# FIXED POINT THEOREMS FOR ACYCLIC MULTIVALUED MAPS AND INCLUSIONS OF HAMMERSTEIN TYPE

#### RADU PRECUP

Departement of Applied Mathematics "Babeş-Bolyai" University 3400 Cluj-Napoca, Romania E-mail: r.precup@math.ubbcluj.ro

**Abstract.** The aim of this lecture is to present a new compactness method for operator inclusions in general, and for Hammerstein like inclusions, in particular. This method applies to acyclic multivalued maps which satisfy a generalized compactness condition of Mönch type.

**Keywords**: Multivalued map, acyclic map, Hammerstein operator, operator inclusion, compactness, fixed point.

# 1. The operator form of the initial and boundary value problems

**STEP I:** Consider the initial value problem (IVP) and the boundary value problem (BVP):

(1) 
$$\begin{cases} u' = f(t, u), & t \in I = [0, T] \\ u(0) = 0; \end{cases} \begin{cases} u'' = f(t, u), & t \in I \\ u \in \mathcal{B} \end{cases}$$

for a system of n differential equations. Here  $\mathcal{B}$  stands for the boundary conditions. Under standard conditions, both problems (1) can be put under the operator form

$$u = N(u), u \in C(I; \mathbf{R}^n),$$

where  $N:C(I;\mathbf{R}^n)\to C(I;\mathbf{R}^n)$  is the composite operator N=JSF, of the Nemytskii operator F,

$$F: C(I; \mathbf{R}^n) \to C(I; \mathbf{R}^n), F(u)(t) = f(t, u(t)),$$

of a linear integral operator S, of the form

$$S:C\left(I;\mathbf{R}^{n}\right) \rightarrow C^{1}\left(I;\mathbf{R}^{n}\right),\ S\left(u\right)\left(t\right)=\int_{0}^{T}k\left(t,s\right)u\left(s\right)ds$$

and of the imbedding map J,

$$J: C^{1}(I; \mathbf{R}^{n}) \to C(I; \mathbf{R}^{n}), J(u) = u.$$

For the (IVP), the kernel k has the expression

$$k(t,s) = \begin{cases} 1, & s < t \\ 0, & t < s \end{cases}$$

while for the (BVP), -k is the Green's function corresponding to the boundary conditions  $\mathcal{B}$ , assuming its existence. Assume F and S are bounded continuous operators. Then, since by the Ascoli-Arzèla Theorem, the imbedding map J is completely continuous, we have that N is completely continuous and so, we may think to apply Schauder's Fixed Point Theorem or the Leray-Schauder Principle (see [7]) in order to guarantee the existence of solutions to each of problems (1).

#### 2. Equations in Banach spaces

**STEP II:** Consider the problems (1) in a Banach space E.

The imbedding map J of  $C^1(I; E)$  into C(I; E) is not completely continuous when E is infinite dimensional. Consequently, to say something about the compactness of N, for each bounded set C of C(I; E) we have to analyze the compactness of the section sets N(C)(t) for  $t \in I$ , where

$$N\left(C\right)\left(t\right) = \left\{\int_{0}^{T} k\left(t,s\right) f\left(s,u\left(s\right)\right) ds: \, u \in C\right\}.$$

If C is countable, then the integral and the Kuratowski's measure of noncompactness interchange as follows (see [3], Theorem 1.2.2):

$$\alpha\left(N\left(C\right)\left(t\right)\right) \leq \int_{0}^{T} \left|k\left(t,s\right)\right| \alpha\left(f\left(s,C\left(s\right)\right)\right) ds.$$

Next we require the following compactness property holds for f:

$$\alpha \left( f\left( t,M\right) \right) \leq L\left( t\right) \alpha \left( M\right)$$

for each bounded set  $M \subset E$ . Then we obtain

$$\alpha\left(N\left(C\right)\left(t\right)\right) \leq \int_{0}^{T}\left|k\left(t,s\right)\right|L\left(s\right)\alpha\left(C\left(s\right)\right)ds.$$

From, we would like to derive that

$$\alpha(N(C)(t)) = 0$$
, for all  $t \in I$ .

