Compression-expansion fixed point theorems in two norms

Radu Precup Department of Applied Mathematics, Babeş-Bolyai University, 400084 Cluj, Romania E-mail: r.precup@math.ubbcluj.ro

ABSTRACT. In this paper we present compression-expansion fixed point theorems in cones where the compression and the expansion conditions are expressed in two norms.

 $KEY\ WORDS$: positive solution, fixed point, cone, boundary value problem MSC 2000: 47H10, 34B15

1 Introduction

Let (E, |.|) be a normed linear space and ||.|| will be another norm on E. Also $C \subset E$ will be a cone, i.e., a nonempty convex (not necessarily closed) set with $0 \notin C$ and $\lambda C \subset C$ for all $\lambda > 0$. We shall assume that there exist constants $c_1, c_2 > 0$ such that

$$c_1 |x| \le ||x|| \le c_2 |x|$$
 for all $x \in C$. (1)

Hence the norms |.| and ||.|| are topologically equivalent on C (but not necessarily on E).

In [5] the following two theorems are proved:

Theorem 1 Assume $0 < c_2 \rho < R$, ||.|| is increasing with respect to C, that is ||x + y|| > ||x|| for all $x, y \in C$, and the map $N : \{x \in C : ||x|| \le R\} \to C$ is compact. In addition assume that the following conditions are satisfied:

- (h1) |N(x)| < |x| for all $x \in C$ with $|x| = \rho$,
- (h2) $||N(x)|| \ge ||x||$ for all $x \in C$ with ||x|| = R.

Then N has at least two fixed points $x_1, x_2 \in C$ with $|x_1| < \rho \le |x_2|$ and $||x_2|| \le R$.

Theorem 2 Assume $0 < \frac{1}{c_1}\rho < R$, |.| is increasing with respect to C, and the map $N : \{x \in C : |x| \le R\} \to C$ is compact. In addition assume that the following conditions are satisfied:

- (h1) ||N(x)|| < ||x|| for all $x \in C$ with $||x|| = \rho$,
- (h2) $|N(x)| \ge |x|$ for all $x \in C$ with |x| = R.

Then N has at least two fixed points $x_1, x_2 \in C$ with $||x_1|| < \rho \le ||x_2||$ and $|x_2| \le R$.

The aim of this paper is to show that similar results are true if the inequalities in (h1), (h2) are reversed.

2 Main results

Theorem 3 Assume $0 < c_2 \rho < R$, ||.|| is increasing with respect to C, and the map $N : D = \{x \in C : ||x|| \le R\} \to C$ is compact. In addition assume that the following conditions are satisfied:

- (H1) $||N(x)|| \ge ||x||$ for all $x \in C$ with $|x| = \rho$,
- (H2) |N(x)| < |x| for all $x \in C$ with ||x|| = R.

Then N has at least one fixed point $x \in C$ with $\rho \leq |x|$ and ||x|| < R.

Proof. Let $0 < \varepsilon < c_1 \rho$ and let $N' : \{x \in C : ||x|| \le R\} \to C$ be defined by

$$N'\left(x\right) = \begin{cases} \left(\frac{R}{\|x\|} + \frac{\rho}{|x|} - 1\right)^{-1} N\left(\left(\frac{R}{\|x\|} + \frac{\rho}{|x|} - 1\right)x\right) & \text{if } |x| \ge \rho \\ \frac{\|x\|}{R} N\left(\frac{R}{\|x\|}x\right) & \text{if } |x| \le \rho, \ \|x\| \ge \varepsilon \\ \frac{\varepsilon}{R} N\left(\frac{R}{\varepsilon}x\right) & \text{if } |x| \le \rho, \ \|x\| \le \varepsilon. \end{cases}$$

For $|x| \ge \rho$, $||x|| \le R$, we have

$$\left| \left(\frac{R}{\|x\|} + \frac{\rho}{|x|} - 1 \right) x \right| \ge \rho, \quad \left\| \left(\frac{R}{\|x\|} + \frac{\rho}{|x|} - 1 \right) x \right\| \le R.$$

Also, $\left\|\frac{R}{\|x\|}x\right\| = R$ and for $\|x\| \le \varepsilon$, $\left\|\frac{R}{\varepsilon}x\right\| \le R$. Hence N' is well defined. It is easy to see that N' is continuous. In addition, since N is compact and the coefficients $\left(\frac{R}{\|x\|} + \frac{\rho}{|x|} - 1\right)^{-1}$, $\frac{\|x\|}{R}$ are located between two positive constants, more exactly

$$1 \le \left(\frac{R}{\|x\|} + \frac{\rho}{|x|} - 1\right)^{-1} \le \frac{R}{c_1 \rho} \text{ for } |x| \ge \rho$$

$$\frac{\varepsilon}{R} \le \frac{\|x\|}{R} \le 1 \text{ for } \|x\| \ge \varepsilon,$$

we deduce that N' is also compact.

