Construction of Upper and Lower Solutions with Applications to Singular Boundary Value Problems

Ravi P Agarwal

Department of Mathematics, Florida Institute of Technology Melbourne, Florida 32901, USA, e-mail: agarwal@fit.edu

Donal O'Regan

Department of Mathematics, National University of Ireland Galway, Ireland, e-mail: donal.oregan@nuigalway.ie

Radu Precup

Faculty of Mathematics and Computer Science Babeş–Bolyai University, Cluj, Romania e-mail: r.precup@math.ubbcluj.ro

Abstract

An upper and lower solution theory is presented for the Dirichlet boundary value problem y'' + f(t, y, y') = 0, 0 < t < 1 with y(0) = y(1) = 0. Our nonlinearity may be singular in its dependent variable and is allowed to change sign.

Keywords: Boundary value problem, upper and lower solutions, singular, existence.

Subject Classes: 34B16.

1. Introduction

An approach based on upper and lower solutions and a truncation technique is presented for the singular boundary value problem

(1.1)
$$\begin{cases} y'' + q(t) f(t, y, y') = 0, & 0 < t < 1 \\ y(0) = 0 = y(1), \end{cases}$$

where our nonlinearity f is allowed to change sign. In addition f may not be a Carathéodory function because of the singular behavior of the y variable i.e. f may be singular at y = 0. In the literature the case when f is independent

of its third variable (i.e. when $f(t, y, z) \equiv f(t, y)$) has received almost all the attention, see [2-4, 6, 7] and the references therein. Only a few papers [1, 8] have appeared when f depends on the y' variable. This paper presents a new and very general result for (1.1) when $f: (0,1)\times(0,\infty)\times\mathbf{R}\to\mathbf{R}$. In addition our results are new even when f is independent of the third variable. It is also worth remarking here that we could consider Sturm-Liouville boundary data in (1.1); however since the arguments are essentially the same we will restrict our discussion to Dirichlet boundary data.

2. Existence Theory

In this section we present an upper and lower solution theory for the Dirichlet singular boundary value problem

(2.1)
$$\begin{cases} y'' + q(t) f(t, y, y') = 0, & 0 < t < 1 \\ y(0) = y(1) = 0, \end{cases}$$

where our nonlinearity f may change sign.

Theorem 2.1. Let $n_0 \in \{1, 2, ...\}$ be fixed and suppose the following conditions are satisfied:

$$(2.2) f: (0,1) \times (0,\infty) \times \mathbf{R} \to \mathbf{R} is continuous$$

(2.3)
$$q \in C(0,1) \cap L^1[0,1]$$
 with $q > 0$ on $(0,1)$

(2.4)
$$\begin{cases} let & n \in \{n_0, n_0 + 1, \ldots\} \\ have & a \ constant \ \rho_n \ such \ that \ \{\rho_n\} \ is \ a \ nonincreasing \\ sequence & with \lim_{n \to \infty} \rho_n = 0 \ and \ such \ that \ for \\ \frac{1}{2^{n+1}} \le t \le 1 \ and \ z \in \mathbf{R} \ we \ have \ f(t, \rho_n, z) \ge 0 \end{cases}$$

(2.5)
$$\begin{cases} \exists \ \alpha \in C[0,1] \cap C^2(0,1) \ \ with \ \ \alpha(0) = \alpha(1) = 0, \\ \alpha > 0 \ \ on \ \ (0,1) \ \ such \ that \\ q(t) \ f(t,\alpha(t),z) + \alpha''(t) \ge 0 \ \ for \ \ (t,z) \in (0,1) \times \mathbf{R} \end{cases}$$

(2.6)
$$\begin{cases} \exists \beta \in C^{1}[0,1] \cap C^{2}(0,1) & \text{with } \beta(t) \geq \alpha(t), \ \beta(t) \geq \rho_{n_{0}} \\ \text{for } t \in [0,1] & \text{with } q(t) f(t,\beta(t),\beta'(t)) + \beta''(t) \leq 0 \\ \text{for } t \in (0,1) & \text{and } q(t) f\left(\frac{1}{2^{n_{0}+1}},\beta(t),\beta'(t)\right) + \beta''(t) \leq 0 \\ \text{for } t \in \left(0,\frac{1}{2^{n_{0}+1}}\right) \end{cases}$$

(2.7)
$$\begin{cases} for \ any \ \epsilon > 0, \ \epsilon < a_0 = \sup_{t \in [0,1]} \beta(t), \ \exists \ a \ function \\ \psi_{\epsilon} \ continuous \ on \ [0,\infty) \ with \ |f(t,y,z)| \leq \psi_{\epsilon}(|z|) \\ for \ (t,y,z) \in (0,1) \times [\epsilon,a_0] \times \mathbf{R} \end{cases}$$

and

(2.8) for any
$$\epsilon > 0$$
, $\epsilon < a_0$, we have $\int_0^1 q(s) \, ds < \int_0^\infty \frac{du}{\psi_{\epsilon}(u)}$.

Then (2.1) has a solution $y \in C[0,1] \cap C^2(0,1)$ with $\alpha(t) \leq y(t) \leq \beta(t)$ for $t \in [0,1]$.

PROOF: For $n = n_0, n_0 + 1, ...$ let

$$e_n = \left[\frac{1}{2^{n+1}}, 1\right]$$
 and $\theta_n(t) = \max\left\{\frac{1}{2^{n+1}}, t\right\}, \ 0 \le t \le 1$

and

$$f_n(t, x, z) = \max \{ f(\theta_n(t), x, z), f(t, x, z) \}.$$

Next we define inductively

$$g_{n_0}(t, x, z) = f_{n_0}(t, x, z)$$

and

$$g_n(t, x, z) = \min \{ f_{n_0}(t, x, z), ..., f_n(t, x, z) \}, \ n = n_0 + 1, \ n_0 + 2, ...$$

Notice

$$f(t, x, z) \le \dots \le g_{n+1}(t, x, z) \le g_n(t, x, z) \le \dots \le g_{n_0}(t, x, z)$$

for $(t, x, z) \in (0, 1) \times (0, \infty) \times \mathbf{R}$ and

$$g_n(t, x, z) = f(t, x, z)$$
 for $(t, x, z) \in e_n \times (0, \infty) \times \mathbf{R}$.

Without loss of generality assume $\rho_{n_0} \leq \min_{t \in \left[\frac{1}{3}, \frac{2}{3}\right]} \alpha(t)$. Fix $n \in \{n_0, n_0 + 1, \ldots\}$. Let $t_n \in \left[0, \frac{1}{3}\right]$ and $s_n \in \left[\frac{2}{3}, 1\right]$ be such that

$$\alpha(t_n) = \alpha(s_n) = \rho_n$$
 and $\alpha(t) \le \rho_n$ for $t \in [0, t_n] \cup [s_n, 1]$.

