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Abstract

An upper and lower solution theory is presented for the Dirichlet boundary
value problem y” + f(t,y,y') =0, 0 <t < 1 with y(0) = y(1) = 0. Our
nonlinearity may be singular in its dependent variable and is allowed to change
sign.
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1. Introduction

An approach based on upper and lower solutions and a truncation technique
is presented for the singular boundary value problem

y(0) = 0 =y(1),

where our nonlinearity f is allowed to change sign. In addition f may not be
a Carathéodory function because of the singular behavior of the y variable i.e.
f may be singular at y = 0. In the literature the case when f is independent

(1.1) { y'+a(t) flty,y) =0, 0<t<1
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of its third variable (i.e. when f(¢,y,2) = f(t,y)) has received almost all the
attention, see [2-4, 6, 7] and the references therein. Only a few papers [1, §]
have appeared when f depends on the gy’ variable. This paper presents a new
and very general result for (1.1) when f:(0,1)x(0,00) xR — R. In addition
our results are new even when f is independent of the third variable. It is
also worth remarking here that we could consider Sturm-Liouville boundary
data in (1.1); however since the arguments are essentially the same we will
restrict our discussion to Dirichlet boundary data.

2. Existence Theory

In this section we present an upper and lower solution theory for the Dirich-
let singular boundary value problem

(0) =y(1) =0,

where our nonlinearity f may change sign.

(2.1) {J +q() f(t,y,y) =0, 0<t<1

Theorem 2.1. Let ng € {1,2,...} be fized and suppose the following condi-
tions are satisfied:

(2.2) f:(0,1) x (0,00) x R — R is continuous
(2.3) q€C(0,1)NL'0,1] with ¢>0 on (0,1)

let n € {ng,no+1,..} and associated with each n we
have a constant p, such that {p,} is a nonincreasing

(2.4) sequence with lim, .. p, =0 and such that for
g <t <1 and z € R we have f(t,pn,2) >0
Ja € C0,1]NC?*0,1) with «(0)=a(l)=0,
(2.5) a>0 on (0,1) such that

(0,1
q(t) f(t.aft),z) +a"(t) > 0 for (t.z) € (0,1) xR

3 8€C0,1]NC*0,1) with B(t) > al(t), B(t) > pn,
for t€[0,1] with q(t) f(t.5(t), (1)) + F"(t) < 0

(2:6) for te(0,1) and q(t) f (5, B®), () + 8"(t) <0
for t € (D, mﬁ)
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for any € >0, € < ag = supy B(t), 3 a function
(2.7) Ve continuous on [0,00) with |f(t,y,z)| < ¥(|z])
for (t,y,z) € (0,1) x [e,a9] X R

and
o du
Ye(u) '

Then (2.1) has a solution y € C[0,1] N C?%(0,1) with a(t) < y(t) < B(t) for
t €0,1].

PROOF: For n = ng, ng+ 1, ... let

1
(2.8) for any € >0, € < ay, we have / q(s)ds < /
0 0

en = [%,1} and 0,(t) = max{%, t}, 0<t<1

and
fu(t,z,z) = max {f(0,(t),z,2), f(t,x,2)}.
Next we define inductively
Gno(t,z,2) = f,(t,x, 2)
and
Gt x, 2) =min{ fo, (t, 2, 2), ..., fult,z,2)}, n=ng+ 1, ng+2,....

Notice

flt,z,2) < o< gtz 2) < gult,z, 2) < oo < gy (L2, 2)
for (t,z,z) € (0,1) x (0,00) x R and

gn(t,z,2) = f(t,z,2) for (t,z,z) € e, x (0,00) x R.

Without loss of generality assume p,, < min ] a(t). Fix n € {ng,no +

tel83

1,...}. Let t, € [0, ﬂ and s, € [%,1] be such that

a(t,) = als,) = p, and «aft) < p, for te[0,t,]U|[sy,1].

