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1 Introduction

This paper deals with weak solvability of the Cauchy-Dirichlet problem for
the perturbed Schrödinger equation:⎧⎨⎩ 𝑢𝑡 − 𝑖Δ𝑢 = Φ(𝑢) in Ω× (0, 𝑇 )

𝑢(𝑥, 0) = 𝑔 (𝑥) in Ω
𝑢 = 0 on ∂Ω× (0, 𝑇 ).

(1.1)

Here Ω ⊂ R𝑛 is a bounded domain and Φ is a general nonlinear operator
which, in particular, can be a superposition operator, a delay operator, or an
integral operator. Specific Schrödinger equations arise as models from several
areas of physics. The problem is a classical one (see [2-6] and [11]) and our
goal here is to make more precise the operator approach based on abstract re-
sults from nonlinear functional analysis. More exactly, we shall precise basic
properties, such as norm estimation and compactness, for the (linear) solu-
tion operator associated to the nonhomogeneous linear Schrödinger equation
and we shall use them in order to apply the Banach and Schauder theorems to
the fixed point problem equivalent to problem (1.1). A similar programme
has been applied to discuss nonlinear perturbations of the heat and wave
equations in [8-10].
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Compared to [8-10], here all spaces consist of complex-valued functions.
Thus 𝐿2 (Ω) is the space of all complex-valued measurable functions 𝑢 with∫
Ω
∣𝑢 (𝑥)∣2 𝑑𝑥 <∞ endowed with inner product and norm

(𝑢, 𝑣)𝐿2 =

∫
Ω

𝑢 (𝑥) 𝑣 (𝑥)𝑑𝑥, ∣𝑢∣𝐿2 =

(∫
Ω

∣𝑢 (𝑥)∣2 𝑑𝑥
) 1

2

.

Also the Sobolev space of complex-valued functions 𝐻1
0 (Ω) is endowed with

inner product and norm

(𝑢, 𝑣)𝐻1
0
=

∫
Ω

(
𝑛∑

𝑘=1

∂𝑢

∂𝑥𝑘

∂𝑣

∂𝑥𝑘

)
𝑑𝑥, ∣𝑢∣𝐻1

0
= (𝑢, 𝑢)

1
2

𝐻1
0
.

As usual by 𝐻−1 (Ω) we denote the dual of 𝐻1
0 (Ω) , that is the space of all

linear continuous complex-valued functionals on𝐻1
0 (Ω) . The duality between

𝐻1
0 (Ω) and 𝐻

−1 (Ω) is defined as follows: for 𝑓 ∈ 𝐻−1 (Ω) and 𝑢 ∈ 𝐻1
0 (Ω) ,

(𝑓, 𝑢) stands for the valued of 𝑓 at 𝑢; in particular, if 𝑓 ∈ 𝐿1
𝑙𝑜𝑐 (Ω) , then

(𝑓, 𝑢) =
∫
Ω
𝑓𝑢𝑑𝑥, and if 𝑓 ∈ 𝐿2 (Ω) , then (𝑓, 𝑢) = (𝑓, 𝑢)𝐿2 . Recall that −Δ

is an isometry between spaces 𝐻1
0 (Ω) and 𝐻

−1 (Ω) (see, e.g., [1] and [8]).
Throughout this paper by 𝜆𝑘 and 𝜙𝑘 (𝑘 = 1, 2, ...) we mean the eigenvalues

and eigenfunctions of −Δ. Thus{ −Δ𝜙𝑘 = 𝜆𝑘𝜙𝑘 in Ω
𝜙𝑘 = 0 on ∂Ω.

If we assume that ∣𝜙𝑘∣𝐿2 = 1, then the systems (𝜙𝑘)𝑘≥1 ,
(

1√
𝜆𝑘
𝜙𝑘

)
𝑘≥1

are

orthonormal and complete in 𝐿2 (Ω) and 𝐻1
0 (Ω) , respectively.

2 The nonhomogeneous Schrödinger equation
in 𝐻−1(Ω)

First we need the following lemma, the version for complex-valued functions
of a result from [8], which is a generalization to 𝐻−1 (Ω) of Parseval’s relation
and of the completeness property of eigenfunctions 𝜙𝑘. We include its proof
for the sake of completeness.

Lemma 2.1 (a) For any 𝑢 ∈ 𝐻−1(Ω), one has

𝑢 =

∞∑
𝑘=1

(𝑢, 𝜙𝑘)𝜙𝑘
(
in 𝐻−1(Ω)

)
(2.1)

and ∞∑
𝑘=1

1

𝜆𝑘
∣(𝑢, 𝜙𝑘)∣2 = ∣𝑢∣2𝐻−1 . (2.2)
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(b) If 𝑢 ∈ 𝐿2(0, 𝑇 ;𝐻−1(Ω)), then

𝑢 =

∞∑
𝑘=1

(𝑢, 𝜙𝑘)𝜙𝑘
(
in 𝐿2(0, 𝑇 ;𝐻−1(Ω))

)
.

Proof. (a) We use the fact that −Δ is an isometry between spaces𝐻1
0 (Ω)

and 𝐻−1 (Ω) . Thus, if 𝑢 ∈ 𝐻−1 (Ω) , then (−Δ)
−1
𝑢 ∈ 𝐻1

0 (Ω) and equality
(2.1) is equivalent to

(−Δ)
−1
𝑢 =

∞∑
𝑘=1

(𝑢, 𝜙𝑘) (−Δ)
−1
𝜙𝑘

(
in 𝐻1

0 (Ω)
)
.

Since (−Δ)
−1
𝜙𝑘 = 1

𝜆𝑘
𝜙𝑘 and (𝑢, 𝜙𝑘) =

(
(−Δ)

−1
𝑢, 𝜙𝑘

)
𝐻1

0

, the last equality

can be rewritten as

(−Δ)
−1
𝑢 =

∞∑
𝑘=1

(
(−Δ)

−1
𝑢,

1√
𝜆𝑘
𝜙𝑘

)
𝐻1

0

1√
𝜆𝑘
𝜙𝑘

(
in 𝐻1

0 (Ω)
)
.