Define

$$\alpha_n(t) = \begin{cases} \rho_n & \text{if } t \in [0, t_n] \cup [s_n, 1] \\ \alpha(t) & \text{if } t \in (t_n, s_n). \end{cases}$$

We begin with the boundary value problem

(2.9)
$$\begin{cases} y'' + q(t) g_{n_0}^{\star}(t, y, y') = 0, \ 0 < t < 1 \\ y(0) = y(1) = \rho_{n_0}; \end{cases}$$

here

$$g_{n_0}^{\star}(t,y,z) = \begin{cases} g_{n_0}(t,\alpha_{n_0}(t),z^{\star}) + r(\alpha_{n_0}(t)-y), & y \leq \alpha_{n_0}(t) \\ g_{n_0}(t,y,z^{\star}), & \alpha_{n_0}(t) \leq y \leq \beta(t) \\ g_{n_0}(t,\beta(t),z^{\star}) + r(\beta(t)-y), & y \geq \beta(t), \end{cases}$$

with

$$z^{\star} = \begin{cases} M_{n_0}, & z > M_{n_0} \\ z, & -M_{n_0} \le z \le M_{n_0} \\ -M_{n_0}, & z < -M_{n_0} \end{cases}$$

and $r: \mathbf{R} \to [-1, 1]$ the radial retraction defined by

$$r(u) = \begin{cases} u, & |u| \le 1\\ \frac{u}{|u|}, & |u| > 1, \end{cases}$$

and $M_{n_0} \ge \sup_{[0,1]} |\beta'(t)|$ is a predetermined constant (see (2.15)). Now Schauder's fixed point theorem [7] guarantees that there exists a solution $y_{n_0} \in C^1[0,1]$ to (2.9). We first show

$$(2.10) y_{n_0}(t) \ge \alpha_{n_0}(t), \ t \in [0, 1].$$

Suppose (2.10) is not true. Then $y_{n_0} - \alpha_{n_0}$ has a negative absolute minimum at $\tau \in (0,1)$. Now since $y_{n_0}(0) - \alpha_{n_0}(0) = 0 = y_{n_0}(1) - \alpha_{n_0}(1)$ there exists $\tau_0, \tau_1 \in [0,1]$ with $\tau \in (\tau_1, \tau_2)$ and

$$y_{n_0}(\tau_0) - \alpha_{n_0}(\tau_0) = y_{n_0}(\tau_1) - \alpha_{n_0}(\tau_1) = 0$$

and

$$y_{n_0}(t) - \alpha_{n_0}(t) < 0, \ t \in (\tau_0, \tau_1).$$

We now <u>claim</u>

$$(2.11) (y_{n_0} - \alpha_{n_0})''(t) < 0 for a.e. t \in (\tau_0, \tau_1).$$

If (2.11) is true then

$$y_{n_0}(t) - \alpha_{n_0}(t) = -\int_{\tau_0}^{\tau_1} G(t,s) \left[y_{n_0}''(s) - \alpha_{n_0}''(s) \right] ds$$
 for $t \in (\tau_0, \tau_1)$

with

$$G(t,s) = \begin{cases} \frac{(s-\tau_0)(\tau_1-t)}{\tau_1-\tau_0}, & \tau_0 \le s \le t\\ \frac{(t-\tau_0)(\tau_1-s)}{\tau_1-\tau_0}, & t \le s \le \tau_1 \end{cases}$$

so we have

$$y_{n_0}(t) - \alpha_{n_0}(t) > 0 \text{ for } t \in (\tau_0, \tau_1),$$

a contradiction. As a result if we show that (2.11) is true then (2.10) will follow. To see (2.11) we will show

$$(y_{n_0} - \alpha_{n_0})''(t) < 0$$
 for $t \in (\tau_0, \tau_1)$ provided $t \neq t_{n_0}$ or $t \neq s_{n_0}$.

Fix $t \in (\tau_0, \tau_1)$ and assume $t \neq t_{n_0}$ or $t \neq s_{n_0}$. Then

$$(y_{n_0} - \alpha_{n_0})''(t) = -[q(t) \{ g_{n_0}(t, \alpha_{n_0}(t), (y'_{n_0}(t))^*) + r(\alpha_{n_0}(t) - y_{n_0}(t)) \} + \alpha''_{n_0}(t)]$$

$$= \begin{cases} -[q(t) \{ g_{n_0}(t, \alpha(t), (y'_{n_0}(t))^*) + r(\alpha(t) - y_{n_0}(t)) \} \\ +\alpha''(t)] & \text{if } t \in (t_{n_0}, s_{n_0}) \\ -[q(t) \{ g_{n_0}(t, \rho_{n_0}, (y'_{n_0}(t))^*) + r(\rho_{n_0} - y_{n_0}(t)) \}] \\ & \text{if } t \in (0, t_{n_0}) \cup (s_{n_0}, 1). \end{cases}$$

Case (A). $t \in \left[\frac{1}{2^{n_0+1}}, 1\right)$.

Then since $g_{n_0}(t,x,z) = f(t,x,z)$ for $(x,z) \in (0,\infty) \times \mathbf{R}$ (note $t \in e_{n_0}$) we have

$$(y_{n_0} - \alpha_{n_0})''(t) = \begin{cases} -\left[q(t)\left\{f(t, \alpha(t), (y'_{n_0}(t))^*) + r(\alpha(t) - y_{n_0}(t))\right\}\right. \\ + \alpha''(t)\right] & \text{if } t \in (t_{n_0}, s_{n_0}) \\ -\left[q(t)\left\{f(t, \rho_{n_0}, (y'_{n_0}(t))^*) + r(\rho_{n_0} - y_{n_0}(t))\right\}\right] \\ & \text{if } t \in (0, t_{n_0}) \cup (s_{n_0}, 1) \end{cases}$$

$$< 0,$$

from (2.4) and (2.5).

Case (B).
$$t \in (0, \frac{1}{2^{n_0+1}})$$
.

