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Abstract: The continuation theorem for contractive mappings on spaces
endowed with two metrics is used to obtain existence, uniqueness and itera-
tive approximation results for nonlinear integral equations in Banach spaces.
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1 Introduction

In our recent paper [9], Granas’ continuation principle [2] (see also [8]) for
contractive mappings on complete metric spaces was extended to spaces en-
dowed with two metrics, and completed by an iterative approximation pro-
cedure in the spirit of [5, Ch.19]. The result was used to discuss existence,
uniqueness and iterative approximation of solutions to some boundary value
problems for second order ordinary differential equations in a ball of a Ba-
nach space. In this specific case the two metrics were induced by a complete
max-norm and an incomplete LP-norm, respectively. The contraction con-
dition was required with respect to the LP-norm, which in general is less
restrictive than with respect to the max-norm.

The purpose of this paper is to extend the use of the above technique to
Urysohn integral equations of the form

w(t) = /()Tf(t,s,u(s))ds, te 0,7, (1.1)
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in a Banach space (E, |.|); here the integral is understood in the sense of
Bochner (see [10]). We look for solutions in C'([0,7]; B), where B is the
closed ball {x € F; |z| < R}.

For various results and methods on such equations in finite and infinite
dimensions we refer the reader to [1], [4], [6] and [7].

In the present paper, the approach to (1.1) is based on the following
continuation principle accompanying Banach contraction principle.

([9]) Let (X, d) be a complete metric space and d another metric on
X. Let D C X be d-closed and U a d-open set of X with U C D. Let
H:D x[0,1] - X and assume that the following conditions are satisfied:

(i) thereis [ €[0,1) such that
d(H (z,A), H(y,A) <ld(z,y)
for all z, y € D and \ € [0,1];
(i) H(z,A\) #x forall x € D\U and X € [0,1];
(iii) H is uniformly (d, §)-continuous;
(iv) H is (0, 6)-continuous;

(v) H(x,)\) is d-continuous in A, uniformly for = € U, i.e. for each € > 0
and A € [0,1], there is p > 0 such that d(H (x,\), H (z,u)) < ¢
whenever x € U and |\ — p| < p.

In addition suppose that Hy has a fixed point. Then, for each \ &€
[0,1], there exists a unique fixed point x (\) of Hy := H (.,\). Moreover,
x (A) depends d-continuously on A and there exists 0 < r < oo, integers
m, Ny, Na, ..., Ny—1 and numbers 0 < A < Ay < ... < A1 < Ay, = 1 such
that for any xy € X satistying d(x¢, 2 (0)) < r, the sequences (z;x)i>0,
j=12 ..., m,

T1,0 = Zo
Tjk+1 = H,\j (.CCj’k), k= 0, 17
Tj41,0 = .%j’nj, ] = 1, 2, vy M — 1

are well defined and satisfy
lk

1—

d(zjr, T(A))) < ld(l‘j,m Hy,(zj0)) (k€N)



and
ik, z(Aj)) >0 ask — oo.

Throughout this paper we use the following notation:

Jull, = (/0T|u<s>|”ds)1/p (we L (0.7):E), 1< p < o0)

and
ull, =inf {M >0; |u(t)] < M fora.ete€[0,T]} (ue L>([0,T];E)).
It is clear that if w € C'([0,T]; E), then |ul = n%éa% lu (t)]. When it will
tefo,

be important, we shall denote ||. ||, also by |[. {1507 &) -
We shall denote C([0,7]; E) shortly by C. Let w : [0,7] — R, be
continuous at 0 and w (0) = 0. By C,, we mean the set

Co={uel; |lu(t)—u(s) <w(|t—-s|) forallt,se[0,T]}.

2 Results

First we prove a general existence and uniqueness fixed point result in a
bounded region of the space C. It is of the same type as Theorem 3.1 [9].