Define [ U] |
— ro”ﬂ 11 t € U: tn U S‘H.} ]-
on(t) = { a(t) if t e (t,,s,).
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We begin with the boundary value problem

(2.9) Y +qt) gn,(ty,y") =0,0<t <1
y(0) = y(1) = pny;

here

Q-no(t Qg (t)a ) + T(a'no(t) - y)a y < Ofno(t)

G 6y 2) =3 Gno(t,y,2%),  ano(t) <y < B(t)

Gno(t, B(t), 2*) +7r(B(t) —y), y > B(t),

with
M,,, z> My,
=3z, —M,, <z< M,

—My,, 2 < —M,,
and r: R — [—1,1] the radial retraction defined by

<1
r(u) = { 1":’: lul <

R lu| > 1,

and M,, > supyy, |#'(t)| is a predetermined constant (see (2.15)). Now
Schauder’s fixed point theorem [7] guarantees that there exists a solution y,,, €

C'0,1] to (2.9). We first show

(2.10) Yno(t) = any(t), t € [0,1].

Suppose (2.10) is not true. Then y,, — o, has a negative absolute minimum
at 7 € (0,1). Now since ¥,,,(0) — ay(0) = 0 = ¥y, (1) — v, (1) there exists
70, 71 € [0,1] with 7 € (7, 72) and

y?-’-o(TO) _ aﬂo(?_ﬁ) = yno(ﬁ) - aﬂo(ﬁ) =0

and
yno(f) — C}:no(t) < U, t e (Tg,'i"]).

We now claim
(2.11) (Yny — Qng)"(t) < 0 for ae. t € (19, 71).

If (2.11) is true then

Yno (1) — Qi (1) = — /TO (t, ) [yn,(5) — ap (s)]ds for t € (19, 71)
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with ( T
s—1p) (T1—t
s 7o g S g t
G(t,s) = _n=m o
iR { tmmss) t<s<m
so we have

Yno(t) — apo(t) > 0 for t e (m9,71),
a contradiction. As a result if we show that (2.11) is true then (2.10) will
follow. To see (2.11) we will show
(Yng — Qinp)"(t) < 0 for t € (79, 71) provided t #t,, or t# s,,.
Fix t € (19, 71) and assume t # t,, or t # s,,. Then

(90 = 00)" (1) = = [a(t) { guo (t, € (8), (41, (£))")
(0 (t) = Yo (£)) } + 7, (8)]

= [a(8) {gno(t (t), (1, (1)) + r(@(t) = yuo ()}

+a” (t)] it t€ (tuy, Sno)

T = [0®) {90t s Wy (8)) + 7 (g — Yo (D) }]
if t€(0,tn,)U (Sn,1)-

Case (A). t € [2,,#1- 1).
Then since ¢,,(t,z,2) = f(t,z,z) for (z,2z) € (0,00) x R (note t € e,,)
we have

lf t S (tn.o} Sn.o)

tpmxﬁswry+mﬁw—ymunﬂ
if € (0,tng) U (Sny.1)

(y?lo - a’no)”(t)

[ £, a(t), (U (1))") +r(c(t) = yn (1) }
_ +ce”

< 0,

from (2.4) and (2.5).

Case (B). t € (0, 2,1#;)
Then since

Gno(t, T, 2) = max{f (ﬁ,x,z) , f(t,:z:,z)}

we have

1
Ono(t,z,2) > f(t,x) and g, (t,x,2) > f (W,x,z)
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for (z,z) € (0,00) x R. Thus we have
— [g() {F(t,a(t), Why (1)) + r(alt) — yno (1)) }
+a”(t)] if t€ (tny, Sno)

— [a(t) {f (577 Pros (¥, (D))
+7(Png = Yno (1)} 3 £ € (0,209) U (80, 1)

(yng - anu)”(t) S

< 0,
from (2.4) and (2.5).

Consequently (2.11) (and so (2.10)) holds and now since a(t) < a,,(t) for
t € [0,1] we have

(2.12) a(t) < ap(t) < yn,(t) for te0,1].
Next we show
(2.13) Yno(t) < B(t) for t € [0,1].

If (2.13) is not true then y,, — # would have a positive absolute maximum
at say 79 € (0,1), in which case (y,, — 8)'(70) = 0 and (yn, — 3)"(70) < 0.
There are two cases to consider, namely 7y € [ﬁr 1) and 1y € (D, ﬁr)

Case (A). 1 € [2,,%1-, 1).

Then yn,(70) > B(70), ¥n,(70) = ['(70) together with gn,(70,7,2) =
f(r0,2,2) for (z,2) € (0,00) x R and M,, > supyy [3'(t)| gives

(Uno = BY'(70) = = a(70) [ (70, B(10), Wy (70))*) + 7(B(70) = Y (70))]
— 3"(m0)
= —q(m) [f(10,8(70), B'(70)) + 7(B(70) = Yno(70))]
- ,BH(TU)
> 0

from (2.6), a contradiction.