Then since

$$g_{n_0}(t, x, z) = \max \left\{ f\left(\frac{1}{2^{n_0+1}}, x, z\right), f(t, x, z) \right\}$$

we have

$$g_{n_0}(t, x, z) \ge f(t, x)$$
 and $g_{n_0}(t, x, z) \ge f\left(\frac{1}{2^{n_0+1}}, x, z\right)$

for $(x,z) \in (0,\infty) \times \mathbf{R}$. Thus we have

$$(y_{n_0} - \alpha_{n_0})''(t) \leq \begin{cases} -\left[q(t)\left\{f(t, \alpha(t), (y'_{n_0}(t))^*) + r(\alpha(t) - y_{n_0}(t))\right\}\right. \\ + \alpha''(t)\right] & \text{if } t \in (t_{n_0}, s_{n_0}) \\ -\left[q(t)\left\{f\left(\frac{1}{2^{n_0+1}}, \rho_{n_0}, (y'_{n_0}(t))^*\right)\right. \\ + r(\rho_{n_0} - y_{n_0}(t))\right\}\right] & \text{if } t \in (0, t_{n_0}) \cup (s_{n_0}, 1) \\ < 0, \end{cases}$$

from (2.4) and (2.5).

Consequently (2.11) (and so (2.10)) holds and now since $\alpha(t) \leq \alpha_{n_0}(t)$ for $t \in [0, 1]$ we have

(2.12)
$$\alpha(t) \le \alpha_{n_0}(t) \le y_{n_0}(t) \text{ for } t \in [0, 1].$$

Next we show

(2.13)
$$y_{n_0}(t) \le \beta(t) \text{ for } t \in [0, 1].$$

If (2.13) is not true then $y_{n_0} - \beta$ would have a positive absolute maximum at say $\tau_0 \in (0,1)$, in which case $(y_{n_0} - \beta)'(\tau_0) = 0$ and $(y_{n_0} - \beta)''(\tau_0) \leq 0$. There are two cases to consider, namely $\tau_0 \in \left[\frac{1}{2^{n_0+1}}, 1\right)$ and $\tau_0 \in \left(0, \frac{1}{2^{n_0+1}}\right)$.

Case (A).
$$\tau_0 \in \left[\frac{1}{2^{n_0+1}}, 1\right)$$
.

Then $y_{n_0}(\tau_0) > \beta(\tau_0)$, $y'_{n_0}(\tau_0) = \beta'(\tau_0)$ together with $g_{n_0}(\tau_0, x, z) = f(\tau_0, x, z)$ for $(x, z) \in (0, \infty) \times \mathbf{R}$ and $M_{n_0} \ge \sup_{[0,1]} |\beta'(t)|$ gives

$$(y_{n_0} - \beta)''(\tau_0) = -q(\tau_0) \left[g_{n_0}(\tau_0, \beta(\tau_0), (y'_{n_0}(\tau_0))^*) + r(\beta(\tau_0) - y_{n_0}(\tau_0)) \right] - \beta''(\tau_0) = -q(\tau_0) \left[f(\tau_0, \beta(\tau_0), \beta'(\tau_0)) + r(\beta(\tau_0) - y_{n_0}(\tau_0)) \right] - \beta''(\tau_0) > 0$$

from (2.6), a contradiction.

Case (B).
$$\tau_0 \in \left(0, \frac{1}{2^{n_0+1}}\right)$$
.

Now

$$g_{n_0}(\tau_0, x, z) = \max \left\{ f\left(\frac{1}{2^{n_0+1}}, x, z\right), f(\tau_0, x, z) \right\}$$

for $(x,z) \in (0,\infty) \times \mathbf{R}$ gives

$$(y_{n_0} - \beta)''(\tau_0) = -q(\tau_0) \left[\max \left\{ f\left(\frac{1}{2^{n_0+1}}, \beta(\tau_0), \beta'(\tau_0)\right), f(\tau_0, \beta(\tau_0), \beta'(\tau_0)\right) \right\} + r(\beta(\tau_0) - y_{n_0}(\tau_0)) - \beta''(\tau_0)$$

$$> 0$$

from (2.6), a contradiction.

Thus (2.13) holds. Next we show

$$(2.14) |y'_{n_0}|_{\infty} = \sup_{[0,1]} |y'_{n_0}(t)| \le M_{n_0}.$$

With $\epsilon = \min_{[0,1]} \alpha_{n_0}(t)$, then (2.7) guarantees the existence of ψ_{ϵ} (as described in (2.7)) with

$$|f(t, y, z)| \le \psi_{\epsilon}(|z|)$$
 for $(t, y, z) \in (0, 1) \times [\epsilon, a_0] \times \mathbf{R}$

where $a_0 = \sup_{[0,1]} \beta(t)$. Let $M_{n_0} \ge \sup_{[0,1]} |\beta'(t)|$ be chosen so that

(2.15)
$$\int_0^1 q(s) \, ds < \int_0^{M_{n_0}} \frac{du}{\psi_{\epsilon}(u)}$$

holds. Suppose (2.14) is false. Without loss of generality assume $y'_{n_0}(t) \not\leq M_{n_0}$ for some $t \in [0,1]$. Then since $y_{n_0}(0) = y_{n_0}(1) = \rho_{n_0}$ there exists $\tau_1 \in (0,1)$ with $y'_{n_0}(\tau_1) = 0$, and so there exists $\tau_2, \tau_3 \in (0,1)$ with $y'_{n_0}(\tau_3) = 0$, $y'_{n_0}(\tau_2) = M_{n_0}$ and $0 \leq y'_{n_0}(s) \leq M_{n_0}$ for s between τ_3 and τ_2 . Without loss of generality assume $\tau_3 < \tau_2$. Now since $\alpha_{n_0}(t) \leq y_{n_0}(t) \leq \beta(t)$ for $t \in [0,1]$ and

$$g_{n_0}(t, x, z) = \max \left\{ f\left(\frac{1}{2^{n_0+1}}, x, z\right), f(t, x, z) \right\}$$

for $(t, x, z) \in (0, 1) \times (0, \infty) \times \mathbf{R}$, we have for $s \in (\tau_3, \tau_2)$ that

$$y''_{n_0}(s) \le q(s) \, \psi_{\epsilon}(y'_{n_0}(s)),$$

and so

$$\int_0^{M_{n_0}} \frac{du}{\psi_{\epsilon}(u)} = \int_{\tau_3}^{\tau_2} \frac{y_{n_0}''(s)}{\psi_{\epsilon}(y_{n_0}'(s))} \, ds \le \int_0^1 q(s) \, ds.$$

This contradicts (2.15). The other cases are treated similarly. As a result $\alpha(t) \leq y_{n_0}(t) \leq \beta(t)$ for $t \in [0,1]$ and $|y'_{n_0}|_{\infty} \leq M_{n_0}$. Thus y_{n_0} satisfies $y''_{n_0} + q g_{n_0}(t, y_{n_0}, y'_{n_0}) = 0$ on (0,1).