But this equality is true since the system
(

1√
𝜆𝑘
𝜙𝑘

)
is complete in 𝐻1

0 (Ω) .

Equality (2.2) is equivalent to Parseval’s equality in 𝐻1
0 (Ω) for the func-

tion (−Δ)
−1
𝑢.

(b) According to (2.2) one has

∣𝑢 (𝑡)∣2𝐻−1 =
∞∑
𝑘=1

1

𝜆𝑘
∣(𝑢 (𝑡) , 𝜙𝑘)∣2 for a.e. 𝑡 ∈ [0, 𝑇 ] .

Thus the problem reduces to the convergence in 𝐿1 (0, 𝑇 ) of the sequence of
partial sums. This happens by the Lebesgue dominated convergence theorem
since the partial sums are dominated by the function 𝑡 7→ ∣𝑢 (.)∣2𝐻−1 belonging
to 𝐿1 (0, 𝑇 ) .

Remark 2.1 If the eigenfunctions 𝜙𝑘 are normalized in 𝐿2 (Ω) , then:

(i) one has

∣𝜙𝑘∣𝐿2 = 1, ∣𝜙𝑘∣𝐻1
0
=
√
𝜆𝑘, ∣𝜙𝑘∣𝐻−1 =

1√
𝜆𝑘

;

(ii) the systems (𝜙𝑘) ,
(

𝜙𝑘√
𝜆𝑘

)
,
(√
𝜆𝑘𝜙𝑘

)
are othonormal and complete in

𝐿2 (Ω) , 𝐻1
0 (Ω) and 𝐻

−1 (Ω) , respectively;

(iii) due to the embeddings 𝐿2 (Ω) ⊂ 𝐻1
0 (Ω) ⊂ 𝐻−1 (Ω) and to the com-

pleteness of the system (𝜙𝑘) in all the three spaces, the Fourier series
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of a function 𝑢 ∈ 𝐿2 (Ω) with respect to the three systems from (ii), in
𝐿2 (Ω) , 𝐻1

0 (Ω) and 𝐻
−1 (Ω) , respectively, that is∑

(𝑢, 𝜙𝑘)𝐿2 𝜙𝑘,
∑(

𝑢,
𝜙𝑘√
𝜆𝑘

)
𝐻1

0

𝜙𝑘√
𝜆𝑘
,
∑(

𝑢,
√
𝜆𝑘𝜙𝑘

)
𝐻−1

√
𝜆𝑘𝜙𝑘,

are identical and can be written as
∑

(𝑢, 𝜙𝑘)𝜙𝑘, where by (𝑢, 𝜙𝑘) we
mean the action of 𝑢 as an element of 𝐻−1 (Ω) over 𝜙𝑘. Note that the
scalar product in 𝐻−1 (Ω) is given by

(𝑢, 𝑣)𝐻−1 :=
(
(−Δ)

−1
𝑢, (−Δ)

−1
𝑣
)
𝐻1

0

.

Consider the Cauchy-Dirichlet problem for the nonhomogeneous Schrödin-
ger equation ⎧⎨⎩ 𝑢𝑡 − 𝑖Δ𝑢 = 𝑓 in Ω× (0, 𝑇 )

𝑢(𝑥, 0) = 𝑔 (𝑥) in Ω
𝑢 = 0 on ∂Ω× (0, 𝑇 ).

(2.3)

We shall apply Fourier’s method. For the first result, we shall work uni-
tary in one of the spaces 𝐻1

0 (Ω) , 𝐿
2 (Ω) , 𝐻−1 (Ω) , which is denoted by

𝑉, endowed with the corresponding inner product (., .)𝑉 and norm ∣.∣𝑉 and
we shall assume that ∣𝜙𝑘∣𝑉 = 1 for every 𝑘.We already know that the system
of eigenfunctions (𝜙𝑘) is complete in each of the three spaces. In what follows
the notation 𝐶1 ([0, 𝑇 ] ;Δ𝑉 ) is used to denote the space of all functions 𝑢

with (−Δ)
−1
𝑢 ∈ 𝐶1 ([0, 𝑇 ] ;𝑉 ) .

Theorem 2.1 Assume that 𝑔 ∈ 𝑉 and 𝑓 ∈ 𝐶 ([0, 𝑇 ] ;𝑉 ) . Then there exists
a unique function 𝑢 ∈ 𝐶 ([0, 𝑇 ] ;𝑉 ) ∩ 𝐶1 ([0, 𝑇 ] ; Δ𝑉 ) with 𝑢 (0) = 𝑔 and

𝑢′ (𝑡)− 𝑖Δ𝑢 (𝑡) = 𝑓 (𝑡) in Δ𝑉 (𝑡 ∈ [0, 𝑇 ]) . (2.4)

In addition

∣𝑢 (𝑡)∣2𝑉 ≤ 2

(
∣𝑔∣2𝑉 + 𝑡

∫ 𝑡

0

∣𝑓 (𝑠)∣2𝑉 𝑑𝑠
)
, 𝑡 ∈ [0, 𝑇 ] . (2.5)

Proof. (a) We look for a solution in the form

𝑢 (𝑡) =
∞∑
𝑘=1

𝑢𝑘 (𝑡)𝜙𝑘. (2.6)

If we formally replace into (2.3) we obtain

𝑢𝑘 (𝑡) = 𝑒−𝑖𝜆𝑘𝑡𝑔𝑘 +

∫ 𝑡

0

𝑒−𝑖𝜆𝑘(𝑡−𝑠)𝑓𝑘 (𝑠) 𝑑𝑠 (2.7)

where 𝑓𝑘 (𝑡) = (𝑓 (𝑡) , 𝜙𝑘)𝑉 and 𝑔𝑘 = (𝑔, 𝜙𝑘)𝑉 .
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(b) Series (2.6) defines a function 𝑢 ∈ 𝐶 ([0, 𝑇 ] ;𝑉 ) . Indeed its uniform
convergence reduces to the uniform convergence of the series a real functions∑ ∣𝑢𝑘 (𝑡)∣2 . We have

∣𝑢𝑘 (𝑡)∣2 ≤ 2

(
∣𝑔𝑘∣2 +

(∫ 𝑡

0

∣𝑓𝑘 (𝑠)∣ 𝑑𝑠
)2
)

(2.8)

≤ 2

(
∣𝑔𝑘∣2 + 𝑡

∫ 𝑡

0

∣𝑓𝑘 (𝑠)∣2 𝑑𝑠
)
.