Case (B). € (U, 2—{}_,_—1-)

Now
1

Gno (70,2, 2) = max{f (W,x,z) , (70,2, z)}
for (z,z) € (0,00) x R gives
(o = B)"(70) = ~a(m) [max{f ey B70), B (), £ (7, B0, ()

+ 7(B(70) = Yno(70))] = B"(70)
> 0



...Singular Boundary Value Problems

from (2.6), a contradiction.
Thus (2.13) holds. Next we show

(2.14) |y:m|oo = &[’&IE’ |y;0(t)| < My,

With € = ming,1) o, (t), then (2.7) guarantees the existence of 1. (as de-
scribed in (2.7)) with

[f(t,y,2)| < ¥e(lz]) for (t,y,2) € (0,1) X [e,a0] x R

where ag = supy, ) 3(t). Let M,, > supyyy |#'(t)| be chosen so that

(2.15) /Ul q(s)ds < /UM"U ¢d;ji)

holds. Suppose (2.14) is false. Without loss of generality assume y;, (t) £ Mpy,
for some t € [0,1]. Then since ¥,,(0) = yn,(1) = pn, there exists 7 €
(0,1) with g, (71) = 0, and so there exists 7, 73 € (0,1) with y, (73) = 0,
Yno(T2) = My, and 0 <y, (s) < M,, for s between 73 and 7. Without loss
of generality assume 73 < 75. Now since ay,,(t) < y,,(t) < S(t) for t € [0,1]
and

1 .
S‘Inu(t:xu Z) = ma){{f (Wﬂxvz) 3 f(t,x,Z)}
for (t,x,z) € (0,1) x (0,00) x R, we have for s € (73,72) that

Uno (8) < q(5) ey, (5)),

/M"o du I Jno 5 ds < f
; - ]
0 Ve (u) s U yn

This contradicts (2.15). The other cases are treated similarly. As a result
aft) < y(t) < B(t) for t € [0,1] and |y, | < M,,. Thus y,, satisfies

y::u + qgﬂo(t: ynm'y;%) =0 on (0 1)
Next we consider the boundary value problem

and so

(2.16) { v +q(t) o (ty,y) = 0,0 <t <1
y(0) = y(1) = pug+1

where

gnu-ﬁ-l(tﬂ anu+1(t): Z*) + T(a’!lu-i-l(t) - y): ') S Qm:-ﬁ-l(t)
g;c.-{-l(t: Y, Z) = gn[]-l-l(ta Y, Z*)? Ofn()—!-l(t) S Y S yn()(t)
g?l[]-‘rl(tﬂ y?l[](t)a Z*) + T(yil[](t) - y)& y 2 yn[;(t)

21
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with
ﬂ{fno-{—lu z > ﬁ’{ng-{—l

2F = z, _ﬁ"fng—i-l S z S leng—{-l
_13\’{77.04-1: z < _ﬂf{no—{-l;
here M,,, .1 > M, is a predetermined constant (see (2.22)). Now Schauder’s

fixed point theorem guarantees that there exists a solution y,,4+1 € C’l[O, 1] to
(2.16). We first show

(2.17) Yno+1(t) = ane4a(t), t € [0,1].

Suppose (2.17) is not true. Then there exists 7, 7 € [0, 1] with

ynn+1(7'0) - fl'nu+1(7'u) = ’ym,+1(7'1) - Ofnu+1(‘?'1) =0

and
yn{)-{—l(t) - an()-!-l(t) < 0; t e (TU'.I Tl)-

If we show
(218) (ynuﬂ — ano+1)”(t) < (0 forae te (T[), Tl),

then as before (2.17) is true. Fix t € (79,71) and assume t # t,,41 or

t # Spy+1. Then

(= [9(t) {gno+1(t, (D), (Y041(1))")
+r(a(t) = yng+1(t))} + ”(1)]
lf t e (t,;o+1,8n0+1)
= [a(t) {gno+1(t, Pro+1; (Y11 (1))
+T(P'n.o+1 - ym—i—l(t))} ]
it t€ (0,th,41) U (Spge1s1).