Let K C C be closed and convex, R > 0 and A : Kr — K, where
Krp={ue K; |lul|, < R}. Let w:[0,7] = Ry be continuous at 0 with
w(0) =0 and let up € KNC, with |ugl|, < R. Suppose

(H1) A(Kg) is bounded in (C, ||.|,) and A (Kg) C Cy;

H2) there exists a metric d on K equivalent to the metric induced b
Yy
.1, satisfying

d(u, v) < collu—2, (2.1)
for all u, v € K and some ¢y > 0, such that
[A(u) = A()[l < cd(u, v) (2.2)
and
d(A(u), Aw)) <ld(u,v) (2.3)

for all u, v € Kr and some ¢ >0, [ € [0,1);
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(H3) for each X € (0,1), each possible solution u € Kp of equation u =
(1 — A up + AA (u) is such that [ju|_ < R.

Then A has a unique fixed point in K.
ProofWe shall apply Theorem 1.1. Let § be the metric induced by || .||
on K. Since K is closed, (K, §) is a complete metric space. Let

Xo = co{{up} UA(KR)}.

Since ug € K, A(Kg) C K and K is convex, we have Xy C K. Let X be
the d-closure of Xy and let D = X N Kg. Obviously, D is d-closed in X.

Notice uy € C,, and A(Kg) C C, imply X C C,.

Let H:D x[0,1] = X be given by H (u,\) = (1 — X)up + AA (u) and
let U be the d-interior of D in X.

Check of (i) is immediate from (2.3).

Check of (ii): According to (H3) it is sufficient to show that

ue Dand ||ul|, <R imply uel. (2.4)

To see this, let w € D with [Ju|l, < R. Then (2.4) will be proved once we
show that there exists 7 > 0 such that v € X and [ju—v|[, < r imply
v € K. Assume the contrary. Then there exists a sequence (uy) C X with
|ug —ull, < 1/k and w, ¢ Kg. Then, [ug(t)] > R for some ¢ € [0,7]
(depending on k). Let Ry = ||ul|,,. We have Ry < R and |u(t)| < R, for
all t € [0,7]. Hence, for each k thereis a ¢t € [0,7] with

Jun (8) = w ()] = Jur ()] = [u(8)] = |ux ()] = Bo > R — Ro. (2.5)

In order to derive a contradiction, we use the following lemma:
Let W :[0,7] — Ry be continuous at ¢ = 0 with W (0) = 0 and let
a > 0. Then, there exists b > 0 only depending on W and a, such that

T
| x@)lds > (26)
0
for any x € Cy with |x (t)] > a for at least one ¢ € [0,T].

Now we apply Lemma 2.2 to y = ux —u, a = R— Ry and W = 2w
(notice ug, u € Cy, implies uy —u € Cy,). It follows that

[t (5) — uts) ds = b >0,
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where b does not depend on k. Consequently, [lu —ull, # 0 as k — oo,
which is a contradiction. Therefore (ii) also holds.
Check of (iii): Using (2.2) and the boundedness of A (Kpg) we obtain

1 (u, ) = H (v, )l < [[H (u, ) = H (0, N[ + [[H (v, A) = H (v, )|

<A@ =AWl + A —pl <ed(u, v) + A =pl; (2.7)

here ¢ is a constant depending only on R. This shows that H is uniformly
(d, §)-continuous.
Check of (iv): Use (2.7) and take into account (2.1) and || ||, <. |l
Check of (v): Put v =wu in (2.7) and use again (2.1) to obtain

d(H (u,\), H(u,p)) < co|lH (u,\) = H (u, )],

< co|[H (u,A) = H (u, p) || < coc’ |A — .
Thus all the assumptions of Theorem 1.1 are satisfied. End Proof

Proof of Lemma 2.2. Since x € Cy, we have

I O] = Ix (I < e (@) = x ()] < W ([t =) (2.8)
If [x(¢t)| >a/2 forall t €[0,T], then

/OT Ix (s)|ds > aT/2.