Thus the uniform convergence of
∑ ∣𝑢𝑘 (𝑡)∣2 is reduced to the convergence

of the series of numbers
∑ ∣𝑔𝑘∣2 and

∑∫ 𝑇

0
∣𝑓𝑘 (𝑠)∣2 𝑑𝑠. According to Parse-

val’s relation, the sum of the first series is ∣𝑔∣2𝑉 while of the second one∫ 𝑇

0
∣𝑓 (𝑠)∣2𝑉 𝑑𝑠 since 𝑓 ∈ 𝐶 ([0, 𝑇 ] ;𝑉 ) .
(c) 𝑢 ∈ 𝐶1 ([0, 𝑇 ] ; Δ𝑉 ) . We have to prove that

𝑣 := (−Δ)
−1
𝑢 ∈ 𝐶1 ([0, 𝑇 ] ;𝑉 ) .

One has

𝑣 (𝑡) =
∞∑
𝑘=1

𝑢𝑘 (𝑡) (−Δ)
−1
𝜙𝑘 =

∞∑
𝑘=1

1

𝜆𝑘
𝑢𝑘 (𝑡)𝜙𝑘.

Thus the problem is to show the uniform convergence in 𝑉 of the series of
derivatives ∞∑

𝑘=1

1

𝜆𝑘
𝑢′𝑘 (𝑡)𝜙𝑘.

This reduces to the uniform convergence of the series
∑

1
𝜆2
𝑘
∣𝑢′𝑘 (𝑡)∣2 .We have

𝑢′𝑘 (𝑡) = −𝑖𝜆𝑘𝑒−𝑖𝜆𝑘𝑡𝑔𝑘 + 𝑓𝑘 (𝑡)− 𝑖𝜆𝑘

∫ 𝑡

0

𝑒−𝑖𝜆𝑘(𝑡−𝑠)𝑓𝑘 (𝑠) 𝑑𝑠.

Then

1

𝜆2𝑘
∣𝑢′𝑘 (𝑡)∣2 ≤ 3

𝜆2𝑘

(
𝜆2𝑘 ∣𝑔𝑘∣2 + ∣𝑓𝑘 (𝑡)∣2 + 𝑡𝜆2𝑘

∫ 𝑡

0

∣𝑓𝑘 (𝑠)∣2 𝑑𝑠
)

≤ 3

(
∣𝑔𝑘∣2 + 1

𝜆21
∣𝑓𝑘 (𝑡)∣2 + 𝑡

∫ 𝑡

0

∣𝑓𝑘 (𝑠)∣2 𝑑𝑠
)
.

So we are finished since
∑ ∣𝑔𝑘∣2 = ∣𝑔∣2𝑉 and

∑ ∣𝑓𝑘 (𝑡)∣2 = ∣𝑓 (𝑡)∣2𝑉 uniformly
on [0, 𝑇 ] .

(d) Identity (2.4) follows if we pass to the limit in the corresponding
identity for partial sums.

(e) Uniqueness. Assume 𝑢1, 𝑢2 are two such functions. Then 𝑢 := 𝑢1−𝑢2
satisfies 𝑢 (0) = 0 and 𝑢′ (𝑡)− 𝑖Δ𝑢 (𝑡) = 0 in Δ𝑉, i.e., (−Δ)

−1
𝑢′ (𝑡)+ 𝑖𝑢 (𝑡) =
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0 in 𝑉. Denote 𝑣 := (−Δ)
−1
𝑢. Then 𝑣 (0) = 0 and 𝑣′ (𝑡) + 𝑖𝑢 (𝑡) = 0 in 𝑉. In

particular, this gives

(𝑣′ (𝑡) , 𝑣 (𝑡))𝑉 + 𝑖 (𝑢 (𝑡) , 𝑣 (𝑡))𝑉 = 0.

Observe that (𝑢 (𝑡) , 𝑣 (𝑡))𝑉 ∈ R+ (verify for each space 𝐿2 (Ω) , 𝐻1
0 (Ω) and

𝐻−1 (Ω)), and that

𝑅𝑒 (𝑣′ (𝑡) , 𝑣 (𝑡))𝑉 =
1

2

𝑑

𝑑𝑡
∣𝑣 (𝑡)∣2𝑉 .

Hence 𝑑
𝑑𝑡 ∣𝑣 (𝑡)∣2𝑉 = 0 on [0, 𝑇 ] . Thus ∣𝑣 (𝑡)∣2𝑉 is constant and since 𝑣 (0) = 0,

we have 𝑣 (𝑡) ≡ 0, hence 𝑢 = 0, that is 𝑢1 = 𝑢2.
(f) Relation (2.5) is an immediate consequence of (2.8).
If 𝑓 is less regular in 𝑥 and more regular in 𝑡, then we have:

Theorem 2.2 Assume that 𝑔 ∈ 𝐻1
0 (Ω) and 𝑓 ∈ 𝐶1

(
[0, 𝑇 ] ;𝐻−1 (Ω)

)
. Then

there exists a unique function 𝑢 ∈ 𝐶
(
[0, 𝑇 ] ;𝐻1

0 (Ω)
) ∩ 𝐶1

(
[0, 𝑇 ] ;𝐻−1 (Ω)

)
with 𝑢 (0) = 𝑔 and

𝑢′ (𝑡)− 𝑖Δ𝑢 (𝑡) = 𝑓 (𝑡) in 𝐻−1 (Ω) (𝑡 ∈ [0, 𝑇 ]) .

