ∈ D and ∥u∥∞ < R imply u ∈ U. (2.4)

To see this, let u ∈ D with ∥u∥∞ < R. Then (2.4) will be proved once we
show that there exists r > 0 such that v ∈ X and ∥u− v∥p < r imply
v ∈ KR. Assume the contrary. Then there exists a sequence (uk) ⊂ X with
∥uk − u∥p < 1/k and uk ̸∈ KR. Then, |uk (t)| > R for some t ∈ [0, T ]
(depending on k). Let R0 = ∥u∥∞ . We have R0 < R and |u (t)| ≤ R0 for
all t ∈ [0, T ] . Hence, for each k there is a t ∈ [0, T ] with

|uk (t)− u (t)| ≥ |uk (t)| − |u (t)| ≥ |uk (t)| −R0 > R−R0. (2.5)

In order to derive a contradiction, we use the following lemma:
Let W : [0, T ] → R+ be continuous at t = 0 with W (0) = 0 and let

a > 0. Then, there exists b > 0 only depending on W and a, such that∫ T

0
|χ (s)| ds ≥ b (2.6)

for any χ ∈ CW with |χ (t)| ≥ a for at least one t ∈ [0, T ] .
Now we apply Lemma 2.2 to χ = uk − u, a = R − R0 and W = 2w

(notice u0, u ∈ Cw implies uk − u ∈ C2w). It follows that∫ T

0
|uk (s)− u (s)| ds ≥ b > 0,
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where b does not depend on k. Consequently, ∥uk − u∥p ̸→ 0 as k → ∞,
which is a contradiction. Therefore (ii) also holds.

Check of (iii): Using (2.2) and the boundedness of A (KR) we obtain

∥H (u, λ)−H (v, µ)∥∞ ≤ ∥H (u, λ)−H (v, λ)∥∞ + ∥H (v, λ)−H (v, µ)∥∞

≤ ∥A (u)− A (v)∥∞ + c′ |λ− µ| ≤ c d (u, v) + c′ |λ− µ| ; (2.7)

here c′ is a constant depending only on R. This shows that H is uniformly
(d, δ)-continuous.

Check of (iv): Use (2.7) and take into account (2.1) and ∥ . ∥p ≤ ∥ . ∥∞ .
Check of (v): Put v = u in (2.7) and use again (2.1) to obtain

d (H (u, λ) , H (u, µ)) ≤ c0 ∥H (u, λ)−H (u, µ)∥p

≤ c0 ∥H (u, λ)−H (u, µ)∥∞ ≤ c0c
′ |λ− µ| .

Thus all the assumptions of Theorem 1.1 are satisfied. End Proof

Proof of Lemma 2.2. Since χ ∈ CW , we have

||χ (t)| − |χ (s)|| ≤ |χ (t)− χ (s)| ≤ W (|t− s|) . (2.8)

If |χ (t)| ≥ a/2 for all t ∈ [0, T ] , then∫ T

0
|χ (s)| ds ≥ aT/2.

If not, we may find t1, t2 ∈ [0, T ] with |χ (t1)| = a/2, |χ (t2)| = a and
|χ (t)| ∈ [a/2, a] for all t between t1 and t2. Suppose t1 < t2. Then, from
(2.8) with t = t1 and s = t2, we see that W (t2 − t1) ≥ a/2. Now W being
continuous at t = 0, there exists δ > 0 with W (t) < a/2 on [0, δ). Then
t2 − t1 ≥ δ and so∫ T

0
|χ (s)| ds ≥

∫ t2

t1
|χ (s)| ds ≥ (t2 − t1) a/2 ≥ aδ/2.

Thus (2.6) holds with b = min {aT/2, aδ/2} . End Proof
We have the following existence and uniqueness principle for (1.1).
Let f : [0, T ]2 ×B → E. Suppose

(h1) for any t ∈ [0, T ] and x ∈ B, the mapping f (t, . , x) is strongly
measurable and f (t, . , 0) ∈ L1 ([0, T ] ;E) ;

5



(h2) there exists ϕ : [0, T ]2 → R+ and q ∈ [1,∞] such that
themapping t 7−→ ϕ (t, . ) (alsodenotedby ϕ)belongsto
L∞ ([0, T ] ; Lq [0, T ]) and
∥ϕ∥Lp([0,T ]; Lq [0,T ]) < 1 (1/p+ 1/q = 1)