If not, we may find ¢y, to € [0,7] with |x (¢t1)] = a/2, |x(t2)] = a and
Ix (t)] € [a/2, a] for all ¢ between ¢, and ty. Suppose t; < t5. Then, from
(2.8) with t =t; and s = t9, we see that W (t3 — t1) > a/2. Now W being
continuous at ¢ = 0, there exists § > 0 with W (¢) < a/2 on [0,9). Then
ty —t1 >0 and so

/ |ds>/ ()| ds > (ta — t1) a/2 > ad /2.
Thus (2.6) holds with b = min {a7'/2,ad/2} . End Proof
We have the following existence and uniqueness principle for (1.1).

Let f:[0,7]> x B — E. Suppose

(h1) for any t € [0,7] and = € B, the mapping f (¢, .,z) is strongly
measurable and f (¢, .,0) € L' ([0,T]; E);
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(h2) there exists ¢ : [0,7]° = R, and ¢ € [1,00] such that

L>([0,T]; L]0, T)) and (2.9)

{ themappingt — ¢ (t, .) (alsodenotedby ¢)belongsto
101l Logo7y; ooy < 1 (1/p+1/qg=1)

and
|f(ts,2) = f(t,s,9)] <o (L, s) |z —yl (2.10)
for a.e. s €[0,7], all x, y € B and each t € [0,T];
(h3) there exists w : [0,7] — Ry bounded, continuous at 0 and with
w (0) = 0, such that

/OT sup |f (hs,2) — f(trs,2)|ds <w(lt—¢])  (211)

lz|<R
for all t, ¢ € [0,7T];
(h4) for each X € (0,1), each possible solution u € Kg of equation
= )\/ f(t, s,u(s))ds, tel0,T] (2.12)

is such that [ju|l < R

Then (1.1) has a unique solution in Kg.
ProofThe result follows from Theorem 2.1; here K = C, ug = 0 and
A:Cr — C is given by
T
:/ F(ts,u(s))ds. (2.13)
0

First we prove that A is well-defined (i.e. A(u) € C') and A (Cr) C C,.
For this, we use the following estimate

|f(t,8,$)’ < |f(t,5,.’13) _f(tvsa())l_'_‘f(tvsv )|

<ot s) el +1f (t5,0)] < RO (L, 5) + | (¢5,0)]. (2.14)
Since ¢ (t,.) € L9[0,T] c L*[0,T] and f(t,.,0) € L'([0,T];E), from
(2.14) we see that f (¢, .,u(.)) is Bochner integrable on [0,7] and so the

integral in (2.13) makes sense. Furthermore, from (2.11),

A (1)~ AW () < [ 1t 5.u(5)) = F (50 ()] ds

6



<w(t—=*t]) =0 as t' —t.
Hence A (u) € Cy,. Now

A O1< [ 17 Gsu@lds < [ 17 (ts.u(s) ~ £ 0.5.u(5)]ds

T T
+/0 |f(0,s,u(s))—f(0,5,0)|ds+/0 1£(0,5,0)|ds
< [ s I (ts.0) — £ O.5.00ds + [ [RO(0.5) +17 (0.5, 0))ds

0 |zI<R

< sup w(r +/ [Ro (0,) +|f(0,s,0)]] ds < oc.

7€[0,T

This clearly shows that A (Cg) is bounded. Therefore (H1) holds.
Next we prove that (H2) is satisfied if d is the metric induced by ||. ||,
on C. Let u, v € Cg. Then, using (2.10) and Holder’s inequality, we obtain

rwaw—Awﬂms[fvmau@»—fmav@n@

< [ ott5) huls) ~ v (s)lds < g 6, )l Jlu = ol
Consequently
IA (u) = A ()l <10l L o,17; Lojo,y) 12 = 0l
which proves (2.2). Also

1A (u) = A @), < N6l 1o ory: ooy = oll,

which proves (2.3).