In addition

∣𝑢 (𝑡)∣2𝐻1
0
≤ 4

(
∣𝑔∣2𝐻1

0
+ ∣𝑓 (𝑡)∣2𝐻−1 + ∣𝑓 (0)∣2𝐻−1 + 𝑡

∫ 𝑡

0

∣𝑓 ′ (𝑠)∣2𝐻−1 𝑑𝑠

)
and

∣𝑢′ (𝑡)∣2𝐻−1 ≤ 3

(
∣𝑔∣2𝐻1

0
+ ∣𝑓 (0)∣2𝐻−1 + 𝑡

∫ 𝑡

0

∣𝑓 ′ (𝑠)∣2𝐻−1 𝑑𝑠

)
. (2.9)

Proof. As above we look for a solution in the form (2.6), where this
time we assume that ∣𝜙𝑘∣𝐿2 = 1. Hence in (2.7), 𝑓𝑘 (𝑡) = (𝑓 (𝑡) , 𝜙𝑘) and
𝑔𝑘 = (𝑔, 𝜙𝑘) . First note that using derivative 𝑓 ′𝑘, 𝑢𝑘 (𝑡) can be written as

𝑢𝑘 (𝑡) = 𝑒−𝑖𝜆𝑘𝑡𝑔𝑘 +

∫ 𝑡

0

𝑒−𝑖𝜆𝑘(𝑡−𝑠)𝑓𝑘 (𝑠) 𝑑𝑠

= 𝑒−𝑖𝜆𝑘𝑡𝑔𝑘 − 𝑖

𝜆𝑘

∫ 𝑡

0

(
𝑒−𝑖𝜆𝑘(𝑡−𝑠)

)′
𝑓𝑘 (𝑠) 𝑑𝑠

= 𝑒−𝑖𝜆𝑘𝑡𝑔𝑘 − 𝑖

𝜆𝑘
𝑓𝑘 (𝑡) +

𝑖

𝜆𝑘
𝑒−𝑖𝜆𝑘𝑡𝑓𝑘 (0) +

𝑖

𝜆𝑘

∫ 𝑡

0

𝑒−𝑖𝜆𝑘(𝑡−𝑠)𝑓 ′𝑘 (𝑠) 𝑑𝑠.

(a) 𝑢 ∈ 𝐶
(
[0, 𝑇 ] ;𝐻1

0 (Ω)
)
. This reduces to the uniform convergence of series∑

𝜆𝑘 ∣𝑢𝑘 (𝑡)∣2 which follows from the estimation

𝜆𝑘 ∣𝑢𝑘 (𝑡)∣2

≤ 4𝜆𝑘

(
∣𝑔𝑘∣2 + 1

𝜆2𝑘
∣𝑓𝑘 (𝑡)∣2 + 1

𝜆2𝑘
∣𝑓𝑘 (0)∣2 + 𝑡

𝜆2𝑘

∫ 𝑡

0

∣𝑓 ′𝑘 (𝑠)∣2 𝑑𝑠
)

≤ 4

(
𝜆𝑘 ∣𝑔𝑘∣2 + 1

𝜆𝑘
∣𝑓𝑘 (𝑡)∣2 + 1

𝜆𝑘
∣𝑓𝑘 (0)∣2 + 𝑡

∫ 𝑡

0

1

𝜆𝑘
∣𝑓 ′𝑘 (𝑠)∣2 𝑑𝑠

)
.
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(b) 𝑢 ∈ 𝐶1
(
[0, 𝑇 ] ;𝐻−1 (Ω)

)
. Follows from the estimation

1

𝜆𝑘
∣𝑢′𝑘 (𝑡)∣2 =

1

𝜆𝑘

∣∣∣∣−𝑖𝜆𝑘𝑒−𝑖𝜆𝑘𝑡𝑔𝑘 + 𝑓𝑘 (𝑡)− 𝑖𝜆𝑘

∫ 𝑡

0

𝑒−𝑖𝜆𝑘(𝑡−𝑠)𝑓𝑘 (𝑠) 𝑑𝑠

∣∣∣∣2
=

1

𝜆𝑘

∣∣∣∣−𝑖𝜆𝑘𝑒−𝑖𝜆𝑘𝑡𝑔𝑘 + 𝑓𝑘 (𝑡)−
∫ 𝑡

0

(
𝑒−𝑖𝜆𝑘(𝑡−𝑠)

)′
𝑓𝑘 (𝑠) 𝑑𝑠

∣∣∣∣2
=

1

𝜆𝑘

∣∣∣∣−𝑖𝜆𝑘𝑒−𝑖𝜆𝑘𝑡𝑔𝑘 + 𝑒−𝑖𝜆𝑘𝑡𝑓𝑘 (0) +

∫ 𝑡

0

𝑒−𝑖𝜆𝑘(𝑡−𝑠)𝑓 ′𝑘 (𝑠) 𝑑𝑠
∣∣∣∣2

≤ 3

(
𝜆𝑘 ∣𝑔𝑘∣2 + 1

𝜆𝑘
∣𝑓𝑘 (0)∣2 + 𝑡

∫ 𝑡

0

1

𝜆𝑘
∣𝑓 ′𝑘 (𝑠)∣2 𝑑𝑠

)
.

We shall associate to the Cauchy-Dirichlet problem with 𝑔 = 0 for the
Schrödinger equation, the following solution operator:

𝑆 : 𝐶([0, 𝑇 ] ;𝐻−1(Ω)) → 𝐶([0, 𝑇 ] ;𝐻−1(Ω)),

𝑓 ∈ 𝐶([0, 𝑇 ] ;𝐻−1(Ω)) 7→ 𝑆𝑓 ∈ 𝐶([0, 𝑇 ] ;𝐻−1(Ω)),

(𝑆𝑓) (𝑡) =
∞∑
𝑘=1

𝑢𝑘 (𝑡)𝜙𝑘, ∣𝜙𝑘∣𝐿2 = 1,

𝑢𝑘 (𝑡) =

∫ 𝑡

0

𝑒−𝑖𝜆𝑘(𝑡−𝑠)𝑓𝑘 (𝑠) 𝑑𝑠, 𝑓𝑘 (𝑡) = (𝑓 (𝑡) , 𝜙𝑘) .

Hence 𝑆𝑓 is the unique function 𝑢 satisfying the conditions of Theorem 2.1,
for 𝑔 = 0.

