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1. INTRODUCTION

This paper presents an existence result of ‘nonuniform nonresonant’ type for the

boundary value problem

(1.1)

{

y′′ + q f(t, y, y′) = 0 a.e. on [0, 1]

y(0) = y(1) = 0.

The result we present is new and improves results ‘at the first eigenvalue’ in [1–5]. To

obtain our result we use a well known technique initiated by Mawhin and Ward [3] in

the early 1980’s. It is worth remarking here that we could consider Sturm–Liouville,

Neumann and Periodic boundary data in (1.1); however since the arguments are

essentially the same we will restrict our discussion to Dirichlet boundary data.

For the convenience of the reader we now recall some well known results from the

literature [4, 5]. Consider the problem
{

Ly = λ y a.e. on [0, 1]

y(0) = y(1) = 0,

where Ly = − (1/q) y′′ and q ∈ L1[0, 1] with q > 0 a.e. on [0, 1]. For notational

purposes let Lp
w[0, 1] (p ≥ 1 and w a weight function) denote the space of functions
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y such that
∫ 1

0
w(t) |y(t)|p dt < ∞; also for u, v ∈ L2

w[0, 1] we define 〈u, v〉 =
∫ 1

0
w(t) u(t) v(t)dt. Let

D(L) =

{

y ∈ C1[0, 1] : y′ ∈ AC[0, 1] with
1

q
y′′ ∈ L2

q[0, 1] and y(0) = y(1) = 0

}

.

Then L has a countable number [5] of real eigenvalues λi with corresponding eigen-

functions ψi ∈ D(L). The eigenfunctions may be chosen so that they form an or-

thonormal set in L2
q[0, 1] and we may arrange the eigenvalues so that λ0 < λ1 <

λ2 < · · · (note λ0 > 0 and ψ0 > 0 on (0, 1)). In addition the set of eigenfunctions

form a basis for L2
q[0, 1]. The results in Section 2 rely on the following well known

Rayleigh–Ritz inequality [4, 5].

THEOREM 1.1. Suppose q ∈ L1[0, 1] with q > 0 a.e. on (0, 1). Let λ0 be the first

eigenvalue of
{

y′′ + λ q y = 0 a.e. on [0, 1]

y(0) = y(1) = 0.

Then

λ0

∫ 1

0

q(t) |v(t)|2 dt ≤
∫ 1

0

|v′(t)|2 dt

for all functions v ∈ AC[0, 1] with v′ ∈ L2[0, 1] and v(0) = v(1) = 0.

For notational purposes in this paper, for appropriate functions y we let

‖y‖ =

(
∫ 1

0

|y(t)|2 dt
)1/2

and |y|∞ = sup
[0,1]

|y(t)|.

2. EXISTENCE THEORY

In this section we present a nonuniform nonresonant result at the first eigenvalue

for the Dirichlet boundary value problem

(2.1)

{

y′′ + q f(t, y, y′) = 0 a.e. on [0, 1]

y(0) = y(1) = 0,

with

(2.2) q ∈ L1[0, 1] and q > 0 a.e. on [0, 1]

and

(2.3) q f : [0, 1] × IR2 → IR a L1 − Carathéodory function [5]

holding.

THEOREM 2.1. Suppose (2.2) and (2.3) hold and in addition assume f has the

decomposition

f(t, u, w) = g(t, u, w) + h(t, u, w)
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with the following holding:

(2.4)











∃ a, b ∈ C[0, 1], with a(t) ≥ 0, b(t) ≥ 0 on [0, 1] and

b
√
q ∈ C[0, 1], with u g(t, u, w) ≤ a(t) u2 + b(t) |u| |w|

for t ∈ [0, 1], u ∈ IR and w ∈ IR

(2.5)











either (i) a(t) < |a|∞ on a subset of [0, 1] of positive

measure or (ii) b(t) < |b|∞ on a subset of [0, 1] of

positive measure with in addition q ∈ C[0, 1]

(2.6)



















|a|∞
λ0

+
|b√q|∞√

λ0

≤ 1 if (i) occurs in (2.5), or

|a|∞
λ0

+
|b|∞ |√q|∞√

λ0

≤ 1 if (ii) occurs in (2.5)

(2.7)