(yno-i-l_ano-i-l)ﬁ(t) = A

Case (A). t € [2,,%7, 1).
Then since gn,+1(t,z,2) = f(t,z,2) for (z,z) € (0,00) x R (note t €
€ny+1) We have

(= [qg(®) {F(t, alt), (Y11 (1))
+?"(O;(?5) - ?E'nu-kl(t))} +)@”(t)]
) " - 1 le t1L0+1} Sng+1
Wroer = )0 =0 1(0) {1(2 puger. (i (1))
+T(p'ﬂo+1 - ynu-i-l(t))}]

if ¢ S (O, tno-}-l) U (8,10.;.1, 1)
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from (2.4) and (2.5).
Case (B). t € ([}, L )
Then since g,,+1(t, 2, 2) equals

minfmax(f (5rr.2) » J(t,2,2)} max{f (grompr02) » f(t,2))

we have

gnn-{-](ta T, Z) Z f(ta €, Z)

. 1 1
gnn+](ta$'sz) Z min {f (Waxs Z) 3 f (Wam:z)}

for (z,z) € (0,00) x R. Thus we have

(= la(t) {f(t. a(t), Ynys1(1))*)
—{—?‘(Ct’(t) — Ynp+1 (t))} + o (t)]
if te (tn0+1= Sno-’rl)
(yn[;—i-l - Ofnn-i-l)ﬂ(t) < { - [Q(t) {Hlill{f (271%1'310?10-%11 (y;r.o-i—l(t))*) s
f (zﬂ#fﬂ Pro+1; (y:a[ﬁ—l(t))*) }
+T(JO710+1 - ynu—}-l(t))}]
if te (O, tno-}-l) U (8,30.;.1, 1)

and

< 0,

from (2.4) and (2.5) since f (ﬁr,pno.ﬂ, (y;;ﬁl(t))*) > 0 because

) 1
f(t1pn:1+l: (y;0+1(t)) ) >0 for te |:21L0+2 ’ 1}

and
1 1 ]
2110+1 € 2ﬁ.0+2’ }
Consequently (2.17) is true so
(2.19) a(t) < angy1(t) < Yngpa(t) for t€[0,1].
Next we show
(2.20) Yno+1(t) < Yno(t) for t € [0,1].

If (2.20) is not true then ¥,,+1 —yn, would have a positive absolute maximum
at say 79 € (0,1), in which case

(yna+l - yng)r(T{J) =0 and (ynu—i-l - y?lg)”(TO) <0.
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Then yng-{—l(Tﬂ) > yno(TD) together Wlth gng(ﬁ]}xﬂ 2) 2 gn.u-I-l(TD:*T'J Z) fOI‘
(2.2) € (0,00) x R gives (note (sys1(10))" = (vho(1))* = (o) since
ﬁ"fng—}—l Z ﬁ’fng and |U;;U|:)c < ﬂ/fng)v

= 4(70) [9no+1(70, Yno (70)s (Y41 (70))")
T (Yno(T0) = Yno+1(70))] — y::g(TO)

= q(70) [gno (To;ynu(’TU):’y:m(‘TU))
7(Yno(70) = Yno+1(70))] — Yny (70)

—=q (70) [7(Yno(70) = Yng+1(70))]
0,

(yﬂ-o+1 - yno)”(ﬁ))

v +

+

v

a contradiction. Thus (2.20) holds. Next we show

(2-21) |y:m+1|oo < Mg 41
With € = ming) ap41(t), then (2.7) guarantees the existence of . (as

described in (2.7)) with
[f(t.y, 2)] < ¥e(lz]) for (t,y,2) € (0,1) X [¢,a0] xR

where ag = supy ) 3(t). Let M,,.1 > M,, be chosen so that

1 Mpy1
(2.22) fuq(s) ds </U t/»*—E;)

Essentially the same argument as before guarantees that (2.21) holds. Thus
Yno+1 T 4 Gno+1(t, Yng+1: Yng1) = 0 on (0, 1).