3 Properties of the Schrödinger solution
operator

3.1 Norm estimations

It follows from (2.5) and (2.9) that the solution operator 𝑆 is a linear con-
tinuous self-mapping of

𝐶
(
[0, 𝑇 ] ;𝐻1

0 (Ω)
)
, 𝐶

(
[0, 𝑇 ] ;𝐿2 (Ω)

)
and 𝐶

(
[0, 𝑇 ] ;𝐻−1 (Ω)

)
.

Also

𝑆
(
𝐶1
(
[0, 𝑇 ] ;𝐻−1 (Ω)

)) ⊂ 𝐶
(
[0, 𝑇 ] ;𝐻1

0 (Ω)
) ∩ 𝐶1

(
[0, 𝑇 ] ;𝐻−1 (Ω)

)
.

Theorem 3.1 (i) Let 𝑓 ∈ 𝐶 ([0, 𝑇 ] ;𝑉 ) . Then for every 𝑡 ∈ [0, 𝑇 ],

∣(𝑆𝑓) (𝑡)∣𝑉 ≤
√
2𝑡 ∣𝑓 ∣𝐿2(0,𝑡;𝑉 ) . (3.1)

Here, as above, 𝑉 is any of the spaces 𝐿2 (Ω) , 𝐻1
0 (Ω) and 𝐻

−1 (Ω) .



712 M. Manole and R. Precup

(ii) Let 𝑓 ∈ 𝐶1
(
[0, 𝑇 ] ;𝐻−1 (Ω)

)
. Then for every 𝑡 ∈ [0, 𝑇 ],

∣(𝑆𝑓) (𝑡)∣2𝐻1
0
≤ 12

(
∣𝑓 (0)∣2𝐻−1 + 𝑡 ∣𝑓 ′∣2𝐿2(0,𝑡;𝐻−1(Ω))

)
and ∣∣(𝑆𝑓)′ (𝑡)∣∣2

𝐻−1 ≤ 3
(
∣𝑓 (0)∣2𝐻−1 + 𝑡 ∣𝑓 ′∣2𝐿2(0,𝑡;𝐻−1(Ω))

)
.

Proof. (i) Simple consequence of (2.5).
(ii) Use (2.9) and

𝑓 (𝑡) = 𝑓 (0) +

∫ 𝑡

0

𝑓 ′ (𝑠) 𝑑𝑠,

whence

∣𝑓 (𝑡)∣2𝐻−1 ≤ 2

(
∣𝑓 (0)∣2𝐻−1 + 𝑡

∫ 𝑡

0

∣𝑓 ′ (𝑠)∣2𝐻−1 𝑑𝑠

)
.

3.2 Compactness

This subsection deals with the complete continuity of the solution operator
𝑆. We shall also use the following result (see [8] and [12]) :

Lemma 3.1 Let 𝑋, 𝐵 and 𝑌 be Banach spaces with the inclusion 𝑋 ⊂ 𝐵
compact and 𝐵 ⊂ 𝑌 continuous. If a set 𝐹 is bounded in 𝐿𝑝(0, 𝑇 ;𝑋) and
relatively compact in 𝐿𝑝(0, 𝑇 ;𝑌 ) where 1 ≤ 𝑝 ≤ ∞, then 𝐹 is relatively
compact in 𝐿𝑝(0, 𝑇 ;𝐵).

Theorem 3.2 (i) The solution operator is completely continuous from
𝐶([0, 𝑇 ] ;𝐻1

0 (Ω)) to 𝐶([0, 𝑇 ] ;𝐿
𝑝(Ω)) for every 1 ≤ 𝑝 < 2∗.

(ii) The solution operator is completely continuous from 𝐶1([0, 𝑇 ] ;𝐻−1 (Ω))
to 𝐶([0, 𝑇 ] ;𝐿𝑝 (Ω)) for every (2∗)′ ≤ 𝑝 < 2∗.

Proof. (i) Obviously, if𝑀 is a bounded subset of 𝐶([0, 𝑇 ] ;𝐻1
0 (Ω)), then

𝑆𝑀 is bounded in 𝐶([0, 𝑇 ] ;𝐻1
0 (Ω)), as shows Theorem 2.1. Consequently,

𝑆𝑀 is also bounded in 𝐶([0, 𝑇 ] ;𝐿𝑝(Ω)), and for each 𝑡, (𝑆𝑀) (𝑡) is a bounded
subset of 𝐻1

0 (Ω) , thus relatively compact in 𝐿𝑝 (Ω) . It remains to prove that
𝑆𝑀 is equicontinuous in 𝐶 ([0, 𝑇 ] ;𝐿𝑝 (Ω)) . To this end, let 𝑓 ∈ 𝑀 and
𝑢 = 𝑆𝑓. We have

∣𝑢𝑘 (𝑡)− 𝑢𝑘 (𝑡
′)∣2 =

∣∣∣∣∫ 𝑡

𝑡′
𝑒−𝑖𝜆𝑘(𝑡−𝑠)𝑓𝑘 (𝑠) 𝑑𝑠

∣∣∣∣2 ≤ ∣𝑡− 𝑡′∣
∫ 𝑡

𝑡′
∣𝑓𝑘 (𝑠)∣2 𝑑𝑠.

It follows that

∣𝑢 (𝑡)− 𝑢 (𝑡′)∣2𝐻1
0
≤ ∣𝑡− 𝑡′∣

∫ 𝑇

0

∣𝑓 (𝑠)∣2𝐻1
0
.
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This together with ∣𝑢 (𝑡)− 𝑢 (𝑡′)∣𝐿𝑝 ≤ 𝐶 ∣𝑢 (𝑡)− 𝑢 (𝑡′)∣𝐻1
0
proves the equicon-

tinuity of 𝑆𝑀.
(ii) If 𝑀 is bounded in 𝐶1([0, 𝑇 ] ;𝐻−1 (Ω)), then 𝑆𝑀 is bounded in

𝐶([0, 𝑇 ] ;𝐻1
0 (Ω)) and in 𝐶1([0, 𝑇 ] ;𝐻−1 (Ω)). This implies that 𝑆𝑀 is rel-

atively compact in 𝐶
(
[0, 𝑇 ] ;𝐻−1 (Ω)

)
. Then, from Lemma 3.1, we deduce

that 𝑆𝑀 is relatively compact in 𝐶([0, 𝑇 ] ;𝐿𝑝 (Ω)).

