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Abstract. In the present paper we introduce a general class of positive operators of
discrete type acting on the space of real valued functions defined on a plane domain.

Based on the weakly Picard operators and the contraction principle as well, our aim is
to study the convergence of the iterates of our defined operators. Also, some approxi-

mation properties of this process are revealed and concrete examples of our approach
are given.

1. Introduction

The fixed point theory has proved quite useful in the theory of approximation
operators. More precisely, we refer here to the theory of weakly Picard operators,
approached by the second author, see e.g. [4, 5]. In section 2 we briefly present the
basic elements of this research direction which will be used in establishing our main
result. Simultaneously, some useful notations are given. Further on, in section 3
we construct a sequence of operators of discrete type associated to any real valued
function defined on a rectangular domain. Under some additional conditions imposed
to our operators, they become an approximation process. By using the modulus of
smoothness of the first order, we estimate the degree of convergence of our sequence
to the identity operator. At the same time, in order to obtain the limit of the iterates,
we prove that the conditions formulated in the previous section are fulfilled by our
general class of operators.

The focus of section 4 is to present some concrete examples. Applying our method,
results regarding the iterates of Bernstein respectively Stancu bivariate operators are
obtained.

2. Weakly Picard operators on metric spaces

We set N0 = N ∪ {0} and, at first, we give the following informal definition.
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Definition 1 [4]. Let (X, ρ) be a metric space. The operator T : X → X is
weakly Picard operator (WPO) if the sequence of iterates (Tm(x))m∈N converges for
every x belonging to X and the limit is a fixed point of T .

Throughout the paper FT := {x ∈ X| T (x) = x} stands for the fixed point set of
the operator T and, as usually, we put T 0 = IX , T 1 = T , Tm+1 = T ◦ Tm, m ∈ N.
Here IX denotes the identity operator on X.

We recall: if T is a weakly Picard operator and FT has a unique element, then,
by definition, T is a Picard operator (PO).

In [4] was given the following characterization of a weakly Picard operator.

Theorem 1. Let (X, ρ) be a metric space. The operator T : X → X is weakly
Picard if and only if a partition of X exists, X =

⋃
s∈S

Xs such that for every s ∈ S

one has
(i) Xs ∈ I(T ),
(ii) T |Xs : Xs → Xs is a Picard operator,

where I(T ) := {Y ⊂ X| Y 6= ∅ and T (Y ) ⊂ Y } represents the family of the non-
empty invariant subsets of T .

Further on, if T is WPO we introduce T∞ ∈ XX defined by

T∞(x) := lim
m→∞

Tm(x), x ∈ X. (1)

We remark that T∞(X) = FT .
Also, if T is WPO, then the following relations holds true:

FTm = FT 6= ∅, for every m ∈ N.

Moreover, if T is PO, then FTm = FT = {x∗} for every m ∈ N, in other words T
is a Bessaga operator.

For the convenience of the reader, we accompany this brief exposition with a
generic example of weakly Picard operator.

Example 1. Let (Xi, ρi), i ∈ I, be a family of metric spaces, Ti : Xi → Xi, a
family of Picard operators and x∗i the unique fixed point of Ti for every i ∈ I. Let
X :=

⋃
i∈I

Xi be the disjoint union of the family (Xi)i∈I . We define ρ : X ×X → R+,

ρ(x, y) =

{
ρi(x, y), if (x, y) ∈ Xi ×Xi, i ∈ I,

ρi(x, x∗i ) + ρj(y, x∗j ) + 1, if (x, y) ∈ Xi ×Xj , i 6= j.

Clearly ρ is a metric on X and T is WPO, where T (x) := Ti(x) for x ∈ Xi, i ∈ I.
Finally we indicate some notations used in the sequel. We shall need the so called

test functions of two variables ei,j; we recall ei,j : D → R, ei,j(x, y) = xiyj for every
(x, y) ∈ D ⊂ R × R, where i ∈ N0, j ∈ N0, i + j ≤ 2.