Now proceed inductively to construct y,,+2, Yng+3,.... as follows. Suppose
we have y, for some k € {ng+ 1,n0 + 2,...} with a(t) < ax(t) < y(t) <
Yr-1(t) (£ B(t)) for ¢ € [0,1]. Then consider the boundary value problem

y' +q(t) gia(ty,y)=0,0<t<1
2.23
(2.23) { y(0) = y(1) = pr+1

where

i1 (t, agga(t), 2%) + (o (t) —y), v < apga(t)
g;+l(t=y5 Z) - gk-{-l(t! Y, Z*), ak-’rl(t) S Y S yk(t)
Ge+1(t, yk(t), 2%) +r(ye(t) —y), v > ye(?)
with
Myy1, 2> Mpp
=0z, =My <2< My
—Mpt1, 2 < —Mjy;
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here M., > M, is a predetermined constant. Now Schauder’s fixed point
theorem guarantees that (2.23) has a solution yxy, € C'[0, 1], and essentially
the same reasoning as above yields

a(t) < aps1(t) < ypaa(t) < yu(t) for t€(0,1], |ypsiloe < Miya,

SO Y1 + 4 Gk+1(Ls Y1, Ypyr) = 0 on (0,1).
Now lets look at the interval [5msr,1 — gm+r]. We claim

(2.24) {yP}ee 41,7 =0,1, is a bounded, equicontinuous
) family on [?IOLH, 1— 2,1§+1] .

Firstly note

(2.25) [¥nloo < |Ungloo < ?515,3(1&) =ap for t€0,1] and n >ng+ 1.

Let
€= min a(t).

1 1
te onp+1 71_2730+I

Now (2.7) guarantees the existence of v, (as described in (2.7)) with
[f(t,y,2)| < 9e(|2]) for (t,y,2) € (0,1) x [€, ao] x R.
This implies

, , 1 1
|gn(t1 yn(t)ﬂ T}ﬂ,(t))| S 1/”((|yn(f)|) fOI' le [a? b] = Wﬂ 1- 2“0+1 g eng

and n > ng+ 1. As a result
(2.26) e < ) bullyu(®))) for € [a,b] and n > ng+ 1.

The mean value theorem implies that there exists 7, € (a,b) with

_ |U(b) _yn(a)| < 20Y'O

— y > .
T < a dn, for n>ng

[y (710

Fix n > ng+ 1 and let t € [a,b]. Without loss of generality assume v/ () >

dn,- Then there exists 7 € (a,b) with v/ (7)) = dn, and y,(s) > d,, for s

between 7, and ¢. Without loss of generality assume 7, < s. From (2.26) we
have

Yn(s)

mgq(s) for s € (m,1),
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so integration from 7 to ¢ yields

n(t) 1
/y ,du S/ q(s) ds.
Jdny  Ye(u) ~ Jo

Let I,,(2) = J;zz,m Jﬁtj, SO

01 < 1 ([ a(s) ds) = R

A similar bound is obtained for the other cases, so

, 1 1
(2.27) [y (s)| < R, for s€[a,b] = [2no+1 11— 2ﬂ_0+1]

and n > ng + 1. Now (2.25), (2.26) and (2.27) guarantee that (2.24) holds.
The Arzela-Ascoli theorem guarantees the existence of a subsequence N,

of integers and a function z,, € C' [2“3“,1 — Q,JI}H} with ), j = 0,1,

n o7

converging uniformly to z) on [Qﬂ%f 1— Qnﬁf] as n — oo through N,,.

no
Similarly
(7)100 ,7=0,1, 1is a bounded, equicontinuous
(2 28) yn n=np+2 J q
' family on [2,,§+2,1 - Q,I(}H} ,

so there is a subsequence N, .1 of N,, and a function

1 1

1
zn“+1 = C 2'nn+2’ 2?1()+2

with y), j = 0,1, converging uniformly to z,(j;)_H on [Qnolﬂg 1— 2n01+2] as n —

) _ 1 1 :
oo through N, +1. Note z,,41 = z,, on [2,,_0+. 1= 2,,_0+;] since Nyy+1 C© Ny,
Proceed inductively to obtain subsequences of integers

Nug 2 Npgi1 2. 2 N 2 ..

and functions

1 1
1
*€C [ﬁ L= 5
with
(4) 1

1;?(;‘ ), j=0,1, converging uniformly to z;’ on

ok+1’ - ok+1
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as n — oo through N, and