4 Nonlinear Schrödinger equations

4.1 Applications of Banach’s fixed point
theorem

Our first existence and uniqueness result for the semilinear problem (1.1) is
established by means of Banach’s fixed point theorem.

Theorem 4.1 Let 𝑔 ∈ 𝐿2 (Ω) and Φ : 𝐶
(
[0, 𝑇 ];𝐿2 (Ω)

)→ 𝐶
(
[0, 𝑇 ];𝐿2 (Ω)

)
be a map for which there exists a constant 𝑎 ∈ R+ such that the following
inequality holds for all 𝑢, 𝑣 ∈ 𝐶

(
[0, 𝑇 ];𝐿2 (Ω)

)
:

∣Φ(𝑢)(𝑡)− Φ(𝑣)(𝑡)∣𝐿2 ≤ 𝑎 ∣𝑢(𝑡)− 𝑣(𝑡)∣𝐿2 for every 𝑡 ∈ [0, 𝑇 ]. (4.1)

Then there exists a unique function

𝑢 ∈ 𝐶
(
[0, 𝑇 ] ;𝐿2(Ω)

) ∩ 𝐶1
(
[0, 𝑇 ];Δ𝐿2(Ω)

)
such that{

𝑢′ (𝑡)− 𝑖Δ𝑢 (𝑡) = Φ (𝑢) (𝑡) in Δ𝐿2 (Ω) , for every 𝑡 ∈ [0, 𝑇 ] ,
𝑢 (0) = 𝑔0.

Proof. Let 𝑢0 be the solution of problem (1.1) corresponding to Φ = 0.
We have to solve the fixed point problem

𝑢 = 𝑢0 + (𝑆 ∘ Φ) (𝑢) , 𝑢 ∈ 𝐶
(
[0, 𝑇 ] ;𝐿2 (Ω)

)
.

The conclusion will follow from Banach’s fixed point theorem once we have
shown that the operator

𝐴 : 𝐶
(
[0, 𝑇 ] ;𝐿2 (Ω)

)→ 𝐶
(
[0, 𝑇 ] ;𝐿2 (Ω)

)
, 𝐴 (𝑢) = 𝑢0 + (𝑆 ∘ Φ) (𝑢)

is a contraction with respect to a suitable norm on 𝐶
(
[0, 𝑇 ] ;𝐿2 (Ω)

)
. Let

𝑢, 𝑣 ∈ 𝐶
(
[0, 𝑇 ] ;𝐿2 (Ω)

)
. We have

∣𝐴 (𝑢) (𝑡)−𝐴 (𝑣) (𝑡)∣2𝐿2 = ∣𝑆 (Φ (𝑢)− Φ(𝑣)) (𝑡)∣2𝐿2

≤ 2𝑡 ∣Φ(𝑢)− Φ(𝑣)∣2𝐿2(0,𝑡;𝐿2(Ω)) .
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Let 𝜃 > 𝑇𝑎2 be a fixed number and consider the norm on 𝐶
(
[0, 𝑇 ] ;𝐿2 (Ω)

)
,

∥𝑢∥ = max
𝑡∈[0,𝑇 ]

(∣𝑢 (𝑡)∣𝐿2 𝑒
−𝜃 𝑡
)
.

Furthermore,

∣Φ(𝑢)− Φ(𝑣)∣2𝐿2(0,𝑡;𝐿2(Ω)) =

∫ 𝑡

0

∣Φ(𝑢) (𝑠)− Φ(𝑣) (𝑠)∣2𝐿2 𝑑𝑠

= 𝑎2
∫ 𝑡

0

𝑒2𝜃𝑠𝑒−2𝜃𝑠 ∣𝑢 (𝑠)− 𝑣 (𝑠)∣2𝐿2 𝑑𝑠

≤ 𝑎2 ∥𝑢− 𝑣∥2
∫ 𝑡

0

𝑒2𝜃𝑠𝑑𝑠

=
𝑎2

2𝜃
∥𝑢− 𝑣∥2 (𝑒2𝜃𝑡 − 1

)
≤ 𝑎2

2𝜃
∥𝑢− 𝑣∥2 𝑒2𝜃𝑡.

Hence

∣𝐴 (𝑢) (𝑡)−𝐴 (𝑣) (𝑡)∣2𝐿2 ≤ 𝑡𝑎2

𝜃
∥𝑢− 𝑣∥2 𝑒2𝜃𝑡.

Dividing by 𝑒2𝜃𝑡 and taking the maximum over [0, 𝑇 ] yields

∥𝐴 (𝑢)−𝐴 (𝑣)∥ ≤
√
𝑇𝑎√
𝜃

∥𝑢− 𝑣∥ .

Since
√
𝑇𝑎/

√
𝜃 < 1, the operator 𝐴 is a contraction on 𝐶

(
[0, 𝑇 ] ;𝐿2 (Ω)

)
with respect to the norm ∥.∥ .
Example 4.1 Let Ψ : 𝐿2 (Ω) → 𝐿2 (Ω) be a map for which there exists a
constant 𝑎 ∈ R+ with

∣Ψ(𝑢)−Ψ(𝑣)∣𝐿2(Ω) ≤ 𝑎 ∣𝑢− 𝑣∣𝐿2(Ω) for all 𝑢, 𝑣 ∈ 𝐿2 (Ω) . (4.2)

Then the map Φ : 𝐶
(
[0, 𝑇 ] ;𝐿2 (Ω)

)→ 𝐶
(
[0, 𝑇 ] ;𝐿2 (Ω)

)
given by

Φ (𝑢) (𝑡) = Ψ (𝑢 (𝑡))
(
𝑢 ∈ 𝐶

(
[0, 𝑇 ];𝐿2 (Ω)

)
, 𝑡 ∈ [0, 𝑇 ]

)
satisfies all the assumptions of Theorem 4.1.