For a set S, we shall denote by B(S) the Banach space of all real-valued bounded
functions defined on S, endowed with the norm of the uniform convergence, briefly
the sup-norm, defined by

‖f‖∞ := sup
x∈S

|f(x)| for every f ∈ B(S).
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If S is a topological space, C(S) denotes the space of all real-valued continuous
functions on S. Furthermore, setting CB(S) := C(S) ∩ B(S), this space endowed
with the sup-norm is a Banach space. Clearly, if S is compact, then CB(S) = C(S).

Actually, if S is compact then C(S) is a Banach lattice, consequently every positive
linear operator T acting on this space is continuous and one has

‖T‖ = ‖T (1)‖∞, (2)

where 1 denotes the constant function 1.

3. On a general sequence of operators

For a1 < b1 and a2 < b2 we consider I1 := [a1, b1], I2 := [a2, b2], D := I1 × I2 and

VD = {(a1, a2), (a1, b2), (b1, a2), (b1, b2)}, (3)

the vertices set of the domain D.
For every (m,n) ∈ N × N we define the bi-dimensional net

{
∆1,m(a1 = xm,0 < xm,1 < · · · < xm,m = b1)

∆2,n(a2 = yn,0 < yn,1 < · · · < yn,n = b2)
(4)

and the following systems of non-negative real-valued functions

0 ≤ ψ1,m,i ∈ C(I1), 0 ≤ i ≤ m, 0 ≤ ψ2,n,j ∈ C(I2), 0 ≤ j ≤ n. (5)

As regards these functions, the following properties will be fulfilled:

(P1)
m∑

i=0

ψ1,m,i(x) =
n∑

j=0

ψ2,n,j(y) = 1, (x, y) ∈ I1 × I2, (6)

(P2)
m∑

i=0

xm,iψ1,m,i(x) = x (x ∈ I1),
n∑

j=0

yn,jψ2,n,j(y) = y (y ∈ I2), (7)

(P3) ψ1,m,0(a1) = ψ1,m,m(b1) = ψ2,n,0(a2) = ψ2,n,n(b2) = 1. (8)

Using the above data, for every function f ∈ RD we define the operators

(Lm,nf)(x, y) =
m∑

i=0

n∑

j=0

ψ1,m,i(x)ψ2,n,j(y)f(xm,i , yn,j), (x, y) ∈ D. (9)

Examining (6), (7) and (2) (with S = D and e0,0 = 1) we can state

Lemma 2. The operators Lm,n, (m,n) ∈ N × N, defined by (9) verify

(i) Lm,nei,j = ei,j , (i, j) ∈ {(0, 0), (0, 1), (1, 0), (1,1)};
(ii) If f ∈ C(D) then ‖Lm,n‖ = 1.
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The above result implies that Lm,n has the degree of exactness equal with 1.
In what follows we are concerned in establishing the rate of convergence of this

class of operators. In this respect we use the modulus of smoothness of the first order
defined as follows

ωf (δ1, δ2) := sup
{
|f(x1, y1) − f(x2, y2)| :

x1, x2 ∈ I1, y1, y2 ∈ I2, |x1 − x2| ≤ δ1, |y1 − y2| ≤ δ2
}
,

for every f ∈ B(D), δ1 > 0 and δ2 > 0. Other used notation for it: ω(f ; δ1, δ2).
Clearly, ωf is an increasing function and ωf (0, 0) = 0. The method used by us seems
to be simple and it is based on the properties of ωf investigated by A. F. Ipatov [3];
among these properties we recall

ωf (λ1δ1, λ2δ2) ≤ (1 + λ1 + λ2)ωf (δ1, δ2), λ1 > 0, λ2 > 0. (10)