1 1
Zr = Zp—1 On [ﬁ’l_ﬁ]‘

Define a function y : [0,1] — [0,00) by y(z) = zx(z) on [zh—lﬂ 1— 2k1+1} and
y(0) = y(1) = 0. Notice y is well defined and «(t) < y(t) < yn,(t) < B(t
t € (0,1). Next fix ¢ € (0,1) (without loss of generality assume ¢ # 1) and
let m € {no,n@ + 1,...} be such that ﬁ <t<l1l-—- zm}ﬁ Let N* =

Ny n>m}. Now y,, n € N, satisfies the integral equation |
1 , (1 1 ﬂ’ ,
yn(@) = n (5) + Y (5) (m - 5) + /1 (5 = 2)q(5)gn (5, yn(5), yn(s)) ds
/3

1 1 1

= w(5)+u(3) (-3)+ J; (s = 2)aT o unls), 4 5)) ds

for x € [ﬁ, 1-— ?JT] Let n — oo through N to obtain

1

(@) =2 (5) + 2 (5) (2= 5) + [ 66 = (675, 2m(5), 20(5) s,

W=

so in particular

w0 =y (3)+v (3) (t=3)+ 6= 040) fs.0(). /() s

Y2

We can do this argument for each ¢ € (0,1), so y"(t)+q(t) f(t,y(t),y'(t)) =0
for ¢ € (0,1). It remains to show y is continuous at 0 and 1.

Let ¢ > 0 be given. Now since lim, . ¥,(0) = 0 there exists n; €
{no,no+1,...} with y,,(0) < 5. Since y,, € C[0,1] there exists 6,, > 0 with

Yn, (1) < % for ¢ € [0,0,,].
Now for n > n; we have, since {y,(¢)} is nonincreasing for each t € [0, 1],
at) < yalt) Sy (1) < 5 for ¢ € [0,8,,)

Consequently
a(t) < y(t) < % <e for te(0,6,]

and so y is continuous at 0. Similarly y is continuous at 1. As a result
yeCo,1]. O
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Suppose (2.2)—(2.5) hold and in addition assume the following conditions
are satisfied:
(2.29) { q(t) f(t,y,a'(t)) +a"(t) > 0 for
' (t.y) € (0,1) x {y € (0,00) : y < aft) }
and
there exists a function g € C[0,1] N C*(0,1)
with 3(t) > p,, for t € [0,1] and with
(2.30) a(t) F(£,8(0), B(1) + (1) < 0 for t € (0,1) and
q(t) f (g B(1). B'(1)) + B"(£) <0 for t € (0, 5:1) .
Also if (2.7) and (2.8) hold, then the result in Theorem 2.1 is again true. This
follows immediately from Theorem 2.1 once we show (2.6) holds i.e. once we
show 3(t) > «(t) for t € [0,1]. Suppose it is false. Then o — 3 would have
a positive absolute maximum at say 75 € (0,1), so (o — 3)'(79) = 0 and
(o — B)"(19) < 0. Now a(79) > B(70) and (2.29) implies
q(70) f (10, B(10), B'(10)) + &"(70) = q(70) f (70, B(70), &' (79)) + a”(70) > 0,
and this together with (2.30) yields

(= B)"(10) = a"(70) — B"(m0) = a"(70) + q(70) (70, B(70), F'(10)) > 0,

a contradiction. Thus we have

Corollary 2.2. Let ng € {1,2,...} be fized and suppose (2.2) — (2.5), (2.7),
(2.8), (2.29) and (2.30) hold. Then (2.1) has a solution y € C[0,1] N C*(0,1)
with a(t) < y(t) < B(t) for t €|0,1].
Remark 2.1. (i). If in (2.4) we replace 5 <t <1 with 0 <t <1 - 5
then one would replace (2.6) with

3 4€C'0,1]NC?*0,1) with | ( ) > alt), B(t) > pﬂo

for ¢ €0,1] with q() f(t, 3(¢ ) (1) +B"(t) <
(2.31) for t € (0,1) and q(t) f (1 — gor, B(t). B'()) + 5**( ) <

for t € (l—ﬁr?l).
(ii). If in (2.4) we replace 5 < ¢ <1 with 55 < ¢ <1 — 555 then one
would replace (2.6) with
3 4€C'0,1]NC?*0,1) with S(t) > a(t), B(t)

for t €[0,1] with q(t) f(t, ,{’3( ), 3'(t) + 3"(t) <
(2.32) for t € (0,1) and q(t) f (g ﬁ( ), B'(t) +B"(t) <0
for ¢ € (0, 5mr), q(t) f (1= 5mer, B, B (1)) + B"(t) <0
for t € (1 — g, 1).