(2.9)

and
|f (t, s, x)− f (t, s, y)| ≤ ϕ (t, s) |x− y| (2.10)

for a.e. s ∈ [0, T ] , all x, y ∈ B and each t ∈ [0, T ] ;

(h3) there exists w : [0, T ] → R+ bounded, continuous at 0 and with
w (0) = 0, such that∫ T

0
sup
|x|≤R

|f (t, s, x)− f (t′, s, x)| ds ≤ w (|t− t′|) (2.11)

for all t, t′ ∈ [0, T ] ;

(h4) for each λ ∈ (0, 1) , each possible solution u ∈ KR of equation

u (t) = λ
∫ T

0
f (t, s, u (s)) ds, t ∈ [0, T ] (2.12)

is such that ∥u∥∞ < R.

Then (1.1) has a unique solution in KR.
ProofThe result follows from Theorem 2.1; here K = C, u0 = 0 and

A : CR → C is given by

A (u) (t) =
∫ T

0
f (t, s, u (s)) ds. (2.13)

First we prove that A is well-defined (i.e. A (u) ∈ C) and A (CR) ⊂ Cw.
For this, we use the following estimate

|f (t, s, x)| ≤ |f (t, s, x)− f (t, s, 0)|+ |f (t, s, 0)|

≤ ϕ (t, s) |x|+ |f (t, s, 0)| ≤ Rϕ (t, s) + |f (t, s, 0)| . (2.14)

Since ϕ (t, . ) ∈ Lq [0, T ] ⊂ L1 [0, T ] and f (t, . , 0) ∈ L1 ([0, T ] ;E) , from
(2.14) we see that f (t, . , u ( . )) is Bochner integrable on [0, T ] and so the
integral in (2.13) makes sense. Furthermore, from (2.11),

|A (u) (t)− A (u) (t′)| ≤
∫ T

0
|f (t, s, u (s))− f (t′, s, u (s))| ds
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≤ w (|t− t′|) → 0 as t′ → t.

Hence A (u) ∈ Cw. Now

|A (u) (t)| ≤
∫ T

0
|f (t, s, u (s))| ds ≤

∫ T

0
|f (t, s, u (s))− f (0, s, u (s))| ds

+
∫ T

0
|f (0, s, u (s))− f (0, s, 0)| ds+

∫ T

0
|f (0, s, 0)| ds

≤
∫ T

0
sup
|x|≤R

|f (t, s, x)− f (0, s, x)| ds+
∫ T

0
[Rϕ (0, s) + |f (0, s, 0)|] ds

≤ sup
τ∈[0,T ]

w (τ) +
∫ T

0
[Rϕ (0, s) + |f (0, s, 0)|] ds <∞.

This clearly shows that A (CR) is bounded. Therefore (H1) holds.
Next we prove that (H2) is satisfied if d is the metric induced by ∥ . ∥p

on C. Let u, v ∈ CR. Then, using (2.10) and Hölder’s inequality, we obtain

|A (u) (t)− A (v) (t)| ≤
∫ T

0
|f (t, s, u (s))− f (t, s, v (s))| ds

≤
∫ T

0
ϕ (t, s) |u (s)− v (s)| ds ≤ ∥ϕ (t, . )∥q ∥u− v∥p .

Consequently

∥A (u)− A (v)∥∞ ≤ ∥ϕ∥L∞([0,T ];Lq [0,T ]) ∥u− v∥p

which proves (2.2). Also

∥A (u)− A (v)∥p ≤ ∥ϕ∥Lp([0,T ];Lq [0,T ]) ∥u− v∥p

which proves (2.3).
Finally (H3) is exactly (h4). End Proof
Now we shall specialize Theorem 2.3 for the case of the Hammerstein

equation

u (t) =
∫ T

0
k (t, s) g (s, u (s)) ds, t ∈ [0, T ] . (2.15)

Let k : [0, T ]2 → R and g : [0, T ]×B → E. Suppose

(a) for any x ∈ B, g ( . , x) is strongly measurable and g ( . , 0) ∈ Lα ([0, T ] ;E)
for some α ∈ [1,∞] ;
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(b) there exists ψ ∈ Lα [0, T ] such that

|g (s, x)− g(s, y)| ≤ ψ (s) |x− y|

for a.e. s ∈ [0, T ] and all x, y ∈ B;

(c) the mapping t 7−→ k (t, . ) belongs to C
(
[0, T ] ;Lβ [0, T ]

)
(1/α+1/β =

1/q, 1 ≤ q ≤ ∞) and

∥ϕ∥Lp([0,T ];Lq [0,T ]) < 1,

where ϕ (t, s) = k (t, s)ψ (s) and 1/p+ 1/q = 1;

(d) for each λ ∈ (0, 1) , each possible solution u ∈ CR of equation

u (t) = λ
∫ T

0
k (t, s) g (s, u (s)) ds, t ∈ [0, T ] (2.16)

is such that ∥u∥∞ < R.

