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Abstract. The aim of this lecture is to present a new compactness method for operator inclu-
sions in general, and for Hammerstein like inclusions, in particular. This method applies to acyclic
multivalued maps which satisfy a generalized compactness condition of Monch type.
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1. THE OPERATOR FORM OF THE INITIAL AND BOUNDARY VALUE PROBLEMS

STEP I: Consider the initial value problem (IVP) and the boundary value problem
(BVP):

u = f(t,u), telI=10,T] = f(tu), tel
(1) {u(O):O; {ueB

for a system of n differential equations. Here B stands for the boundary conditions.
Under standard conditions, both problems (1) can be put under the operator form

u=N(u), veC(;R"),

where N : C(I;R™) — C(I;R") is the composite operator N = JSF, of the Ne-
mytskii operator F,

F:C(LRY) - C(LRY), F(u)(t)=f(tu(t)),
of a linear integral operator S, of the form
T
S:C(LR") — CHL;R™), S(u)(t) :/ k(t,s)u(s)ds
0
and of the imbedding map J,
J:CHI;R") — C(I;R"), J(u)=u.
For the (IVP), the kernel k has the expression

1, s<t
k:(t,s):{ 0, t<s
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while for the (BVP), —k is the Green’s function corresponding to the boundary
conditions B, assuming its existence. Assume F and S are bounded continuous oper-
ators. Then, since by the Ascoli-Arzela Theorem, the imbedding map J is completely
continuous, we have that IV is completely continuous and so, we may think to apply
Schauder’s Fixed Point Theorem or the Leray-Schauder Principle (see [7]) in order to
guarantee the existence of solutions to each of problems (1).

2. EQUATIONS IN BANACH SPACES

STEP II: Consider the problems (1) in a Banach space E.

The imbedding map J of C* (I; E) into C (I; E) is not completely continuous when
E is infinite dimensional. Consequently, to say something about the compactness of
N, for each bounded set C' of C (I; E) we have to analyze the compactness of the
section sets N (C)(t) for t € I, where

N(C)(#) = {/0 k(t,s) f (s, (s)) ds : uEC}.

If C is countable, then the integral and the Kuratowski’s measure of noncompactness
interchange as follows (see [3], Theorem 1.2.2):

T
a(N(C) (1)) S/O |k (¢, s) e (f (s,C (s))) ds.
Next we require the following compactness property holds for f :
a(f(t,M)) < L(t)o(M)
for each bounded set M C E. Then we obtain
T
a(N(C) (1) < /O |k (t,5)| L (s) a(C (s)) ds.
From, we would like to derive that
a(N(C)(t)) =0, foralltel.
This is not easy for general sets C, but it is possible if C' satisfies

C C conv ({up} UN (C))

for some ug € C (I; E) . Indeed, for such a set C, we have
T
a(C(t) <a(N(C) () < /O [k (8 8)[ L (s) a (C (s)) ds.
If we let ¢ (t) = a (C (¢)), then
T
o)< [ k(o) L) 65 ds

Now suitable integral inequalities (see [9]) yield ¢ = 0 and so, by the infinite dimen-
sional version of the Ascoli-Arzela Theorem, N (C) is relatively compact in C (I; E) .
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Notice by the above argument we have not proved the complete continuity of N
and in consequence, Schauder’s Fixed Point Theorem and Leray-Schauder Principle
do not apply. However, we may use Monch’s extensions of these two theorems.

3. MONCH’S FIXED POINT THEOREMS

Theorem 3.1. ([5]) Let X be a Banach space, D C X be closed convex and N : D —
D be continuous with the further property that for some xo € D one has

) C C D, C countable,
C =7 ({z} UN(C))

Then N has at least one fixed point.

} — C compact.

Theorem 3.2. (I5]) Let X be a Banach space, K C X closed conver, U C K open
in K and N : U — K continuous, with the further property that for some xo € U one
has

3) C c U, C countable,
C Cce {zo} UN(C))

In addition, assume that
r#(1—=XNaxg+AN(2) forallz cU\U, A€ (0,1).
Then N has at least one fived point in U.

} — C compact.

STEP III: Consider the (IVP) and the (BVP) for a differential inclusion in the
Banach space FE, i.e.

4 u e f(tu), tel u' e f(tu), tel
() u(0) =0; u € B.