Next we consider the boundary value problem

(2.16)
$$\begin{cases} y'' + q(t) g_{n_0+1}^{\star}(t, y, y') = 0, \ 0 < t < 1 \\ y(0) = y(1) = \rho_{n_0+1} \end{cases}$$

where

$$g_{n_0+1}^{\star}(t,y,z) = \begin{cases} g_{n_0+1}(t,\alpha_{n_0+1}(t),z^{\star}) + r(\alpha_{n_0+1}(t)-y), & y \leq \alpha_{n_0+1}(t) \\ g_{n_0+1}(t,y,z^{\star}), & \alpha_{n_0+1}(t) \leq y \leq y_{n_0}(t) \\ g_{n_0+1}(t,y_{n_0}(t),z^{\star}) + r(y_{n_0}(t)-y), & y \geq y_{n_0}(t) \end{cases}$$

with

$$z^{\star} = \begin{cases} M_{n_0+1}, & z > M_{n_0+1} \\ z, & -M_{n_0+1} \le z \le M_{n_0+1} \\ -M_{n_0+1}, & z < -M_{n_0+1}; \end{cases}$$

here $M_{n_0+1} \ge M_{n_0}$ is a predetermined constant (see (2.22)). Now Schauder's fixed point theorem guarantees that there exists a solution $y_{n_0+1} \in C^1[0,1]$ to (2.16). We first show

$$(2.17) y_{n_0+1}(t) \ge \alpha_{n_0+1}(t), \ t \in [0,1].$$

Suppose (2.17) is not true. Then there exists $\tau_0, \tau_1 \in [0, 1]$ with

$$y_{n_0+1}(\tau_0) - \alpha_{n_0+1}(\tau_0) = y_{n_0+1}(\tau_1) - \alpha_{n_0+1}(\tau_1) = 0$$

and

$$y_{n_0+1}(t) - \alpha_{n_0+1}(t) < 0, \ t \in (\tau_0, \tau_1).$$

If we show

$$(2.18) (y_{n_0+1} - \alpha_{n_0+1})''(t) < 0 for a.e. t \in (\tau_0, \tau_1),$$

then as before (2.17) is true. Fix $t \in (\tau_0, \tau_1)$ and assume $t \neq t_{n_0+1}$ or $t \neq s_{n_0+1}$. Then

$$(y_{n_0+1} - \alpha_{n_0+1})''(t) = \begin{cases} -[q(t) \{g_{n_0+1}(t, \alpha(t), (y'_{n_0+1}(t))^*) \\ +r(\alpha(t) - y_{n_0+1}(t))\} + \alpha''(t)] \\ \text{if } t \in (t_{n_0+1}, s_{n_0+1}) \\ -[q(t) \{g_{n_0+1}(t, \rho_{n_0+1}, (y'_{n_0+1}(t))^*) \\ +r(\rho_{n_0+1} - y_{n_0+1}(t))\}] \\ \text{if } t \in (0, t_{n_0+1}) \cup (s_{n_0+1}, 1). \end{cases}$$

Case (A). $t \in \left[\frac{1}{2^{n_0+2}}, 1\right)$.

Then since $g_{n_0+1}(t,x,z) = f(t,x,z)$ for $(x,z) \in (0,\infty) \times \mathbf{R}$ (note $t \in e_{n_0+1}$) we have

$$(y_{n_0+1} - \alpha_{n_0+1})''(t) = \begin{cases} -[q(t) \{ f(t, \alpha(t), (y'_{n_0+1}(t))^* \} \\ +r(\alpha(t) - y_{n_0+1}(t)) \} + \alpha''(t)] \\ \text{if } t \in (t_{n_0+1}, s_{n_0+1}) \\ -[q(t) \{ f(t, \rho_{n_0+1}, (y'_{n_0+1}(t))^*) \\ +r(\rho_{n_0+1} - y_{n_0+1}(t)) \}] \\ \text{if } t \in (0, t_{n_0+1}) \cup (s_{n_0+1}, 1) \end{cases}$$

$$< 0,$$

from (2.4) and (2.5).

Case (B).
$$t \in (0, \frac{1}{2^{n_0+2}})$$
.

Then since $g_{n_0+1}(t, x, z)$ equals

$$\min\{\max\{f\left(\frac{1}{2^{n_0+1}},x,z\right)\;,\;f(t,x,z)\}\;,\;\max\{f\left(\frac{1}{2^{n_0+2}},x,z\right)\;,\;f(t,x,z)\}\}$$

we have

$$g_{n_0+1}(t,x,z) \ge f(t,x,z)$$

and

$$g_{n_0+1}(t, x, z) \ge \min \left\{ f\left(\frac{1}{2^{n_0+1}}, x, z\right), f\left(\frac{1}{2^{n_0+2}}, x, z\right) \right\}$$

for $(x, z) \in (0, \infty) \times \mathbf{R}$. Thus we have

$$(y_{n_{0}+1} - \alpha_{n_{0}+1})''(t) \leq \begin{cases} -\left[q(t)\left\{f(t,\alpha(t),(y'_{n_{0}+1}(t))^{\star}\right) + r(\alpha(t) - y_{n_{0}+1}(t))\right\} + \alpha''(t)\right] \\ \text{if } t \in (t_{n_{0}+1},s_{n_{0}+1}) \\ -\left[q(t)\left\{\min\left\{f\left(\frac{1}{2^{n_{0}+1}},\rho_{n_{0}+1},(y'_{n_{0}+1}(t))^{\star}\right)\right\} + r(\rho_{n_{0}+1} - y_{n_{0}+1}(t))\right\}\right] \\ \text{if } t \in (0,t_{n_{0}+1}) \cup (s_{n_{0}+1},1) \\ < 0, \end{cases}$$

from (2.4) and (2.5) since $f\left(\frac{1}{2^{n_0+1}}, \rho_{n_0+1}, (y'_{n_0+1}(t))^{\star}\right) \geq 0$ because

$$f\left(t, \rho_{n_0+1}, (y'_{n_0+1}(t))^{\star}\right) \ge 0 \text{ for } t \in \left[\frac{1}{2^{n_0+2}}, 1\right]$$

and

$$\frac{1}{2^{n_0+1}} \in \left[\frac{1}{2^{n_0+2}} \, , \, 1 \right].$$

Consequently (2.17) is true so

(2.19)
$$\alpha(t) \le \alpha_{n_0+1}(t) \le y_{n_0+1}(t) \quad \text{for } t \in [0,1].$$

Next we show

$$(2.20) y_{n_0+1}(t) \le y_{n_0}(t) for t \in [0,1].$$

If (2.20) is not true then $y_{n_0+1}-y_{n_0}$ would have a positive absolute maximum at say $\tau_0 \in (0,1)$, in which case

$$(y_{n_0+1} - y_{n_0})'(\tau_0) = 0$$
 and $(y_{n_0+1} - y_{n_0})''(\tau_0) \le 0$.