Png

c::IV

c-\-\-_-/
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This is clear once one changes the definition of e, and 6,. For example in
case (ii), take

1 1 L !
€n = gn+1’ - on+1 and gﬂ’(t) - max { on+l’ o {t’l - W}} ‘

Finally we discuss condition (2.5) and (2.29). Suppose the following con-
dition is satisfied:

let n€{ng,np+1,...} and associated with each n we
have a constant p, such that {p,} is a decreasing

(2.33) sequence with lim,, ... p, = 0 and there exists a constant
ko > 0 such that for ﬁgtﬁl, 0<y<p, and z€e R
we have q(t) f(t,y,z) > ko.

We will show if (2.33) holds then (2.5) (and of course (2.4)) and (2.29) are

satisfied (we also note that =t < ¢ < 1 in (2.33) could be replaced by

0 <t<1-g54 (respectively 5y <t <1—55) and (2.5), (2.29) hold with

sir <t <1 replaced by 0 <t <1— 55 (respectively sy <t < 1—557)).
To show (2.5) and (2.29) recall the following Lemma from [5].

Lemma 2.3. Let e, be as described in Theorem 2.1 (or Remark 2.1) and let
0 <€, <1 with €, | 0. Then there exists A € C*[0, 1] with supyy |\"(t)| > 0
and A0) = A(1) =0 with

0<At) <e, for t€e,\en1, n>1

Let €, = p, (and n > ng) and let A be as in Lemma 2.3. From (2.33)
there exists kg > 0 with

q(t) f(t,y, z) =
(2.34) { (t,y,2) € (0,1) x {y € (0,00) : y < A(t)} xR,

since if ¢t € e, \ e,_1 (n > ng) then y < A(t) implies y < p,. Let

M = ?SJS IA'(t)], m = mm{l, Y 1} and a(t) =mA(t), t € [0,1].

In particular since «(t) < A(t) we have from (2.34) that

" 2 " L k0|/\ﬂ(t)|
q(t) f(t,alt),z) + a"(t) > ko + " (t) > ko Ml
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for (¢,2) € (0,1) x R, and also
q(t) f(t,y,a'(t)) +a"(t) = ko +a"(t) > 0

for (t,y) € (0,1) x {y € (0,00) : y < a(t)}. Thus (2.5) and (2.29) hold.

Theorem 2.4. Let ng € {1,2,...} be fized and suppose (2.2), (2.3), (2.7),
(2.8), (2.30) and (2.33) hold. Then (2.1) has a solution y € C[0,1]NC?(0,1)
with y(t) >0 for t € (0,1).

Example. Consider the boundary value problem

y'+m Y= =0, 0<t <1
y(0) =y(1)=0

with >0 and 0 < o < 1. Then (2.35) has a solution y € C[0,1] N C?(0,1)
with y(t) > 0 for ¢t € (0,1).

To see that (2.35) has the desired solution we will apply Theorem 2.4 with
q=1, f(ty,2)= y% + |2]* = p* and

(2.35) {

1 3
— S . = ]_ - ]_.
-'O‘-'L (271+1 (,{52 + 1)) ? kﬂ a‘nd o

Clearly (2.2) and (2.3) hold and notice also if n € {1,2,..}, 57 <t < 1,
0<y<p, and z € R we have

t 1
q(t) f(t,y,2) > p p > T 2= (2 +1) — =1,

so (2.33) is also true. Next let 3(t) = M+ p; where M is chosen large enough

so that
1 2

_— <
(M +p)2 =

Notice (2.30) is immediate since

q(t) f(t,B(t), 5'(t)) + B"(t) = B2 —H S m =

for ¢ € (0,1), and

o0)f (G B0 B O) + 50) = e = 1 < Ty = 1 <0
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for t € (U, i) Next let
| 1 2 %
! € - + Z
be(2) = 5 +n
and notice (2.7) and (2.8) are satisfied since
1 .
[ty 2)l < 5+ i+ 2" = v(|z]) for 1€(0,1), y=>e z€R

and

©  du .
/ ., =o0 since 0 <a <1.
0 Ye(u)

Existence now follows from Theorem 2.4.
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