If we wish to discuss the inclusions (4) in a similar way like the equations (1), we need
to give multivalued analogs to Ménch’s Theorems. This was achieved in [6] replacing
(2)-(3) by some slightly more general conditions expressed in terms of a pair (M, C')
instead of a single set C :

4. MONCH TYPE THEOREMS FOR INCLUSIONS

Theorem 4.1. ([6]) Let D be a closed, convexr subset of a Banach space X and
N : D — 2P\ {0} a mapping with convex values. Assume graph(N) is closed, N
maps compact sets into relatively compact sets and that for some g € D one has

M c D, M= conv ({zo} UN (M)), —
(5) M =C with C C M, C countable = M compact.

Then there exists © € D with © € N ().

Theorem 4.2. ([6]) Let K be a closed, convex subset of a Banach space X, U a
relatively open subset of K and N : U — 2K\ {0} a mapping with convezx values.
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Assume graph(N) is closed, N maps compact sets into relatively compact sets and
that for some xg € U, the following two conditions are satisfied:

M cU, M C conw ({zg} UN (M)),

(6) M = C with C C M, C countable } — M compact;

r € (1—=Naxo+ AN (z) forall z€U\U, A€ (0,1).
Then there exists x € U with x € N ().

Notice any upper semicontinuous mapping N with compact convex nonempty val-
ues, has closed graph and maps compact sets into relatively compact sets.

5. HAMMERSTEIN INTEGRAL INCLUSIONS

Let us present an application of Theorem 4 to the Hammerstein integral inclusion

T
(7) u(t)e/ k(t,s) f(s,u(s))ds ae. tel.

0
Theorem 5.1. ([8]) Let p € [1,00], ¢ € [1,00) and let r € (1,00] be the conjugate of
q, i.e. 1/q+1/r =1. Assume k : I* — R is measurable and

(a) if p<oo: the map t — k(t,.) belongs to LP (I; L™ (I));
(b) if p=o0: the map t — k(t,.) belongs to C (I;L" (I)).

In addition suppose:
(1) f:1x E— 28\ {0} is a Carathéodory function with compact convex values;
(2) there exists a € LY (I;R4), b € Ry and R > 0 such that

{ () ifp<oo: |f(t,z)| <a(t)+blzf/?, zeE
(b) ifp=oo: |f(t,z)| <a(t) for |z <R

(i.e. f is a (q,p/q)-Carathéodory function);
there exists a (q,p/q)-Carathéodory function w : I X — Wik,
3) th 2 Carathéodory f ) I xRy — Ry with

a(f(t,M)) <w(t a(M))

a.e. t € I, for every bounded M C E;
(4) ¢ =0 is the unique solution in LP (I; R4) to the inequality

T
<p(t)§2/0 |k (t,s)|w(s,p(s))ds, ae tel;

(5) |ul, <R for any solution u € L? (I; E) with |u[, < R of

T
u(t)e)\/o k(ts) f (s,u(s))ds, ae tel,

for A e (0,1).
Then (7) has at least one solution u € LP (I; E) (respectively, in C (I; E) if p = o)
with |u|, < R.
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6. FIXED POINT RESULTS FOR ACYCLIC MAPPINGS

STEP IV: Let us now discuss the problems

(8) u (0) = 0; u € B.

{u’eAquf(t,u), tel {u”GAquf(t,u), tel
Notice semilinear parabolic, respectively hyperbolic and elliptic inclusions can be put
under the abstract form v’ € Au + f (t,u), respectively v” € Au+ f (t,u).

Here we suppose that A is a multivalued map from E into 2¥ such that for each v
in a given space of functions, there exists a unique solution S (v) := wu to the initial
value problem, respectively boundary value problem:

) v eAu+uv, tel u' e Au+wv, tel
u(0) = 0; u € B.

We note that the solution operator S is not linear, so even f has convex values, the
mapping N = SF may have non convex values. Thus, a natural problem was to give
extensions of Monch’s Theorems for multivalued operators with non convex values.
As a result we obtained a Monch type generalization of the Eilenberg-Montgomery
Theorem [2] (see also [4]):

Theorem 6.1. ([9]) Let D be a closed convex subset of a Banach space X, Y a met-
ric space, N : D — 2Y \ {0} a map with acyclic values, and r:Y — D continuous.
Assume graph(N) is closed, N maps compact sets into relatively compact sets and
that for some xg € D one has

(10) = = M compact.

M c D, M = conv ({xo} UrN (M)), —
M=C, CcM, C countable

Then there exists x € D with x € rN (z).

The next result is the continuation type version of Theorem 6.

Theorem 6.2. ([9]) Let K be a closed convex subset of a Banach space X, U a
conver, relatively open subset of K, Y a metric space, N : U — 2Y \ {0} with
acyclic values and r :Y — K continuous. Assume graph(N) is closed, N maps
compact sets into relatively compact sets and that for some x¢ € U, the following two
conditions are satisfied:

M cU, M C conv ({zo} UrN (M))
c, C

(11) M = C M, C countable } — M compact;

(12) rZ (1—=Nazo+MT(z) forall zcU\U, A€ (0,1).