This is not easy for general sets C, but it is possible if C satisfies

$$C \subset \text{conv}\left(\left\{u_0\right\} \cup N\left(C\right)\right)$$

for some  $u_0 \in C(I; E)$ . Indeed, for such a set C, we have

$$\alpha\left(C\left(t\right)\right) \leq \alpha\left(N\left(C\right)\left(t\right)\right) \leq \int_{0}^{T}\left|k\left(t,s\right)\right|L\left(s\right)\alpha\left(C\left(s\right)\right)ds.$$

If we let  $\phi(t) = \alpha(C(t))$ , then

$$\phi\left(t\right) \leq \int_{0}^{T} \left|k\left(t,s\right)\right| L\left(s\right) \phi\left(s\right) ds.$$

Now suitable integral inequalities (see [9]) yield  $\phi \equiv 0$  and so, by the infinite dimensional version of the Ascoli-Arzèla Theorem, N(C) is relatively compact in C(I; E).

Notice by the above argument we have not proved the complete continuity of N and in consequence, Schauder's Fixed Point Theorem and Leray-Schauder Principle do not apply. However, we may use Mönch's extensions of these two theorems.

#### 3. MÖNCH'S FIXED POINT THEOREMS

**Theorem 3.1.** ([5]) Let X be a Banach space,  $D \subset X$  be closed convex and  $N : D \to D$  be continuous with the further property that for some  $x_0 \in D$  one has

Then N has at least one fixed point.

**Theorem 3.2.** ([5]) Let X be a Banach space,  $K \subset X$  closed convex,  $U \subset K$  open in K and  $N : \overline{U} \to K$  continuous, with the further property that for some  $x_0 \in U$  one has

(3) 
$$\begin{array}{c} C \subset \overline{U}, \ C \ countable, \\ C \subset \overline{co} \ (\{x_0\} \cup N \ (C)) \end{array} \right\} \Longrightarrow \overline{C} \ compact.$$

In addition, assume that

$$x \neq (1 - \lambda) x_0 + \lambda N(x)$$
 for all  $x \in \overline{U} \setminus U$ ,  $\lambda \in (0, 1)$ .

Then N has at least one fixed point in  $\overline{U}$ .

**STEP III:** Consider the (IVP) and the (BVP) for a differential inclusion in the Banach space E, i.e.

$$\left\{ \begin{array}{l} u' \in f\left(t,u\right), \ t \in I \\ u\left(0\right) = 0; \end{array} \right. \left\{ \begin{array}{l} u'' \in f\left(t,u\right), \ t \in I \\ u \in \mathcal{B}. \end{array} \right.$$

If we wish to discuss the inclusions (4) in a similar way like the equations (1), we need to give multivalued analogs to Mönch's Theorems. This was achieved in [6] replacing (2)-(3) by some slightly more general conditions expressed in terms of a pair (M, C) instead of a single set C:

## 4. MÖNCH TYPE THEOREMS FOR INCLUSIONS

**Theorem 4.1.** ([6]) Let D be a closed, convex subset of a Banach space X and  $N: D \to 2^D \setminus \{\emptyset\}$  a mapping with convex values. Assume graph (N) is closed, N maps compact sets into relatively compact sets and that for some  $x_0 \in D$  one has

(5) 
$$\frac{M \subset D, \ M = conv\left(\left\{x_{0}\right\} \cup N\left(M\right)\right),}{\overline{M} = \overline{C} \ with \ C \subset M, \ C \ countable} \right\} \Longrightarrow \overline{M} \ compact.$$

Then there exists  $x \in D$  with  $x \in N(x)$ .

**Theorem 4.2.** ([6]) Let K be a closed, convex subset of a Banach space X, U a relatively open subset of K and  $N: \overline{U} \to 2^K \setminus \{\emptyset\}$  a mapping with convex values.

Assume graph(N) is closed, N maps compact sets into relatively compact sets and that for some  $x_0 \in U$ , the following two conditions are satisfied:

(6) 
$$\frac{M \subset \overline{U}, \ M \subset conv\left(\left\{x_{0}\right\} \cup N\left(M\right)\right),}{\overline{M} = \overline{C} \ with \ C \subset M, \ C \ countable} \right\} \Longrightarrow \overline{M} \ compact;$$

$$x \notin (1 - \lambda) x_0 + \lambda N(x)$$
 for all  $x \in \overline{U} \setminus U$ ,  $\lambda \in (0, 1)$ .

Then there exists  $x \in \overline{U}$  with  $x \in N(x)$ .

Notice any upper semicontinuous mapping N with compact convex nonempty values, has closed graph and maps compact sets into relatively compact sets.