Then (2.15) has a unique solution in CR.
ProofIt is easy to check that all the assumptions of Theorem 2.3 are

satisfied with

f (t, s, x) = k (t, s) g (s, x) and ϕ (t, s) = |k (t, s)|ψ (s) ;

here w (δ) is the continuity modulus of the mapping t 7−→ k (t, . ) from
[0, T ] to Lβ [0, T ] , multiplied by a suitable positive constant. End Proof

We note that Theorem 3.3 in [9] is a direct consequence of Corollary 2.4.
Finally we provide an application of Corollary 2.4 to the Dirichlet bound-

ary value problem {
−u′′ = g (t, u) , 0 < t < T
u (0) = u (T ) = 0.

(2.17)

Let G be the Green’s function

G (t, s) =

{
t (T − s) /T, 0 ≤ t ≤ s ≤ T
s (T − t) /T, 0 ≤ s ≤ t ≤ T.

(2.18)

Let R > 0 and g : [0, T ]× [−R,R] → R continuous. Suppose
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(j) there exists ψ ∈ C [0, T ] such that

|g (s, x)− g (s, y)| ≤ ψ (s) |x− y|

for all s ∈ [0, T ] and x, y ∈ [−R,R] ;

(jj) there exists q ∈ [1,∞] such that

∥ϕ∥Lp([0,T ];Lq [0,T ]) < 1,

where ϕ (t, s) = G (t, s)ψ (s) and 1/p+ 1/q = 1;

(jjj) g (s,−R) > 0 and g (s,R) < 0 for all s ∈ [0, T ] .

Then (2.17) has a unique solution satisfying |u (t)| ≤ R for all t ∈ [0, T ] .
Indeed, it is well known that (2.17) is equivalent to the integral equation

(2.15), where k = G. It is clear that the assumptions (j)-(jj) guarantee (a)-
(c). To show (d), let u be a solution of (2.16). We claim that ∥u∥∞ < R.
Indeed, if ∥u∥∞ = R, then since u (0) = u (T ) = 0, there exists t0 ∈
(0, T ) with |u (t0)| = R. If u (t0) = R, then u′ (t0) = 0 and u′′ (t0) ≤ 0.
Since −u′′ = λg (t, u) , we deduce that g (t0, R) ≥ 0, a contradiction to
(jjj). Similarly, if u (t0) = −R, then u′ (t0) = 0 and u′′ (t0) ≥ 0. Hence
g (t0,−R) ≤ 0, again a contradiction to (jjj). Thus our claim is proved and
Corollary 2.4 applies.

Now choose for the above example: q = α = 1 and p = β = ∞. Routine
calculation gives

max
t∈[0,T ]

∫ T

0
G (t, s) ds = max

t∈[0,T ]
t (T − t) /2 = T 2/8.

Then (jj) is satisfied if
T 2 ∥ψ∥∞ /8 < 1.

We may think that the existence and uniqueness of the solution could be
directly obtained from Banach’s contraction theorem. This is true if the
map A : CR → C given by

A (u) (t) =
∫ T

0
G (t, s) g (s, u (s)) ds

satisfies
A (CR) ⊂ CR. (2.19)
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For any u ∈ CR, by (j), we have

|A (u) (t)| ≤
∫ T

0
G (t, s) |g (s, u (s))| ds

≤
∫ T

0
G (t, s) [ψ (s) |u (s)|+ |g (s, 0)|] ds

≤ [∥ψ∥∞R + ∥g ( . , 0)∥∞]T 2/8.

Thus, if
[∥ψ∥∞R + ∥g ( . , 0)∥∞]T 2/8 ≤ R, (2.20)

then (2.19) holds and the conclusion follows from Banach’s contraction prin-
ciple. This is not the case when (2.20) does not hold.

For much more about the ”a priori” bounds technique guarantying con-
ditions like (d) we refer the reader to [3].
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