Then $y_{n_0+1}(\tau_0) > y_{n_0}(\tau_0)$ together with $g_{n_0}(\tau_0, x, z) \geq g_{n_0+1}(\tau_0, x, z)$ for $(x, z) \in (0, \infty) \times \mathbf{R}$ gives (note $(y'_{n_0+1}(\tau_0))^* = (y'_{n_0}(\tau_0))^* = y'_{n_0}(\tau_0)$ since $M_{n_0+1} \geq M_{n_0}$ and $|y'_{n_0}|_{\infty} \leq M_{n_0}$),

$$(y_{n_0+1} - y_{n_0})''(\tau_0) = -q(\tau_0) \left[g_{n_0+1}(\tau_0, y_{n_0}(\tau_0), (y'_{n_0+1}(\tau_0))^* \right) + r(y_{n_0}(\tau_0) - y_{n_0+1}(\tau_0)) \right] - y''_{n_0}(\tau_0)$$

$$\geq -q(\tau_0) \left[g_{n_0}(\tau_0, y_{n_0}(\tau_0), y'_{n_0}(\tau_0)) + r(y_{n_0}(\tau_0) - y_{n_0+1}(\tau_0)) \right] - y''_{n_0}(\tau_0)$$

$$= -q(\tau_0) \left[r(y_{n_0}(\tau_0) - y_{n_0+1}(\tau_0)) \right]$$

$$> 0,$$

a contradiction. Thus (2.20) holds. Next we show

$$(2.21) |y'_{n_0+1}|_{\infty} \le M_{n_0+1}.$$

With $\epsilon = \min_{[0,1]} \alpha_{n_0+1}(t)$, then (2.7) guarantees the existence of ψ_{ϵ} (as described in (2.7)) with

$$|f(t, y, z)| \le \psi_{\epsilon}(|z|)$$
 for $(t, y, z) \in (0, 1) \times [\epsilon, a_0] \times \mathbf{R}$

where $a_0 = \sup_{[0,1]} \beta(t)$. Let $M_{n_0+1} \geq M_{n_0}$ be chosen so that

(2.22)
$$\int_0^1 q(s) \, ds < \int_0^{M_{n_0+1}} \frac{du}{\psi_{\epsilon}(u)}.$$

Essentially the same argument as before guarantees that (2.21) holds. Thus $y''_{n_0+1} + q g_{n_0+1}(t, y_{n_0+1}, y'_{n_0+1}) = 0$ on (0, 1).

Now proceed inductively to construct $y_{n_0+2}, y_{n_0+3}, \dots$ as follows. Suppose we have y_k for some $k \in \{n_0+1, n_0+2, \dots\}$ with $\alpha(t) \leq \alpha_k(t) \leq y_k(t) \leq y_{k-1}(t) (\leq \beta(t))$ for $t \in [0, 1]$. Then consider the boundary value problem

(2.23)
$$\begin{cases} y'' + q(t) g_{k+1}^{\star}(t, y, y') = 0, \ 0 < t < 1 \\ y(0) = y(1) = \rho_{k+1} \end{cases}$$

where

$$g_{k+1}^{\star}(t,y,z) = \begin{cases} g_{k+1}(t,\alpha_{k+1}(t),z^{\star}) + r(\alpha_{k+1}(t)-y), & y \leq \alpha_{k+1}(t) \\ g_{k+1}(t,y,z^{\star}), & \alpha_{k+1}(t) \leq y \leq y_k(t) \\ g_{k+1}(t,y_k(t),z^{\star}) + r(y_k(t)-y), & y \geq y_k(t) \end{cases}$$

with

$$z^{\star} = \begin{cases} M_{k+1}, & z > M_{k+1} \\ z, & -M_{k+1} \le z \le M_{k+1} \\ -M_{k+1}, & z < -M_{k+1}; \end{cases}$$

here $M_{k+1} \geq M_k$ is a predetermined constant. Now Schauder's fixed point theorem guarantees that (2.23) has a solution $y_{k+1} \in C^1[0,1]$, and essentially the same reasoning as above yields

$$\alpha(t) \le \alpha_{k+1}(t) \le y_{k+1}(t) \le y_k(t)$$
 for $t \in [0,1], |y'_{k+1}|_{\infty} \le M_{k+1}$

so $y_{k+1}'' + q g_{k+1}(t, y_{k+1}, y_{k+1}') = 0$ on (0, 1). Now lets look at the interval $\left[\frac{1}{2^{n_0+1}}, 1 - \frac{1}{2^{n_0+1}}\right]$. We claim

(2.24)
$$\left\{ \begin{array}{l} \{y_n^{(j)}\}_{n=n_0+1}^{\infty}, j=0,1, \text{ is a bounded, equicontinuous} \\ \text{family on } \left[\frac{1}{2^{n_0+1}}, 1 - \frac{1}{2^{n_0+1}}\right]. \end{array} \right.$$

Firstly note

$$(2.25) |y_n|_{\infty} \le |y_{n_0}|_{\infty} \le \sup_{[0,1]} \beta(t) = a_0 \text{ for } t \in [0,1] \text{ and } n \ge n_0 + 1.$$

Let

$$\epsilon = \min_{t \in \left[\frac{1}{2^{n_0+1}}, 1 - \frac{1}{2^{n_0+1}}\right]} \alpha(t).$$

Now (2.7) guarantees the existence of ψ_{ϵ} (as described in (2.7)) with

$$|f(t, y, z)| \le \psi_{\epsilon}(|z|)$$
 for $(t, y, z) \in (0, 1) \times [\epsilon, a_0] \times \mathbf{R}$.

This implies

$$|g_n(t, y_n(t), y'_n(t))| \le \psi_{\epsilon}(|y'_n(t)|)$$
 for $t \in [a, b] \equiv \left[\frac{1}{2^{n_0+1}}, 1 - \frac{1}{2^{n_0+1}}\right] \subseteq e_{n_0}$

and $n \ge n_0 + 1$. As a result

(2.26)
$$|y_n''(t)| \le q(t) \psi_{\epsilon}(|y_n'(t)|)$$
 for $t \in [a, b]$ and $n \ge n_0 + 1$.