∃ φi, i = 1, 2, 3, 4, with φi ≥ 0 a.e. on [0, 1],

and ∃ α, β, γ, θ such that 0 ≤ γ < 1, 0 ≤ θ < 1,

α ≥ 0, β ≥ 0 and α + β < 1, with

|h(t, u, w)| ≤ φ1(t) + φ2(t) |u|γ + φ3(t) |w|θ + φ4(t) |u|α |w|β
for a.e. t ∈ [0, 1], u ∈ IR and w ∈ IR

(2.8) φ1 ∈ L1
q[0, 1], φ2 ∈ L1

q[0, 1], q φ3 ∈ L2/(2−θ)[0, 1] and q φ4 ∈ L2/(2−β)[0, 1]

(2.9)























for any M0 > 0, ∃ φi (which may depend on M0), i = 5, 6, 7,

with φi ≥ 0 a.e. on [0, 1], and ∃ δ, 0 ≤ δ < 2 with

|g(t, u, w)| ≤ φ5(t) + φ6(t) |w|δ + φ7(t)w
2 for a.e. t ∈ [0, 1],

w ∈ IR and u ∈ [−M0,M0]

and

(2.10) φ5 ∈ L1
q[0, 1], q φ7 ∈ C[0, 1] and q φ6 ∈ L2/(2−δ)[0, 1].

Then (2.1) has a solution in C1[0, 1] (in fact in W 2,1[0, 1]).

REMARK 2.1. Theorem 2.1 extends and improves some results in [1–3].

PROOF. Let y be any solution to

(2.11)λ

{

y′′ + λ q f(t, y, y′) = 0 a.e. on [0, 1]

y(0) = y(1) = 0,

for 0 < λ < 1. To show (2.1) has a solution it suffices to show [4] that there exists

M , independent of λ, with

(2.12) max{|y|∞ , |y′|∞} ≤ M.
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Multiply (2.11)λ by − y and integrate from 0 to 1 to obtain

(2.13)

‖y′‖2 ≤
∫ 1

0

a(t)q(t)y2(t)dt +

∫ 1

0

b(t)q(t)|y(t)||y′(t)|dt+

∫ 1

0

φ1(t)q(t)|y(t)|dt

+

∫ 1

0

φ2(t)q(t)|y(t)|γ+1dt+

∫ 1

0

φ3(t)q(t)|y(t)||y′(t)|θdt

+

∫ 1

0

φ4(t)q(t)|y(t)|α+1|y′(t)|βdt.

Case (A). Suppose a(t) < |a|∞ on a subset of [0, 1] of positive measure.

Let

R(y) =
|a|∞
λ0

∫ 1

0

[y′(t)]2 dt−
∫ 1

0

a(t) q(t) y2(t) dt.

We claim that there exists ε > 0 with

(2.14) R(y) ≥ ε

(
∫ 1

0

q(t) y2(t) dt+ ‖y′‖2

)

.

Notice first that

R(y) ≥ |a|∞
λ0

∫ 1

0

[y′(t)]2 dt− |a|∞
∫ 1

0

q(t) y2(t) dt =

∞
∑

i=0

( |a|∞
λ0

λi − |a|∞
)

c2i ≥ 0

since λi ≥ λ0 for i ∈ {0, 1, 2, · · · }; here

y =

∞
∑

i=0

ci ψi and ci = 〈y, ψi〉

(of course R(y) ≥ 0 also follows immediately from Theorem 1.1). Also if R(y) = 0

then ci = 0 for i ∈ {1, 2, · · · }. Thus y = c0 ψ0 and so

0 = R(y) =
|a|∞
λ0

c20

∫ 1

0

[ψ′

0(t)]
2 dt− c20

∫ 1

0

a(t) q(t) [ψ0(t)]
2 dt

= c20

∫ 1

0

[|a|∞ − a(t)] q(t) [ψ0(t)]
2 dt.

Note a(t) < |a|∞ on a subset of [0, 1] of positive measure and ψ0 > 0 on (0, 1) implies

c0 = 0 and so y ≡ 0.

If (2.14) is not true then there exists a sequence {yn} with

(2.15)

∫ 1

0

q(t) [yn(t)]
2 dt+ ‖y′n‖2 = 1

and

(2.16) R(yn) → 0 as n→ ∞.