Then there exists x € U with € rN (z).
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7. ABSTRACT HAMMERSTEIN INCLUSIONS
STEP V: Here we discuss the abstract inclusion
(13) ueSF(u), ue LP(I; E),

where
S:LI(I;E) — LP (I; E)

is a given single valued operator and F : L? (I;E) — 2L*(LE) s the Nemytskii
multivalued operator associated to a function f:1I x E — 2F given by

Fu)={weL!(LE): w(t) € f(t,u(t)) ae. tel}.

As a direct consequence of Theorem 7, we have the following existence principle for
(10).

Theorem 7.1. ([1]) Let K be a closed convex subset of LP (I;E) (1<p<o0), U
a relatively open subset of K and ug € U. Assume
(H1) SF:U — 25\ {0} has acyclic values, closed graph and maps compact sets

into relatively compact sets;

M cU, M C conv ({0} USF (M)) — '
(H2) M=C, CCM, C countable — M compact;
(H3) u ¢ (1= Nuo+ ASF (u) forall ue U\U, A€ (0,1).

Then (10) has at least one solution in U.

In what follows: wg =0, U= Br={u€ K : |u[, < R}. We shall give sufficient
conditions for (H1)-(H2):

(S1) There exists a function k : I? — R, such that k(t,.) € L"(I)
(1/r+1/q=1), the function ¢t — |k(¢,.)|. belongs to LP (I) and

T

(14) |5 (w1) (8) = S (w2) (#)] < /Ik(t,S) wi (8) — w2 ()] ds

ae. t € I, for all wy,ws € L9 (I} E).

(82) S : L1(I;E) — K and for every compact convex subset C' of E, S is
sequentially continuous from L1 (I;C) to LP (I; E) (Here L} (I;C) stands for the
set L' (I;C) endowed with the weak topology of L!(I;E)).

(f1) f: I x E — 2P\ {0} has compact convex values.

(f .,x) has a strongly measurable selection on I, for each = € F.

(f t,.) is upper semicontinuous, for a.e. ¢t € I.

(

2) f(
3) £ (
f4) There exists a € LY (I;R4), b € R4 and R > 0 such that

if p<oo: |[f(t,x)| <a(t)+blzf/?, for all z € E;
it p=oo: |f(t,x)| <al(t), for |z| <R.

(f5) For every separable closed subspace FEy of FE, there exists a (q,p/q)-
Carathéodory function w : I x Ry — Ry such that

ﬁEo (f (tv M) N EO) fw (tvﬁEo (M))
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a.e. t € I, for every set M C Fy satisfying
M| <15 (0) (1) + (Jal, + bR/?) [k (¢, )],
if p < oo, respectively
[M] < [S(0) ()] + lal, [k (&, )],

if p=o00. In addition ¢ =0 is the unique solution in LP (I;Ry) to

(15) np(t)g/lk(t,s)w(s,gp(s))ds, ae tel.

Here (g, is the ball measure of noncompactness in Ejy.
(SF) For every u € K the set SF (u) is acyclic in K.

Theorem 7.2. ([1]) Assume (S1)-(S2), (f1)-(f5) and (SF) hold. In addition suppose
(H3). Then (10) has at least one solution u in K C LP (I; E) with |ul, < R.

If ¢ < p, then a sufficient condition for (f5) is
(f5*) For every separable closed subspace Ey of E, there exists a § € LP4/(P=9) (T)
such that

a.e. t € I, for every subset M C Ej satisfying

(M| <18 0) ()] + (lal, + bR/ [k (2,.)],
if p < oo, respectively
(M| < 1S (0) (8)] + lal, [k (2,1,

if p =00, and

(16) |§|pq/(p7q) ||k (t7 ')|T|p <L

Here pq/(p—q) =qif p=oc and pg/ (p —q) = if p=gq.
Notice in the Volterra case, i.e. when k (¢,s) = 0 for s > ¢, condition (16) can be
dropped.

Example 7.1. Let f(t,z) = a|z|’" >z, where a >0, p > 2. Then, if |M|<n(t),
one has

B(f (M) <alp—1)n(t)" "5 (M),
Here 6 (t) =a(p—1)n ()" and (16) holds for a sufficiently small a.

We note that the technique we use to verify compactness conditions like (5), (6)
equally applies to check the Palais-Smale condition in critical point theory (see [10]).
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