Now if $|x| = \rho$, then $N'(x) = \frac{\|x\|}{R} N\left(\frac{R}{\|x\|}x\right)$. From (H2) we have

$$\left| N\left(\frac{R}{\|x\|}x\right) \right| < \frac{R}{\|x\|} |x|.$$

Hence |N'(x)| < |x| and so condition (h1) in Theorem 1 holds for N'. Furthermore, if ||x|| = R, then $N'(x) = \frac{|x|}{\rho} N\left(\frac{\rho}{|x|}x\right)$ and from (H1),

$$\left\| N\left(\frac{\rho}{|x|}x\right) \right\| \ge \frac{\rho}{|x|} \left\| x \right\|.$$

Thus $||N'(x)|| \ge ||x||$ which shows that condition (h2) in Theorem 1 also holds for N'. Thus Theorem 1 applies to N'. Let x_0 be the fixed point of N' with $|x_0| \ge \rho$ and $||x_0|| \le R$. If $|x_0| = \rho$, then from (1) we deduce that $||x_0|| \ge c_1 \rho > \varepsilon$. Then $N'(x_0) = \frac{||x_0||}{R} N\left(\frac{R}{||x_0||} x_0\right)$, whence $x' = \frac{R}{||x_0||} x_0$ is a fixed point of N. This is however impossible since ||x'|| = R and N has no fixed points with ||x|| = R as shows (H2). Therefore $|x_0| > \rho$. Consequently, $x := \left(\frac{R}{||x_0||} + \frac{\rho}{|x_0|} - 1\right) x_0$ is the fixed point of N we look for.

Theorem 4 Assume $0 < \frac{1}{c_1}\rho < R$, |.| is increasing with respect to C, and the map $N : \{x \in C : |x| \le R\} \to C$ is compact. In addition assume that the following conditions are satisfied:

- (h1) $|N(x)| \ge |x|$ for all $x \in C$ with $||x|| = \rho$
- (h2) ||N(x)|| < ||x|| for all $x \in C$ with |x| = R.

Then N has at least one fixed point $x \in C$ with $\rho \leq ||x||$ and |x| < R.

3 Example

We shall illustrate the use of Theorem 3 on the two point boundary value problem

$$\begin{cases} -u''(t) = f(u(t)), & t \in [0, 1] \\ u(0) = u(1) = 0. \end{cases}$$
 (2)

Assume $f: \mathbf{R} \to \mathbf{R}$ is continuous. Then (2) is equivalent to the fixed point problem

$$u = N(u), u \in C[0,1]$$

where $N:C\left[0,1\right]\to C\left[0,1\right],$ $N\left(u\right)\left(t\right)=\int_{0}^{1}G\left(t,s\right)f\left(u\left(s\right)\right)ds$ and G is the Green function $G\left(t,s\right)=t\left(1-s\right)$ if $0\leq t\leq s\leq 1,$ $G\left(t,s\right)=s\left(1-t\right)$ if $0\leq s\leq t\leq 1.$ One has

$$\begin{array}{lcl} G\left(t,s\right) & \leq & G\left(s,s\right) \text{ for all } t,s \in [0,1] \\ \frac{1}{4}G\left(s,s\right) & \leq & G\left(t,s\right) \text{ for all } t \in \left\lceil\frac{1}{4},\frac{3}{4}\right\rceil, \ s \in [0,1] \,. \end{array}$$