The mean value theorem implies that there exists $\tau_{1,n} \in (a,b)$ with

$$|y'(\tau_{1,n})| = \frac{|y_0(b) - y_n(a)|}{b - a} \le \frac{2a_0}{b - a} = d_{n_0} \text{ for } n \ge n_0.$$

Fix $n \ge n_0 + 1$ and let $t \in [a, b]$. Without loss of generality assume $y'_n(t) > d_{n_0}$. Then there exists $\tau_1 \in (a, b)$ with $y'_n(\tau_1) = d_{n_0}$ and $y'_n(s) > d_{n_0}$ for s between τ_1 and t. Without loss of generality assume $\tau_1 < s$. From (2.26) we have

$$\frac{y_n''(s)}{\psi_{\epsilon}(y_n'(s))} \le q(s) \quad \text{for } s \in (\tau_1, t),$$

so integration from τ_1 to t yields

$$\int_{d_{n_0}}^{y'_n(t)} \frac{du}{\psi_{\epsilon}(u)} \le \int_0^1 q(s) \, ds.$$

Let $I_{n_0}(z) = \int_{d_{n_0}}^z \frac{du}{\psi_{\epsilon}(u)}$, so

$$|y'_n(t)| \le I_{n_0}^{-1} \left(\int_0^1 q(s) \, ds \right) \equiv R_{n_0}.$$

A similar bound is obtained for the other cases, so

$$(2.27) |y'_n(s)| \le R_{n_0} \text{ for } s \in [a, b] = \left[\frac{1}{2^{n_0+1}}, 1 - \frac{1}{2^{n_0+1}}\right]$$

and $n \ge n_0 + 1$. Now (2.25), (2.26) and (2.27) guarantee that (2.24) holds. The Arzela–Ascoli theorem guarantees the existence of a subsequence N_{n_0} of integers and a function $z_{n_0} \in C^1\left[\frac{1}{2^{n_0+1}}, 1 - \frac{1}{2^{n_0+1}}\right]$ with $y_n^{(j)}$, j = 0, 1, converging uniformly to $z_{n_0}^{(j)}$ on $\left[\frac{1}{2^{n_0+1}}, 1 - \frac{1}{2^{n_0+1}}\right]$ as $n \to \infty$ through N_{n_0} . Similarly

(2.28)
$$\left\{ \begin{array}{l} \{y_n^{(j)}\}_{n=n_0+2}^{\infty}, j=0,1, \quad \text{is a bounded, equicontinuous} \\ \text{family on } \left[\frac{1}{2^{n_0+2}}, 1 - \frac{1}{2^{n_0+2}}\right], \end{array} \right.$$

so there is a subsequence N_{n_0+1} of N_{n_0} and a function

$$z_{n_0+1} \in C^1 \left[\frac{1}{2^{n_0+2}}, 1 - \frac{1}{2^{n_0+2}} \right]$$

with $y_n^{(j)}$, j=0,1, converging uniformly to $z_{n_0+1}^{(j)}$ on $\left[\frac{1}{2^{n_0+2}},1-\frac{1}{2^{n_0+2}}\right]$ as $n\to\infty$ through N_{n_0+1} . Note $z_{n_0+1}=z_{n_0}$ on $\left[\frac{1}{2^{n_0+1}},1-\frac{1}{2^{n_0+1}}\right]$ since $N_{n_0+1}\subseteq N_{n_0}$. Proceed inductively to obtain subsequences of integers

$$N_{n_0} \supseteq N_{n_0+1} \supseteq \dots \supseteq N_k \supseteq \dots$$

and functions

$$z_k \in C^1\left[\frac{1}{2^{k+1}}, 1 - \frac{1}{2^{k+1}}\right]$$

with

$$y_n^{(j)}, j = 0, 1$$
, converging uniformly to $z_k^{(j)}$ on $\left[\frac{1}{2^{k+1}}, 1 - \frac{1}{2^{k+1}}\right]$

as $n \to \infty$ through N_k , and

$$z_k = z_{k-1}$$
 on $\left[\frac{1}{2^k}, 1 - \frac{1}{2^k}\right]$.

Define a function $y:[0,1] \to [0,\infty)$ by $y(x)=z_k(x)$ on $\left[\frac{1}{2^{k+1}},1-\frac{1}{2^{k+1}}\right]$ and y(0)=y(1)=0. Notice y is well defined and $\alpha(t) \leq y(t) \leq y_{n_0}(t) \leq \beta(t)$ for $t \in (0,1)$. Next fix $t \in (0,1)$ (without loss of generality assume $t \neq \frac{1}{2}$) and let $m \in \{n_0,n_0+1,\ldots\}$ be such that $\frac{1}{2^{m+1}} < t < 1-\frac{1}{2^{m+1}}$. Let $N_m^* = \{n \in N_m: n \geq m\}$. Now $y_n, n \in N_m^*$, satisfies the integral equation

$$y_n(x) = y_n\left(\frac{1}{2}\right) + y_n'\left(\frac{1}{2}\right)\left(x - \frac{1}{2}\right) + \int_{\frac{1}{2}}^x (s - x)q(s)g_n(s, y_n(s), y_n'(s)) ds$$

$$= y_n\left(\frac{1}{2}\right) + y_n'\left(\frac{1}{2}\right)\left(x - \frac{1}{2}\right) + \int_{\frac{1}{2}}^x (s - x)q(s)f(s, y_n(s), y_n'(s)) ds$$

for $x \in \left[\frac{1}{2^{m+1}}, 1 - \frac{1}{2^{m+1}}\right]$. Let $n \to \infty$ through N_m^{\star} to obtain

$$z_m(x) = z_m\left(\frac{1}{2}\right) + z'_m\left(\frac{1}{2}\right)\left(x - \frac{1}{2}\right) + \int_{\frac{1}{2}}^x (s - x)q(s)f(s, z_m(s), z'_m(s)) ds,$$

so in particular

$$y(t) = y\left(\frac{1}{2}\right) + y'\left(\frac{1}{2}\right)\left(t - \frac{1}{2}\right) + \int_{\frac{1}{2}}^{t} (s - t) \, q(s) \, f(s, y(s), y'(s)) \, ds.$$

We can do this argument for each $t \in (0,1)$, so y''(t) + q(t) f(t,y(t),y'(t)) = 0 for $t \in (0,1)$. It remains to show y is continuous at 0 and 1.

Let $\epsilon > 0$ be given. Now since $\lim_{n \to \infty} y_n(0) = 0$ there exists $n_1 \in \{n_0, n_0 + 1, \ldots\}$ with $y_{n_1}(0) < \frac{\epsilon}{2}$. Since $y_{n_1} \in C[0, 1]$ there exists $\delta_{n_1} > 0$ with

$$y_{n_1}(t) < \frac{\epsilon}{2}$$
 for $t \in [0, \delta_{n_1}]$.