Let δ1 > 0, δ2 > 0 be two real numbers which are independent of i and j. Taking
into account both the identities (6) and formula (10) we can write

|(Lm,nf)(x, y) − f(x, y)|

≤
m∑

i=0

n∑

j=0

ψ1,m,i(x)ψ2,n,j(y)|f(xm,i , yn,j) − f(x, y)|

≤
m∑

i=0

n∑

j=0

ψ1,m,i(x)ψ2,n,j(y)ωf

(
1
δ1

|xm,i − x|δ1,
1
δ2

|yn,j − y|δ2
)

≤
(
1 +

1
δ1

m∑

i=0

ψ1,m,i(x)|xm,i − x|+ 1
δ2

n∑

j=0

ψ2,n,j(y)|yn,j − y|
)
ωf (δ1, δ2).

(11)

On the other hand, Cauchy’s inequality and the properties (6), (7) imply

m∑

i=0

ψ1,m,i(x)|xm,i − x| ≤

(
m∑

i=0

ψ1,m,i(x)

)1/2( m∑

i=0

ψ1,m,i(x)(xm,i − x)2
)1/2

=

(
m∑

i=0

ψ1,m,i(x)x2
m,i − x2

)1/2

,

and respectively

n∑

j=0

ψ2,n,j(y)|yn,j − y| ≤




n∑

j=0

ψ2,n,j(y)y2
n,j − y2




1/2

.

By using (11) we end off to evaluate the order of approximation as follows.
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Theorem 3. The operators Lm,n, (m,n) ∈ N × N, defined by (9) verify

|(Lm,nf)(x, y) − f(x, y)| ≤
(

1 +
1
δ1

√
1Ψ̃m(x) +

1
δ2

√
2Ψ̃n(y)

)
ωf (δ1, δ2), (12)

for every f ∈ B(D), δ1 > 0, δ2 > 0, where





1Ψ̃m(x) =
m∑

i=0

ψ1,m,i(x)x2
m,i − x2, x ∈ I1,

2Ψ̃n(y) =
n∑

j=0

ψ2,n,j(y)x2
n,j − y2, y ∈ I2.

(13)

Endowing R×R with the metric ρ, ρ(v1, v2) = |x1−x2|+|y1−y2| for vk = (xk, yk),
k = 1, 2, we could have estimated the rate of convergence using another type of
modulus of smoothness given by

ωρ(f ; δ) := sup {|f(v1) − f(v2)| : v1 ∈ D, v2 ∈ D, ρ(v1, v2) ≤ δ} ,

for every f ∈ B(D) and δ > 0. It is easy to see that ωf (δ1, δ2) ≤ ωρ(f ; δ1 + δ2) and,
of course, formula (12) will have another structure.

Returning to Theorem 3 we are in position to indicate the necessary and sufficient
condition which offers to the sequence (Lm,n)(m,n)∈N×N the attribute of approxima-
tion process.

Theorem 4. Let Lm,n, (m,n) ∈ N × N, be given by (9) and let the functions

1Ψ̃m, 2Ψ̃n be defined by (13).

If lim
m→∞ 1Ψ̃m = 0 uniformly on I1 and lim

n→∞ 2Ψ̃n = 0 uniformly on I2, then for

every f ∈ C(D) one has

lim
(m,n)

Lm,nf = f uniformly on D.

Actually, this result can be motivated directly by using the celebrated Bohman-
Korovkin theorem for bidimensional case. The hypotheses of Theorem 4 guarantee
that Lm,ne2,0, Lm,ne0,2 converge to e2,0 respectively to e0,2. Adding this fact to
Lemma 2, see (i), we just obtained the uniform convergence of our operators on the
all six test functions of the mentioned theorem.

Conditions (8) and (6) combined with (5) ensure

ψ1,m,i(a1) = ψ1,m,i−1(b1) = 0, ψ2,n,j(a2) = ψ2,n,j−1(b2) = 0,

for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Consequently we have
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Lemma 5. The operators Lm,n, (m,n) ∈ N × N, defined by (9) verify

(Lm,nf)(u0, v0) = f(u0, v0), for every (u0, v0) ∈ VD ,

where VD is given at (3).