Example 4.2 Let 𝜓 : Ω × C → C be a continuous function such that
𝜓 (., 0) ∈ 𝐿2 (Ω) and there is a constant 𝑎 ∈ R+ with

∣𝜓 (𝑥, 𝜏1)− 𝜓 (𝑥, 𝜏2)∣ ≤ 𝑎 ∣𝜏1 − 𝜏2∣
for all 𝑥 ∈ Ω and 𝜏1, 𝜏2 ∈ C. Then the operator Ψ : 𝐿2 (Ω) → 𝐿2 (Ω) defined
by

Ψ (𝑢) = 𝜓 (., 𝑢 (.))

satisfies the condition from the previous example.
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Indeed, we may write

Ψ (𝑢) = 𝜓 (., 0) + ℎ (., 𝑢 (.))

where ℎ (𝑥, 𝜏) = 𝜓 (𝑥, 𝜏)−𝜓 (𝑥, 0) . Notice that ∣ℎ (𝑥, 𝜏)∣ ≤ 𝑎 ∣𝜏 ∣ (for all 𝑥 ∈ Ω
and 𝜏 ∈ C), so the superposition operator ℎ (., 𝑢 (.)) (see [7]) maps 𝐿2 (Ω)
into 𝐿2 (Ω) and ∣ℎ (., 𝑢 (.))− ℎ (., 𝑣 (.))∣𝐿2 ≤ 𝑎 ∣𝑢− 𝑣∣𝐿2 .

Denote

𝐶1
0

(
[0, 𝑇 ];𝐻−1 (Ω)

)
=
{
𝑢 ∈ 𝐶1

(
[0, 𝑇 ];𝐻−1 (Ω)

)
: 𝑢 (0) = 0

}
.

Theorem 4.2 Let 𝑔 ∈ 𝐻1
0 (Ω) and let

Φ : 𝐶
(
[0, 𝑇 ];𝐻1

0 (Ω)
)→ 𝐶1

0

(
[0, 𝑇 ];𝐻−1 (Ω)

)
be a map for which there exists a constant 𝑎 ∈ R+ such that the following
inequality holds for all 𝑢, 𝑣 ∈ 𝐶

(
[0, 𝑇 ];𝐻1

0 (Ω)
)
:

∣Φ(𝑢)′(𝑡)− Φ(𝑣)′(𝑡)∣𝐻−1 ≤ 𝑎 ∣𝑢(𝑡)− 𝑣(𝑡)∣𝐻1
0

for every 𝑡 ∈ [0, 𝑇 ].

Then there exists a unique function

𝑢 ∈ 𝐶
(
[0, 𝑇 ] ;𝐻1

0 (Ω)
) ∩ 𝐶1

(
[0, 𝑇 ];𝐻−1(Ω)

)
satisfying{

𝑢′ (𝑡)− 𝑖Δ𝑢 (𝑡) = Φ (𝑢) (𝑡) in 𝐻−1 (Ω) , for every 𝑡 ∈ [0, 𝑇 ] ,
𝑢 (0) = 𝑔0.

Proof. We have to solve the fixed point problem for the operator 𝐴 :
𝐶
(
[0, 𝑇 ];𝐻1

0 (Ω)
)→ 𝐶

(
[0, 𝑇 ];𝐻1

0 (Ω)
)
, 𝐴 (𝑢) = 𝑢0 + (𝑆 ∘ Φ) (𝑢) . We have

∣𝐴 (𝑢) (𝑡)−𝐴 (𝑣) (𝑡)∣2𝐻1
0

= ∣𝑆 (Φ (𝑢)− Φ(𝑣)) (𝑡)∣2𝐻1
0

= 12𝑡

∫ 𝑡

0

∣∣Φ (𝑢)
′
(𝑠)− Φ(𝑣)

′
(𝑠)
∣∣2
𝐻−1 𝑑𝑠

≤ 12𝑡𝑎2
∫ 𝑡

0

∣𝑢 (𝑠)− 𝑣 (𝑠)∣2𝐻1
0
𝑑𝑠.

As above, if we consider 𝜃 > 6𝑇𝑎2 and norm ∥𝑢∥ = max𝑡∈[0,𝑇 ]

(
∣𝑢 (𝑡)∣𝐻1

0
𝑒−𝜃 𝑡

)
on 𝐶

(
[0, 𝑇 ];𝐻1

0 (Ω)
)
, we obtain

∥𝐴 (𝑢)−𝐴 (𝑣)∥ ≤ 𝑎

√
6𝑇

𝜃
∥𝑢− 𝑣∥ .
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Example 4.3 Let Φ0 : 𝐶
(
[0, 𝑇 ];𝐻1

0 (Ω)
) → 𝐶

(
[0, 𝑇 ];𝐻−1 (Ω)

)
be a map

for which there is a constant 𝑎 ∈ 𝑅+ such that

∣Φ0 (𝑢) (𝑡)− Φ0 (𝑣) (𝑡)∣𝐻−1 ≤ 𝑎 ∣𝑢 (𝑡)− 𝑣 (𝑡)∣𝐻1
0

for all 𝑢, 𝑣 ∈ 𝐶
(
[0, 𝑇 ];𝐻1

0 (Ω)
)
and 𝑡 ∈ [0, 𝑇 ] . Then the map Φ given by

Φ (𝑢) (𝑡) =

∫ 𝑡

0

Φ0 (𝑢) (𝑠) 𝑑𝑠

satisfies all the assumptions of Theorem 4.2.

4.2 Applications of Schauder’s fixed point
theorem

The next existence results are based on Schauder’s fixed point theorem. The
Lipschitz condition on the nonlinear term Φ in Theorem 4.1 is weakened to
a condition of at most linear growth.

Theorem 4.3 Let 𝑔 ∈ 𝐻1
0 (Ω) , 𝑝 ∈ [1, 2∗) and Φ : 𝐶 ([0, 𝑇 ];𝐿𝑝 (Ω)) →

𝐶
(
[0, 𝑇 ];𝐻1

0 (Ω)
)
a continuous map for which there exists a constant 𝑎 ∈ R+

such that the following inequality holds for every 𝑢 ∈ 𝐶 ([0, 𝑇 ];𝐿𝑝 (Ω)) :

∣Φ(𝑢)(𝑡)− Φ(0)(𝑡)∣𝐻1
0
≤ 𝑎 ∣𝑢(𝑡)∣𝐿𝑝 for every 𝑡 ∈ [0, 𝑇 ].