Now for $n \ge n_1$ we have, since $\{y_n(t)\}$ is nonincreasing for each $t \in [0,1]$,

$$\alpha(t) \le y_n(t) \le y_{n_1}(t) < \frac{\epsilon}{2} \text{ for } t \in [0, \delta_{n_1}].$$

Consequently

$$\alpha(t) \le y(t) \le \frac{\epsilon}{2} < \epsilon \text{ for } t \in (0, \delta_{n_1}]$$

and so y is continuous at 0. Similarly y is continuous at 1. As a result $y \in C[0,1]$. \square

Suppose (2.2)–(2.5) hold and in addition assume the following conditions are satisfied:

(2.29)
$$\begin{cases} q(t) f(t, y, \alpha'(t)) + \alpha''(t) > 0 \text{ for } \\ (t, y) \in (0, 1) \times \{ y \in (0, \infty) : y < \alpha(t) \} \end{cases}$$

and

$$\begin{cases} \text{there exists a function } \beta \in C[0,1] \cap C^{2}(0,1) \\ \text{with } \beta(t) \geq \rho_{n_{0}} \text{ for } t \in [0,1] \text{ and with} \\ q(t) f(t,\beta(t),\beta'(t)) + \beta''(t) \leq 0 \text{ for } t \in (0,1) \text{ and} \\ q(t) f\left(\frac{1}{2^{n_{0}+1}},\beta(t),\beta'(t)\right) + \beta''(t) \leq 0 \text{ for } t \in \left(0,\frac{1}{2^{n_{0}+1}}\right). \end{cases}$$

Also if (2.7) and (2.8) hold, then the result in Theorem 2.1 is again true. This follows immediately from Theorem 2.1 once we show (2.6) holds i.e. once we show $\beta(t) \geq \alpha(t)$ for $t \in [0,1]$. Suppose it is false. Then $\alpha - \beta$ would have a positive absolute maximum at say $\tau_0 \in (0,1)$, so $(\alpha - \beta)'(\tau_0) = 0$ and $(\alpha - \beta)''(\tau_0) \leq 0$. Now $\alpha(\tau_0) > \beta(\tau_0)$ and (2.29) implies

$$q(\tau_0) f(\tau_0, \beta(\tau_0), \beta'(\tau_0)) + \alpha''(\tau_0) = q(\tau_0) f(\tau_0, \beta(\tau_0), \alpha'(\tau_0)) + \alpha''(\tau_0) > 0,$$

and this together with (2.30) yields

$$(\alpha - \beta)''(\tau_0) = \alpha''(\tau_0) - \beta''(\tau_0) \ge \alpha''(\tau_0) + q(\tau_0) f(\tau_0, \beta(\tau_0), \beta'(\tau_0)) > 0,$$

a contradiction. Thus we have

Corollary 2.2. Let $n_0 \in \{1, 2, ...\}$ be fixed and suppose (2.2) - (2.5), (2.7), (2.8), (2.29) and (2.30) hold. Then (2.1) has a solution $y \in C[0, 1] \cap C^2(0, 1)$ with $\alpha(t) \leq y(t) \leq \beta(t)$ for $t \in [0, 1]$.

Remark 2.1. (i). If in (2.4) we replace $\frac{1}{2^{n+1}} \le t \le 1$ with $0 \le t \le 1 - \frac{1}{2^{n+1}}$ then one would replace (2.6) with

(2.31)
$$\begin{cases} \exists \beta \in C^{1}[0,1] \cap C^{2}(0,1) & \text{with } \beta(t) \geq \alpha(t), \ \beta(t) \geq \rho_{n_{0}} \\ \text{for } t \in [0,1] & \text{with } q(t) f(t,\beta(t),\beta'(t)) + \beta''(t) \leq 0 \\ \text{for } t \in (0,1) & \text{and } q(t) f\left(1 - \frac{1}{2^{n_{0}+1}},\beta(t),\beta'(t)\right) + \beta''(t) \leq 0 \\ \text{for } t \in \left(1 - \frac{1}{2^{n_{0}+1}},1\right). \end{cases}$$

(ii). If in (2.4) we replace $\frac{1}{2^{n+1}} \le t \le 1$ with $\frac{1}{2^{n+1}} \le t \le 1 - \frac{1}{2^{n+1}}$ then one would replace (2.6) with

(2.32)
$$\begin{cases} \exists \beta \in C^{1}[0,1] \cap C^{2}(0,1) & \text{with } \beta(t) \geq \alpha(t), \ \beta(t) \geq \rho_{n_{0}} \\ \text{for } t \in [0,1] & \text{with } q(t) \ f(t,\beta(t),\beta'(t)) + \beta''(t) \leq 0 \\ \text{for } t \in (0,1) & \text{and } q(t) \ f\left(\frac{1}{2^{n_{0}+1}},\beta(t),\beta'(t)\right) + \beta''(t) \leq 0 \\ \text{for } t \in \left(0,\frac{1}{2^{n_{0}+1}}\right), \ q(t) \ f\left(1-\frac{1}{2^{n_{0}+1}},\beta(t),\beta'(t)\right) + \beta''(t) \leq 0 \\ \text{for } t \in \left(1-\frac{1}{2^{n_{0}+1}},1\right). \end{cases}$$

This is clear once one changes the definition of e_n and θ_n . For example in case (ii), take

$$e_n = \left[\frac{1}{2^{n+1}}, 1 - \frac{1}{2^{n+1}}\right]$$
 and $\theta_n(t) = \max\left\{\frac{1}{2^{n+1}}, \min\left\{t, 1 - \frac{1}{2^{n+1}}\right\}\right\}$.

Finally we discuss condition (2.5) and (2.29). Suppose the following condition is satisfied:

$$\begin{cases} \text{ let } n \in \{n_0, n_0+1, \ldots\} \text{ and associated with each } n \text{ we} \\ \text{ have a constant } \rho_n \text{ such that } \{\rho_n\} \text{ is a decreasing} \\ \text{ sequence with } \lim_{n \to \infty} \rho_n = 0 \text{ and there exists a constant} \\ k_0 > 0 \text{ such that for } \frac{1}{2^{n+1}} \leq t \leq 1, \ 0 < y \leq \rho_n \text{ and } z \in \mathbf{R} \\ \text{ we have } q(t) \, f(t, y, z) \geq k_0. \end{cases}$$

We will show if (2.33) holds then (2.5) (and of course (2.4)) and (2.29) are satisfied (we also note that $\frac{1}{2^{n+1}} \le t \le 1$ in (2.33) could be replaced by $0 \le t \le 1 - \frac{1}{2^{n+1}}$ (respectively $\frac{1}{2^{n+1}} \le t \le 1 - \frac{1}{2^{n+1}}$) and (2.5), (2.29) hold with $\frac{1}{2^{n+1}} \le t \le 1$ replaced by $0 \le t \le 1 - \frac{1}{2^{n+1}}$ (respectively $\frac{1}{2^{n+1}} \le t \le 1 - \frac{1}{2^{n+1}}$)). To show (2.5) and (2.29) recall the following Lemma from [5].