At this moment we introduce the matrices

[f ;VD] :=
(
f(a1, a2) f(b1, a2)
f(a1, b2) f(b1, b2)

)
, Λ :=

(
α1,1 α1,2

α2,1 α2,2

)
, (14)

where VD appears at (3) and αi,j (1 ≤ i, j ≤ 2) are real numbers arbitrarily fixed.
Let us define the set

XΛ := {f ∈ C(D) : [f ;VD ] = Λ}. (15)

In what follows we give some basic properties regarding both to XΛ and Lm,n.

Lemma 6. Let XΛ and Lm,n be given by (15) and (9) respectively.

(i) For each matrix Λ ∈ M2(R), XΛ is a closed subset of C(D).
(ii) C(D) =

⋃
Λ∈M2(R)

XΛ is a partition of the space C(D).

(iii) For each matrix Λ ∈ M2(R), XΛ is an invariant subset by every Lm,n,

(m,n) ∈ N × N, in other words Lm,n(XΛ) ⊂ XΛ.

The first two statements are obvious and the third of them is implied by Lemma
5.

In order to present the limit of iterates of our operators, we define the following
polynomial function associated to matrix Λ

p∗Λ(x, y) = α1,1 +A1,0(x− a1) + A0,1(y − a2) + A1,1(x− a1)(y − a2), (16)

where (x, y) ∈ D and

A1,0 =
α1,2 − α1,1

b1 − a1
, A0,1 =

α2,1 − α1,1

b2 − a2
, A1,1 =

α2,2 − α1,2 + α1,1 − α2,1

(b1 − a1)(b2 − a2)
.

Lemma 7. For the function p∗Λ defined by (16) the following relations

(i) p∗Λ ∈ XΛ,

(ii) Lm,np
∗
Λ = p∗Λ,

hold true.

Proof. By a straightforward calculation of the set p∗Λ(VD), see (3), one has
[p∗Λ;VD] = Λ. The second statement of this lemma is implied by Lemma 2 and
the linearity of our operators.

Lemma 8. Let Lm,n be the operator defined by (9). For every (m,n) ∈ N × N
and Λ ∈ M2(R), the operator Lm,n|XΛ : XΛ → XΛ is a contraction.
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Proof. Setting

K := {0, 1, . . . ,m} × {0, 1, . . . , n} and ∂K := {(0, 0), (0, n), (m, 0), (m,n)},

for each f and g belonging to XΛ, in view of Lemma 5, we get

|(Lm,nf)(x, y) − (Lm,ng)(x, y)|

=

∣∣∣∣∣∣
∑

(i,j)∈K\∂K

ψ1,m,i(x)ψ2,n,j(y)(f − g)(xm,i, yn,j)

∣∣∣∣∣∣

≤
∑

(i,j)∈K\∂K

ψ1,m,i(x)ψ2,n,j(y)‖f − g‖∞

= (1 − um,n(x, y))‖f − g‖∞
≤ (1 − λm,n)‖f − g‖∞,

where

um,n(x, y) :=
∑

(i,j)∈∂K

ψ1,m,i(x)ψ2,n,j(y) and λm,n := inf
(x,y)∈D

um,n(x, y). (17)

Thus ‖Lm,nf − Lm,ng‖∞ ≤ (1 − λm,n)‖f − g‖∞ and the conclusion follows.

Proceeding along the lines of section 2, we are able to present our main result.
Lemmas 6, 7 and 8 lead us to the following property of the iterates of our operators.

Theorem 9. Let Lm,n, (m,n) ∈ N × N, be defined by (9) and λm,n be given at
(17). If λm,n 6= 0 then one has

lim
k→∞

Lk
m,nf = p∗[f ;VD ], f ∈ C(D),

uniformly on D, where p∗[f ;VD ] is defined at (16) via (14).