### 5. Hammerstein integral inclusions

Let us present an application of Theorem 4 to the Hammerstein integral inclusion

(7) 
$$u(t) \in \int_{0}^{T} k(t,s) f(s,u(s)) ds \text{ a.e. } t \in I.$$

**Theorem 5.1.** ([8]) Let  $p \in [1, \infty]$ ,  $q \in [1, \infty)$  and let  $r \in (1, \infty]$  be the conjugate of q, i.e. 1/q + 1/r = 1. Assume  $k : I^2 \to \mathbf{R}$  is measurable and

$$\left\{ \begin{array}{ll} (a) \ \textit{if} \ p < \infty : \ \textit{the map} \ t \longmapsto k \, (t,.) \ \ \textit{belongs to} \ L^p \, (I;L^r \, (I)) \, ; \\ (b) \ \textit{if} \ p = \infty : \ \textit{the map} \ t \longmapsto k \, (t,.) \ \ \textit{belongs to} \ C \, (I;L^r \, (I)) \, . \end{array} \right.$$

In addition suppose:

- (1)  $f: I \times E \to 2^E \setminus \{\emptyset\}$  is a Carathéodory function with compact convex values;
- (2) there exists  $a \in L^q(I; \mathbf{R}_+)$ ,  $b \in \mathbf{R}_+$  and R > 0 such that

$$\left\{ \begin{array}{l} (a) \ if \ p < \infty : \ |f \ (t,x)| \leq a \ (t) + b \ |x|^{p/q} \ , \ x \in E \\ (b) \ if \ p = \infty : \ |f \ (t,x)| \leq a \ (t) \ \ for \ \ |x| \leq R \end{array} \right.$$

(i.e. f is a (q, p/q)-Carathéodory function);

(3) there exists a (q, p/q)-Carathéodory function  $\omega : I \times \mathbf{R}_+ \to \mathbf{R}_+$  with

$$\alpha\left(f\left(t,M\right)\right) \leq \omega\left(t,\alpha\left(M\right)\right)$$

a.e.  $t \in I$ , for every bounded  $M \subset E$ ;

(4)  $\varphi \equiv 0$  is the unique solution in  $L^p(I; \mathbf{R}_+)$  to the inequality

$$\varphi\left(t\right) \leq 2\int_{0}^{T}\left|k\left(t,s\right)\right|\omega\left(s,\varphi\left(s\right)\right)ds, \ a.e. \ t\in I;$$

(5)  $|u|_p < R$  for any solution  $u \in L^p(I; E)$  with  $|u|_p \le R$  of

$$u(t) \in \lambda \int_{0}^{T} k(t, s) f(s, u(s)) ds$$
, a.e.  $t \in I$ ,

for  $\lambda \in (0,1)$ .

Then (7) has at least one solution  $u \in L^p(I; E)$  (respectively, in C(I; E) if  $p = \infty$ ) with  $|u|_p \leq R$ .

6. Fixed point results for acyclic mappings

STEP IV: Let us now discuss the problems

(8) 
$$\begin{cases} u' \in Au + f(t, u), & t \in I \\ u(0) = 0; \end{cases} \begin{cases} u'' \in Au + f(t, u), & t \in I \\ u \in \mathcal{B}. \end{cases}$$

Notice semilinear parabolic, respectively hyperbolic and elliptic inclusions can be put under the abstract form  $u' \in Au + f(t, u)$ , respectively  $u'' \in Au + f(t, u)$ .

Here we suppose that A is a multivalued map from E into  $2^E$  such that for each v in a given space of functions, there exists a unique solution S(v) := u to the initial value problem, respectively boundary value problem:

(9) 
$$\begin{cases} u' \in Au + v, & t \in I \\ u(0) = 0; \end{cases} \begin{cases} u'' \in Au + v, & t \in I \\ u \in \mathcal{B}. \end{cases}$$

We note that the solution operator S is not linear, so even f has convex values, the mapping N = SF may have non convex values. Thus, a natural problem was to give extensions of Mönch's Theorems for multivalued operators with non convex values. As a result we obtained a Mönch type generalization of the Eilenberg-Montgomery Theorem [2] (see also [4]):

**Theorem 6.1.** ([9]) Let D be a closed convex subset of a Banach space X, Y a metric space,  $N: D \to 2^Y \setminus \{\emptyset\}$  a map with acyclic values, and  $r: Y \to D$  continuous. Assume graph (N) is closed, N maps compact sets into relatively compact sets and that for some  $x_0 \in D$  one has

$$(10) \qquad \frac{M \subset D, \ M = conv\left(\left\{x_{0}\right\} \cup rN\left(M\right)\right),}{\overline{M} = \overline{C}, \ C \subset M, \ C \ countable} \right\} \Longrightarrow \overline{M} \ compact.$$

Then there exists  $x \in D$  with  $x \in rN(x)$ .

The next result is the continuation type version of Theorem 6.