Lemma 2.3. Let e_n be as described in Theorem 2.1 (or Remark 2.1) and let $0 < \epsilon_n < 1$ with $\epsilon_n \downarrow 0$. Then there exists $\lambda \in C^2[0,1]$ with $\sup_{[0,1]} |\lambda''(t)| > 0$ and $\lambda(0) = \lambda(1) = 0$ with

$$0 < \lambda(t) \le \epsilon_n \quad for \ t \in e_n \setminus e_{n-1}, \ n \ge 1.$$

Let $\epsilon_n = \rho_n$ (and $n \ge n_0$) and let λ be as in Lemma 2.3. From (2.33) there exists $k_0 > 0$ with

(2.34)
$$\begin{cases} q(t) f(t, y, z) \ge k_0 & \text{for} \\ (t, y, z) \in (0, 1) \times \{ y \in (0, \infty) : y \le \lambda(t) \} \times \mathbf{R}, \end{cases}$$

since if $t \in e_n \setminus e_{n-1}$ $(n \ge n_0)$ then $y \le \lambda(t)$ implies $y \le \rho_n$. Let

$$M = \sup_{[0,1]} |\lambda''(t)|, \ m = \min \left\{ 1, \frac{k_0}{M+1} \right\} \text{ and } \alpha(t) = m \lambda(t), \ t \in [0,1].$$

In particular since $\alpha(t) \leq \lambda(t)$ we have from (2.34) that

$$q(t) f(t, \alpha(t), z) + \alpha''(t) \ge k_0 + \alpha''(t) \ge k_0 - \frac{k_0 |\lambda''(t)|}{M+1} > 0$$

for $(t,z) \in (0,1) \times \mathbf{R}$, and also

$$q(t) f(t, y, \alpha'(t)) + \alpha''(t) \ge k_0 + \alpha''(t) > 0$$

for $(t,y) \in (0,1) \times \{y \in (0,\infty) : y \le \alpha(t)\}$. Thus (2.5) and (2.29) hold.

Theorem 2.4. Let $n_0 \in \{1, 2, ...\}$ be fixed and suppose (2.2), (2.3), (2.7), (2.8), (2.30) and (2.33) hold. Then (2.1) has a solution $y \in C[0, 1] \cap C^2(0, 1)$ with y(t) > 0 for $t \in (0, 1)$.

Example. Consider the boundary value problem

(2.35)
$$\begin{cases} y'' + \frac{t}{y^2} + |y'|^{\alpha} - \mu^2 = 0, \ 0 < t < 1 \\ y(0) = y(1) = 0 \end{cases}$$

with $\mu > 0$ and $0 \le \alpha \le 1$. Then (2.35) has a solution $y \in C[0,1] \cap C^2(0,1)$ with y(t) > 0 for $t \in (0,1)$.

To see that (2.35) has the desired solution we will apply Theorem 2.4 with $q=1,\ f(t,y,z)=\frac{t}{v^2}+|z|^\alpha-\mu^2$ and

$$\rho_n = \left(\frac{1}{2^{n+1}(\mu^2 + 1)}\right)^{\frac{1}{2}}, \quad k_0 = 1 \text{ and } n_0 = 1.$$

Clearly (2.2) and (2.3) hold and notice also if $n \in \{1, 2, ...\}$, $\frac{1}{2^{n+1}} \le t \le 1$, $0 < y \le \rho_n$ and $z \in \mathbf{R}$ we have

$$q(t) f(t, y, z) \ge \frac{t}{\rho_n^2} - \mu^2 \ge \frac{1}{2^{n+1} \rho_n^2} - \mu^2 = (\mu^2 + 1) - \mu^2 = 1,$$

so (2.33) is also true. Next let $\beta(t) = M + \rho_1$ where M is chosen large enough so that

$$\frac{1}{(M+\rho_1)^2} \le \mu^2.$$

Notice (2.30) is immediate since

$$q(t) f(t, \beta(t), \beta'(t)) + \beta''(t) = \frac{t}{[\beta(t)]^2} - \mu^2 \le \frac{1}{(M + \rho_1)^2} - \mu^2 \le 0$$

for $t \in (0,1)$, and

$$q(t) f\left(\frac{1}{2^{n_0+1}}, \beta(t), \beta'(t)\right) + \beta''(t) = \frac{1}{4 \left[\beta(t)\right]^2} - \mu^2 \le \frac{1}{(M+\rho_1)^2} - \mu^2 \le 0$$

for $t \in (0, \frac{1}{4})$. Next let

$$\psi_{\epsilon}(z) = \frac{1}{\epsilon^2} + \mu^2 + z^{\alpha}$$

and notice (2.7) and (2.8) are satisfied since

$$|f(t, y, z)| \le \frac{1}{\epsilon^2} + \mu^2 + |z|^{\alpha} = \psi_{\epsilon}(|z|) \text{ for } t \in (0, 1), \ y \ge \epsilon, \ z \in \mathbf{R}$$

and

$$\int_0^\infty \frac{du}{\psi_{\epsilon}(u)} = \infty \quad \text{since} \quad 0 \le \alpha \le 1.$$

Existence now follows from Theorem 2.4.

References

- [1]. R.P. Agarwal, D.O'Regan and V. Lakshmikantham, An upper and lower solution approach for nonlinear singular boundary value problems with y' dependence, Archives of Inequalities and Applications 1(2003), 119–135.
- [2]. R.P. Agarwal, D.O'Regan, V. Lakshmikantham and S. Leela, An upper and lower solution theory for singular Emden–Fowler equations, *Nonlinear Analysis: Real World Applications*, **3**(2002), 275–291.
- [3]. A. Callegari and A. Nachman, Some singular nonlinear differential equations arising in boundary layer theory, *J. Math. Anal. Appl.*, **64**(1978), 96–105.
- [4]. J.A. Gatica, V. Oliker and P. Waltman, Singular nonlinear boundary value problems for second order differential equations, *J. Differential Equations*, **79**(1989), 62–78.
- [5]. H. Lü, D. O'Regan and C. Zhong, Existence of positive solutions for the singular equation $(\phi_p(y'))' + g(t, y, y') = 0$, Nonlinear Oscillations, to appear.
- [6]. C.D. Luning and W.L. Perry, Positive solutions of negative exponent generalized Emden–Fowler boundary value problems, *SIAM J. Math. Anal.*, **12**(1981), 874–879.
- [7]. D. O'Regan, Theory of singular boundary value problems, World Scientific, Singapore, 1994.
- [8]. D. O'Regan and R.P. Agarwal, Singular problems: an upper and lower solution approach, J. Math. Anal. Appl., **251**(2000), 230–250.