Remarks.
1) In the particular case of the square D = [0, 1]× [0, 1] we have

p∗[f,VD ](x, y) ≡ p∗f (x, y)

= f(0, 0) + (f(1, 0) − f(0, 0))x+ (f(0, 1) − f(0, 0))y

+ (f(1, 1) − f(1, 0) + f(0, 0) − f(0, 1))xy.
(18)

2) If we consider the univariate case of our operators described by the below
form

(Lmf)(x) =
m∑

i=0

ψm,i(x)f(xm,i), f ∈ RI1 , x ∈ I1,

with 0 ≤ ψm,i ∈ C(I1) (i = 0,m),
∑m

i=0ψm,i(x) = 1,
∑m

i=0ψm,i(x)xm,i = x,
then Theorem 9 can be read as follows.
If λm := inf

x∈I1
(ψm,0 + ψm,m)(x) 6= 0 then the sequence (Lk

m)k≥1 verifies

lim
k→∞

(Lk
mf)(x) = f(a1) +

f(b1) − f(a1)
b1 − a1

(x− a1), f ∈ C(I1), uniformly on I1.
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3) Taking the advantage of the familiar Bohman-Korovkin arguments, see The-
orem 4, here is a necessary and sufficient condition for the iterates of the
sequence (Lm,n) to converge to the identity operator. Considering (kp)p≥1

an increasing sequence of positive integer numbers tending to infinity, we get:
lim

p→∞
‖Lkp

m,nf − f‖∞ = 0 for each f ∈ C(D) if and only if the same limit

relation holds for f = e2,0 and f = e0,2.

In the light of Definition 1, Theorem 1 and relation (1) as well, choosingX = C(D),
we obtain

Corollary 10. Under the hypothesis of Theorem 9, the operator Lm,n defined by

(9) is WPO for every (m,n) ∈ N × N and one has L∞
m,nf = p∗[f ;VD ], where p∗[f ;VD ] is

given at (16) and (14).

As regards WPO we can state the following general result.

Theorem 11. Let S be an open bounded subset of R2 and E be a subset of S.

If T : C(S) → C(S) is a linear operator satisfying the conditions:
(i) (Th)(x, y) = h(x, y) for every h ∈ C(S) and (x, y) ∈ E,
(ii) there exists 0 < α < 1 such that ‖Th‖∞ ≤ α‖h‖∞ for every h ∈ C(S) having

the property h|E = 0,

then T is WPO.

Proof. Setting Γ := C(E), for each γ belonging to Γ we consider the closed set
Xγ := {f ∈ C(S) : f |E = γ}. Clearly, (Xγ )γ∈Γ is a partition of C(S), and each Xγ

is an invariant subset of T . Moreover, if f and g belong to Xγ then (f − g)|E = 0
and consequently ‖Tf − Tg‖∞ ≤ α‖f − g‖∞. Thus, T |Xγ is α-contraction for every
γ ∈ Γ and the conclusion follows from Theorem 1.

4. Application

In order to present concrete examples, we are looking for operators having the
exactness degree 1. In this section we selected two classical examples of operators
which verify all requirements formulated in section 3. For both of them we choose
the domain I1 × I2 and the net (4) as follows

I1 = I2 = [0, 1], xm,i = i/m(0 ≤ i ≤ m), yn,j = j/n (0 ≤ j ≤ n).