**Theorem 6.2.** ([9]) Let K be a closed convex subset of a Banach space X, U a convex, relatively open subset of K, Y a metric space,  $N: \overline{U} \to 2^Y \setminus \{\emptyset\}$  with acyclic values and  $r: Y \to K$  continuous. Assume graph (N) is closed, N maps compact sets into relatively compact sets and that for some  $x_0 \in U$ , the following two conditions are satisfied:

(11) 
$$\frac{M \subset \overline{U}, \ M \subset conv\left(\left\{x_{0}\right\} \cup rN\left(M\right)\right)}{\overline{M} = \overline{C}, \ C \subset M, \ C \ countable} \right\} \Longrightarrow \overline{M} \ compact;$$

(12) 
$$x \notin (1 - \lambda) x_0 + \lambda r T(x) for all x \in \overline{U} \setminus U, \ \lambda \in (0, 1).$$

Then there exists  $x \in \overline{U}$  with  $x \in rN(x)$ .

# 7. Abstract Hammerstein inclusions

STEP V: Here we discuss the abstract inclusion

(13) 
$$u \in SF(u), \quad u \in L^p(I; E),$$

where

$$S: L^q(I; E) \to L^p(I; E)$$

is a given single valued operator and  $F:L^p(I;E)\to 2^{L^q(I;E)}$  is the Nemytskii multivalued operator associated to a function  $f:I\times E\to 2^E$ , given by

$$F(u) = \{ w \in L^q(I; E) : w(t) \in f(t, u(t)) \text{ a.e. } t \in I \}.$$

As a direct consequence of Theorem 7, we have the following existence principle for (10).

**Theorem 7.1.** ([1]) Let K be a closed convex subset of  $L^p(I; E)$   $(1 \le p \le \infty)$ , U a relatively open subset of K and  $u_0 \in U$ . Assume

(H1)  $SF : \overline{U} \to 2^K \setminus \{\emptyset\}$  has acyclic values, closed graph and maps compact sets into relatively compact sets;

$$(H2) \quad \frac{M \subset \overline{U}, \ M \subset \operatorname{conv} \left(\{0\} \cup SF\left(M\right)\right)}{\overline{M} = \overline{C}, \ C \subset M, \ C \ countable} \right\} \Longrightarrow \overline{M} \ compact;$$

(H3)  $u \notin (1 - \lambda)u_0 + \lambda SF(u)$  for all  $u \in \overline{U} \setminus U$ ,  $\lambda \in (0, 1)$ .

Then (10) has at least one solution in  $\overline{U}$ .

In what follows:  $u_0 = 0$ ,  $U = B_R = \{u \in K : |u|_p < R\}$ . We shall give sufficient conditions for (H1)-(H2):

(S1) There exists a function  $k:I^2\to R_+$  such that  $k(t,.)\in L^r(I)$  (1/r+1/q=1), the function  $t\longmapsto |k(t,.)|_r$  belongs to  $L^p(I)$  and

(14) 
$$|S(w_1)(t) - S(w_2)(t)| \le \int_I k(t,s) |w_1(s) - w_2(s)| ds$$

a.e.  $t \in I$ , for all  $w_1, w_2 \in L^q(I; E)$ .

- (S2)  $S:L^q(I;E)\to K$  and for every compact convex subset C of E, S is sequentially continuous from  $L^1_w(I;C)$  to  $L^p(I;E)$  (Here  $L^1_w(I;C)$  stands for the set  $L^1(I;C)$  endowed with the weak topology of  $L^1(I;E)$ ).
  - (f1)  $f: I \times E \to 2^E \setminus \{\emptyset\}$  has compact convex values.
  - (f2) f(.,x) has a strongly measurable selection on I, for each  $x \in E$ .
  - (f3) f(t, .) is upper semicontinuous, for a.e.  $t \in I$ .
  - (f4) There exists  $a \in L^q(I; \mathbf{R}_+)$ ,  $b \in \mathbf{R}_+$  and R > 0 such that

$$\left\{ \begin{array}{l} \text{if } p<\infty: \left|f\left(t,x\right)\right| \leq a\left(t\right) + b\left|x\right|^{p/q}, \text{ for all } x \in E; \\ \text{if } p=\infty: \left|f\left(t,x\right)\right| \leq a\left(t\right), \text{ for } \left|x\right| \leq R. \end{array} \right.$$