Then there exists at least one function

𝑢 ∈ 𝐶
(
[0, 𝑇 ] ;𝐻1

0 (Ω)
) ∩ 𝐶1

(
[0, 𝑇 ];𝐻−1(Ω)

)
such that{

𝑢′ (𝑡)− 𝑖Δ𝑢 (𝑡) = Φ (𝑢) (𝑡) in 𝐻−1 (Ω) , for every 𝑡 ∈ [0, 𝑇 ] ,
𝑢 (0) = 𝑔0.

Proof. We look for a fixed point of the operator

𝐴 : 𝐶 ([0, 𝑇 ];𝐿𝑝 (Ω)) → 𝐶 ([0, 𝑇 ];𝐿𝑝 (Ω)) , 𝑁(𝑢) = 𝑢0 + (𝑆 ∘ Φ)(𝑢).

Theorem 3.2 and the continuity and boundedness of the operator Φ guaran-
tee the complete continuity of 𝐴. It remains to find a nonempty, bounded,
closed and convex subset 𝐷 of 𝐶 ([0, 𝑇 ];𝐿𝑝 (Ω)) with 𝐴(𝐷) ⊂ 𝐷. Let 𝑢 ∈
𝐶 ([0, 𝑇 ];𝐿𝑝 (Ω)) . As in the proof of Theorem 4.1, one obtains

∣𝐴 (𝑢) (𝑡)−𝐴 (0) (𝑡)∣𝐿𝑝 ≤ 𝑐 ∣𝐴 (𝑢) (𝑡)−𝐴 (0) (𝑡)∣𝐻1
0

= 𝑐 ∣𝑆 (Φ (𝑢)− Φ (0)) (𝑡)∣𝐻1
0

≤ 2𝑐𝑡 ∣Φ(𝑢)− Φ(0)∣2𝐿2(0,𝑡;𝐻1
0 (Ω)) .
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Since

∣Φ(𝑢)− Φ (0)∣2𝐿2(0,𝑡;𝐻1
0 (Ω)) =

∫ 𝑡

0

∣Φ(𝑢) (𝑠)− Φ(0) (𝑠)∣2𝐻1
0
𝑑𝑠

≤ 𝑎2
∫ 𝑡

0

∣𝑢 (𝑠)∣2𝐿𝑝 𝑑𝑠

we have

∣𝐴 (𝑢) (𝑡)−𝐴 (0) (𝑡)∣2𝐿𝑝 ≤ 2𝑎2𝑐𝑡

∫ 𝑡

0

∣𝑢 (𝑠)∣2𝐿𝑝 𝑑𝑠.

If in 𝐶 ([0, 𝑇 ] ;𝐿𝑝 (Ω)) we consider the norm ∥𝑢∥ = max𝑡∈[0,𝑇 ]

(∣𝑢 (𝑡)∣𝐿𝑝 𝑒−𝜃 𝑡
)
,

then we deduce

∥𝐴 (𝑢)−𝐴 (0)∥ ≤ 𝑎

√
𝑐𝑇

𝜃
∥𝑢∥ .

Hence

∥𝐴 (𝑢)∥ ≤ ∥𝐴 (0)∥+ 𝑎

√
𝑐𝑇

𝜃
∥𝑢∥ .

If we choose 𝜃 > 𝑎2𝑐𝑇, then we can find a large enough 𝑅 > 0 such that
∥𝑢∥ ≤ 𝑅 implies ∥𝐴 (𝑢)∥ ≤ 𝑅. Thus, Schauder’s fixed point theorem applies.

Similarly, we have

Theorem 4.4 Let 𝑔 ∈ 𝐻1
0 (Ω) , 𝑝 ∈ [(2∗)′ , 2∗) and Φ : 𝐶 ([0, 𝑇 ];𝐿𝑝 (Ω)) →

𝐶1
0

(
[0, 𝑇 ];𝐻−1 (Ω)

)
be a continuous map for which there exists a constant 𝑎 ∈

R+ such that the following inequality holds for every 𝑢 ∈ 𝐶 ([0, 𝑇 ];𝐿𝑝 (Ω)) :

∣Φ(𝑢)′(𝑡)− Φ(0)′(𝑡)∣𝐻−1 ≤ 𝑎 ∣𝑢(𝑡)∣𝐿𝑝 for every 𝑡 ∈ [0, 𝑇 ].

Then there exists at least one function

𝑢 ∈ 𝐶
(
[0, 𝑇 ] ;𝐻1

0 (Ω)
) ∩ 𝐶1

(
[0, 𝑇 ];𝐻−1(Ω)

)
satisfying{

𝑢′ (𝑡)− 𝑖Δ𝑢 (𝑡) = Φ (𝑢) (𝑡) in 𝐻−1 (Ω) , for every 𝑡 ∈ [0, 𝑇 ] ,
𝑢 (0) = 𝑔0.

Example 4.4 Let Φ0 : 𝐶 ([0, 𝑇 ];𝐿𝑝 (Ω)) → 𝐶
(
[0, 𝑇 ];𝐻−1 (Ω)

)
be a map for

which there is a constant 𝑎 ∈ 𝑅+ such that

∣Φ0 (𝑢) (𝑡)− Φ0 (𝑣) (𝑡)∣𝐻−1 ≤ 𝑎 ∣𝑢 (𝑡)− 𝑣 (𝑡)∣𝐿𝑝

for all 𝑢, 𝑣 ∈ 𝐶 ([0, 𝑇 ];𝐿𝑝 (Ω)) and 𝑡 ∈ [0, 𝑇 ] . Then the map Φ given by

Φ (𝑢) (𝑡) =

∫ 𝑡

0

Φ0 (𝑢) (𝑠) 𝑑𝑠

satisfies all the assumptions of Theorem 4.4.
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[5] J.L. Lions, Quelques méthods de résolution des problèmes aux limites non linéaires,
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