4.1. Bernstein operator of (m,n)-order

In this case, for q = 1 and q = 2 we take ψq,p,k, 0 ≤ k ≤ p, the fundamental
Bernstein polynomials bp,k of p-degree, this meaning bp,k(t) =

(
p
k

)
tp−k(1 − t)k, t ∈

[0, 1]. The operator Lm,n becomes Bm,n, the Bernstein operator of (m,n) order given
by

(Bm,nf)(x, y) =
m∑

i=0

n∑

j=0

bm,i(x)bn,j(y)f(i/m, j/n). (19)
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It is well known that Bm,n verifies the properties (P1), (P2), (P3) indicated at
(6), (7), (8) respectively. Moreover, the functions introduced by (13) are defined for
(q, p) = (1,m) respectively (q, p) = (2, n) as follows

qΨ̃p(t) =
t(1 − t)

p
, t ∈ [0, 1],

consequently Theorem 4 works and (Bm,n) is an approximation process on C(D).
Choosing in (12) (δ1, δ2) = (1/

√
m, 1/

√
n), we reobtain a classical inequality due to

Ipatov [3]. As a matter of fact, we recall that the order of approximation of bivariate
functions by this type of Bernstein operators was proved in [2] as being

‖Bm,nf − f‖∞ ≤ (2k − 1)ωf (1/
√
m, 1/

√
n),

where k = (4306 + 837
√

6)/5832 ≈ 1.0898873 . . . is Sikkema’s constant which char-
acterizes the univariate case, see [6]. The coefficients λm,n ≡ λB

m,n defined by (17)
associated to these operators have the values

λB
m,n = inf

0≤x≤1
0≤y≤1

(xm + (1 − x)m)(yn + (1 − y)n) =
1

2m+n−2
, (m,n) ∈ N × N,

and following Theorem 9 we obtain lim
k→∞

Bk
m,nf = p∗f , uniformly on [0, 1] × [0, 1],

where p∗f is given by (18).

4.2. Stancu operators of (m,n)-order

This time, for q = 1 and q = 2 we choose ψq,p,k, 0 ≤ k ≤ p, the fundamental
Stancu polynomials w〈αq〉

p,k of p-degree, see [7], where

w
〈αq〉
p,k (t) =

(
p

k

)
t[k,−αq](1 − t)[p−k,−αq]/1[p,−αq], t ∈ [0, 1].

Here t[s,−αq] stands for the generalized factorial power with the step −αq, t[0,−αq] :=
1 and t[s,−αq] := t(t + αq) . . . (t + (s − 1)αq), s ∈ N. Also, α1, α2 are non-negative
real parameters depending on the natural numbers m respectively n.

Now, the look of Lm,n operators is given as follows

(S〈α1,α2〉
m,n f)(x, y) =

m∑

i=0

n∑

j=0

w
〈α1〉
m,i (x)w〈α2〉

n,j (y)f(i/m, j/n).

Again, the properties (P1), (P2), (P3) are fulfilled and one has

qΨ̃p(t) =
t(1 − t)
αq + 1

(
αq +

1
p

)
, t ∈ [0, 1],

for q = 1 and p = m respectively q = 2 and p = n. Under the assumption that
the couple (α1, α2) = (α1(m), α2(n)) → (0, 0) as (m,n) → (∞,∞), (S〈α1,α2〉

m,n ) is an
approximation process on the space C(D).
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We notice, in the particular case α1 = α2 = 0, the operator S〈0,0〉
m,n becomes Bm,n

defined by (19).
On the other hand, returning to (17) we deduce

um,n(x, y)

= ((1 − x)[m,−α1] + x[m,−α1])((1 − y)[n,−α2] + y[n,−α2])/1α1,α2
m,n

≥ ((1 − x)m + xm)((1 − y)n + yn)/1α1,α2
m,n , 1α1,α2

m,n := 1[m,−α1 ]1[n,−α2]

and the coefficients λm,n associated to Stancu operators (named λS
m,n) verify λS

m,n ≥
λB

m,n/1α1,α2
m,n . Thus, applying Theorem 9, we get lim

k→∞
kS

〈α1,α2〉
m,n f = p∗f , uniformly on

[0, 1]× [0, 1], where p∗f is again given by (18).
Finally we remark that, actually, both examples are tensor product type operators

applied on functions over D = [0, 1]× [0, 1]. More details about tensor products of
Radon measures and positive operators can be found, e.g., in [1, section 1.2].
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