(f5) For every separable closed subspace  $E_0$  of E, there exists a (q, p/q)-Carathéodory function  $\omega: I \times R_+ \to R_+$  such that

$$\beta_{E_0}\left(f\left(t,M\right)\cap E_0\right)\leq\omega\left(t,\beta_{E_0}\left(M\right)\right)$$

a.e.  $t \in I$ , for every set  $M \subset E_0$  satisfying

$$\left|M\right| \leq \left|S\left(0\right)\left(t\right)\right| + \left(\left|a\right|_{q} + bR^{p/q}\right) \left|k\left(t,.\right)\right|_{r}$$

if  $p < \infty$ , respectively

$$|M| \le |S(0)(t)| + |a|_q |k(t,.)|_r$$

if  $p = \infty$ . In addition  $\varphi \equiv 0$  is the unique solution in  $L^p(I; \mathbf{R}_+)$  to

(15) 
$$\varphi\left(t\right) \leq \int_{I} k\left(t,s\right) \omega\left(s,\varphi\left(s\right)\right) ds, \text{ a.e. } t \in I.$$

Here  $\beta_{E_0}$  is the ball measure of noncompactness in  $E_0$ .

(SF) For every  $u \in K$  the set SF(u) is acyclic in K.

**Theorem 7.2.** ([1]) Assume (S1)-(S2), (f1)-(f5) and (SF) hold. In addition suppose (H3). Then (10) has at least one solution u in  $K \subset L^p(I; E)$  with  $|u|_p \leq R$ .

If  $q \leq p$ , then a sufficient condition for (f5) is

(f5\*) For every separable closed subspace  $E_0$  of E, there exists a  $\delta \in L^{pq/(p-q)}(I)$  such that

$$\beta_{E_0}\left(f\left(t,M\right)\cap E_0\right) \leq \delta\left(t\right)\beta_{E_0}\left(M\right)$$

a.e.  $t \in I$ , for every subset  $M \subset E_0$  satisfying

$$|M| \le |S(0)(t)| + (|a|_q + bR^{p/q}) |k(t,.)|_r$$

if  $p < \infty$ , respectively

$$|M| \le |S(0)(t)| + |a|_q |k(t,.)|_r$$

if  $p = \infty$ , and

(16) 
$$|\delta|_{na/(n-a)} ||k(t,.)|_r|_n < 1.$$

Here pq/(p-q)=q if  $p=\infty$  and  $pq/(p-q)=\infty$  if p=q.

Notice in the Volterra case, i.e. when k(t, s) = 0 for s > t, condition (16) can be dropped.

**Example 7.1.** Let  $f(t,x) = a |x|^{p-2} x$ , where a > 0, p > 2. Then, if  $|M| \le \eta(t)$ , one has

$$\beta\left(f\left(t,M\right)\right) \le a\left(p-1\right)\eta\left(t\right)^{p-2}\beta\left(M\right).$$

Here  $\delta(t) = a(p-1)\eta(t)^{p-2}$  and (16) holds for a sufficiently small a.

We note that the technique we use to verify compactness conditions like (5), (6) equally applies to check the Palais-Smale condition in critical point theory (see [10]).

#### References

- [1] J.-F. Couchouron and R. Precup, Existence principles for inclusions of Hammerstein type involving noncompact acyclic multivalued maps, to appear.
- [2] S. Eilenberg and D. Montgomery, Fixed point theorems for multivalued transformations, Amer. J. Math. 68 (1946), 214-222.
- [3] D. Guo, V. Lakshmikantham and X. Liu, Nonlinear Integral Equations in Abstract Spaces, Kluwer Academic Publishers, Dordrecht, 1996.
- [4] S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis, Vol. I: Theory, Kluwer Academic Publishers, Dordrecht-Boston-London, 1997.
- [5] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, *Nonlinear Anal.* 4 (1980), 985-999.
- [6] D. O'Regan and R. Precup, Fixed point theorems for set-valued maps and existence principles for integral inclusions, J. Math. Anal. Appl. 245 (2000), 594-612.
- [7] D. O'Regan and R. Precup, *Theorems of Leray-Schauder Type and Applications*, Gordon and Breach Science Publishers, 2001.
- [8] D. O'Regan and R. Precup, Integrable solutions of Hammerstein integral inclusions in Banach spaces, *Dynam. Contin. Discrete Impuls. Systems*, to appear.
- [9] R. Precup, A Mönch type generalization of the Eilenberg-Montgomery fixed point theorem, Seminar on Fixed Point Theory Cluj-Napoca 1 (2000), 69-71.
- [10] R. Precup, On the Palais-Smale condition for Hammerstein integral equations, Nonlinear Anal. 47, no 2 (2001), 1233-1244.
- [11] R. Precup, Inequalities and compactness, to appear.