Finally (H3) is exactly (h4). End Proof

Now we shall specialize Theorem 2.3 for the case of the Hammerstein
equation

T
w(t) :/ k(t,s) g (s,u(s))ds, tel0,T]. (2.15)
0
Let & : [O,T]2 — R and ¢:1[0,7] x B — E. Suppose

(a) forany = € B, g(.,z) is strongly measurable and ¢ (.,0) € L*([0,T]; E)
for some « € [1, oo] ;



(b) there exists ¢ € L*[0,7] such that

9 (s,2) = g(s,y)| <9 (s) [z =y
for a.e. s €[0,7] and all z, y € B;
(c) the mapping ¢ — k (t, .) belongs to C ([O,T] ; LP [O,T]) (1/a+1/8 =
1/q, 1 < ¢ <o00) and
180l o o7); 9.y < 1
where ¢ (t,s) =k (t,s)¢(s) and 1/p+1/q¢=1;

(d) for each X\ € (0,1), each possible solution u € Cr of equation
T
MﬂzA/k@@M@m@D%,teMT] (2.16)
0

is such that [jul_ < R.

Then (2.15) has a unique solution in Ch.
Prooflt is easy to check that all the assumptions of Theorem 2.3 are
satisfied with

f(t,s,x)=Fk(t,s)g(s,x) and ¢ (t,s) = |k (t,s)| ¢ (s);

here w (9) is the continuity modulus of the mapping ¢ —— k(¢,.) from
[0,7] to L [0,T], multiplied by a suitable positive constant. End Proof
We note that Theorem 3.3 in [9] is a direct consequence of Corollary 2.4.
Finally we provide an application of Corollary 2.4 to the Dirichlet bound-
ary value problem

—u" =g(t,u), 0<t<T
{u«n:u()zo (2.17)
Let G be the Green’s function
Jt(T—s)/T, 0<t<s<T
G&ﬁ%_{ﬂT—ﬁﬂﬂogsgth (2.18)

Let R >0 and ¢:[0,7] x [-R, R] - R continuous. Suppose



(j) there exists ¢ € C'[0,T] such that

9 (s,2) =g (s,y)] < (s) |z —yl
for all s €[0,7] and z, y € [-R, R];

(3j) there exists ¢ € [1,00] such that

11l o o7y; ey < 1
where ¢ (t,s) =G (t,s)¢ (s) and 1/p+1/q =1,
(Gii) g(s,—R) >0 and g (s,R) <0 for all s€[0,T].

Then (2.17) has a unique solution satisfying |u ()] < R for all ¢t € [0,T].

Indeed, it is well known that (2.17) is equivalent to the integral equation
(2.15), where k= G. It is clear that the assumptions (j)-(jj) guarantee (a)-
(c). To show (d), let w be a solution of (2.16). We claim that |ju|_ < R.
Indeed, if |lul|,, = R, then since u(0) = w(T) = 0, there exists ¢, €
(0,7) with |u(ty)] = R. If u(ty) = R, then u'(ty) = 0 and u” (ty) < 0.
Since —u” = Ag (t,u), we deduce that ¢ (ty,R) > 0, a contradiction to
(jij)- Similarly, if w(ty) = —R, then ' (tp) = 0 and u” (t,) > 0. Hence
g (to, —R) < 0, again a contradiction to (jjj). Thus our claim is proved and
Corollary 2.4 applies.

Now choose for the above example: ¢ =a =1 and p = 3 = co. Routine
calculation gives

T
_ _ _ 72
trerﬁ%/o G (t,s)ds ftrerfg%t(T t)/2=1T°/8.
Then (jj) is satisfied if

T* Yl /8 < 1.

We may think that the existence and uniqueness of the solution could be
directly obtained from Banach’s contraction theorem. This is true if the
map A:Cr — C given by

satisfies

A(Cr) C Ck. (2.19)



For any u € C, by (j), we have

AW O < [ G 1.9l (s,u ()] ds

< [1 G ) )+ o (s.0))ds

< [I¥lle R+ 1g (-, 0)ll] T%/8.

Thus, if

[1lloe B+ Nlg (- 0)llc] T2/8 < R, (2.20)

then (2.19) holds and the conclusion follows from Banach’s contraction prin-
ciple. This is not the case when (2.20) does not hold.

For much more about the ”a priori” bounds technique guarantying con-

ditions like (d) we refer the reader to [3].
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