These inequalities guarantee that

$$u\left(t\right) \ge \frac{1}{4} \left|u\right|_r \text{ for all } t \in \left[\frac{1}{4}, \frac{3}{4}\right], \ r \in [1, \infty]$$
 (3)

and any solution u of the problem

$$\begin{cases} -u''(t) = v(t), & t \in [0, 1] \\ u(0) = u(1) = 0 \end{cases}$$

with $v \in C([0,1]; \mathbf{R}_+)$. Here $|u|_r$ stands for the usual norm on $L^r[0,1]$. From (3) we see that for $1 \le p \le q \le \infty$, we have

$$\frac{1}{4} \left| u \right|_q \le \left| u \right|_p \le \left| u \right|_q$$

whenever u belongs to the cone

$$C:=\left\{u\in C\left(\left[0,1\right];\mathbf{R}_{+}\right):u\neq0,\ u\left(t\right)\geq\frac{1}{4}\left|u\right|_{r}\ \text{for}\ t\in\left[\frac{1}{4},\frac{3}{4}\right],\ r\in\left[1,\infty\right]\right\}.$$

It is easily seen that $N: C \to C$ and N is completely continuous provided that $f(\tau) \ge \varepsilon$ for all $\tau \in \mathbf{R}_+$ and some $\varepsilon > 0$.

Theorem 5 Assume $f: \mathbf{R}_+ \to \mathbf{R}_+$ is continuous and nondecreasing on \mathbf{R}_+ , and there exist ρ, R with $0 < \rho < R$ and $1 \le p \le q \le \infty$ such that:

$$\frac{f(4R)}{4R} < \frac{1}{4} \left(\int_0^1 \left(\int_0^1 G(t,s) \, ds \right)^q dt \right)^{-\frac{1}{q}},$$

$$\frac{f\left(\frac{1}{4}\rho\right)}{\frac{1}{4}\rho} > 4\left(\int_0^1 \left(\int_{\frac{1}{4}}^{\frac{3}{4}} G\left(t,s\right) ds\right)^p dt\right)^{-\frac{1}{p}}.$$

Then (2) has a solution u with $\rho \leq |u|_q$ and $|u|_p \leq R$.

Proof. We shall assume that $f(\tau) \geq \varepsilon$ for all $\tau \geq 0$ and some small $\varepsilon > 0$ (otherwise we take $f^{\varepsilon} = f + \varepsilon$ instead of f and we use a compactness argument as $\varepsilon \to 0$). Let $u \in C$ with $|u|_q = \rho$. Then, for every $t \in [0,1]$, one has

$$N(u)(t) = \int_{0}^{1} G(t,s) f(u(s)) ds \ge \int_{\frac{1}{4}}^{\frac{3}{4}} G(t,s) f(u(s)) ds$$

$$\ge f\left(\frac{1}{4}\rho\right) \int_{\frac{1}{4}}^{\frac{3}{4}} G(t,s) ds.$$

Consequently

$$|N\left(u\right)|_{p} \ge f\left(\frac{1}{4}\rho\right) \left(\left(\int_{\frac{1}{4}}^{\frac{3}{4}} G\left(t,s\right) ds\right)^{p} dt\right)^{\frac{1}{p}} \ge \rho \ge |u|_{p}$$

Hence (H1) holds. Furthermore, if $u \in C$ and $|u|_p = R$, then

$$N(u)(t) \le \int_0^1 G(t,s) f(|u|_{\infty}) ds \le f(4R) \int_0^1 G(t,s) ds.$$

It follows that

$$|N\left(u
ight)|_{q} \leq f\left(4R
ight) \left(\left(\int_{0}^{1} G\left(t,s
ight) ds\right)^{q} dt\right)^{\frac{1}{q}} < R \leq |u|_{q}$$

which proves (H2).

A similar result can be obtained from Theorem 4.

For related topics and applications of the compression-expansion theorems to integral and differential equations, see [1-6]. For other results based on the idea of using two norms, see [7].

References

- [1] Erbe, L.H. and Wang, H., On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc. **120** (1994), 743-748.
- [2] Granas, A. and Dugundji, J., *Fixed Point Theory*, Springer-Verlag, New York, 2003.
- [3] Krasnoselskii, M.A., *Positive Solutions of Operator Equations*, Noordhoff, Groningen, 1964.

- [4] O'Regan, D. and Precup, R., *Theorems of Leray-Schauder Type and Applications*, Taylor and Francis, London, 2002.
- [5] O'Regan, D. and Precup, R., Compression-expansion fixed point theorem in two norms and applications, J. Math. Anal. Appl., in press.
- [6] Precup, R., Positive solutions of evolution operator equations, Austral. J. Math. Anal. Appl. 2 (2005), no.1, 1-10.
- [7] Precup, R., Discrete continuation method for boundary value problems on bounded sets in Banach spaces, J. Comput. Appl. Math. 113 (2000), 267-281.