A standard argument [5, Chapter 11] guarantees that there is a subsequence S of

integers with

(2.17) yn → y in C[0, 1] and y′n ⇀ y′ in L2[0, 1]
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as n→ ∞ in S; here ⇀ denotes weak convergence. Also

(2.18)

∫ 1

0

[y′(t)]2 dt ≤ lim inf

∫ 1

0

[y′n(t)]2 dt.

Now (2.16), (2.17) and (2.18) immediately implies R(y) ≤ 0. Thus R(y) = 0, so

y = 0. Hence

∫ 1

0

q(t)[yn(t)]
2dt+ ‖y′n‖2 =

λ0

|a|∞
R(yn) +

∫ 1

0

(

1 +
λ0

|a|∞
a(t)

)

q(t)[yn(t)]2dt → 0

as n→ ∞ in S,

which is impossible.

Consequently (2.14) is true, so in particular

(2.19)

∫ 1

0

a(t) q(t) [y(t)]2 dt ≤
( |a|∞
λ0

− ε

)
∫ 1

0

[y′(t)]2 dt.

Put (2.19) into (2.13) to obtain

‖y′‖2 ≤
( |a|∞

λ0
− ε

)

‖y′‖2 + |b√q|∞
(

∫ 1

0

q(t) [y(t)]2 dt

)1/2

‖y′‖

+ |y|∞
∫ 1

0

φ1(t) q(t) dt+ |y|γ+1
∞

∫ 1

0

φ2(t) q(t) dt

+ |y|∞ ‖y′‖θ

(
∫ 1

0

[φ3(t) q(t)]
2/(2−θ) dt

)(2−θ)/2

+|y|α+1
∞

∫ 1

0

φ4(t) q(t) |y′(t)|β dt.

This together with Theorem 1.1 yields

‖y′‖2 ≤
( |a|∞

λ0
− ε

)

‖y′‖2 +
|b√q|∞√

λ0

‖y′‖2

+|y|∞
∫ 1

0

φ1(t) q(t) dt+ |y|γ+1
∞

∫ 1

0

φ2(t) q(t) dt

+|y|∞‖y′‖θ

(
∫ 1

0

[φ3(t)q(t)]
2/(2−θ)dt

)(2−θ)/2

+|y|α+1
∞

‖y′‖β

(
∫ 1

0

[φ4(t)q(t)]
2/(2−β)dt

)(2−β)/2

.
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Now y(0) = y(1) = 0 immediately implies |y|∞ ≤ (1/
√

2) ‖y′‖ and this together

with (2.6) yields

ε ‖y′‖2 ≤ 1√
2
‖y′‖

∫ 1

0

φ1(t) q(t) dt+

(

1√
2

)γ+1

‖y′‖γ+1

∫ 1

0

φ2(t) q(t) dt

+
1√
2
‖y′‖θ+1

(
∫ 1

0

[φ3(t) q(t)]
2/(2−θ) dt

)(2−θ)/2

+

(

1√
2

)α+1

‖y′‖α+1+β

(
∫ 1

0

[φ4(t) q(t)]
2/(2−β) dt

)(2−β)/2

.

Since γ < 1, θ < 1 and α + β < 1, there exists K0 (independent of λ) with

(2.20) ‖y′‖ ≤ K0

holding.

Case (B). Suppose b(t) < |b|∞ on a subset of [0, 1] of positive measure and q ∈ C[0, 1].

The argument in Case (A) guarantees that there exists ε > 0 with

|b|2
∞

λ0

∫ 1

0

[y′(t)]2 dt−
∫ 1

0

b2(t) q(t) y2(t) dt ≥ ε

(
∫ 1

0

q(t) y2(t) dt+ ‖y′‖2

)

and so in particular

(2.21)

∫ 1

0

b2(t) q(t) [y(t)]2 dt ≤
( |b|2

∞

λ0
− ε

)
∫ 1

0

[y′(t)]2 dt.

Put (2.21) into (2.13) to obtain

‖y′‖2 ≤ |a|∞
∫ 1

0

q(t) [y(t)]2 dt+ |√q|∞
(

∫ 1

0

b2(t) q(t) [y(t)]2 dt

)1/2

‖y′‖

+|y|∞
∫ 1

0

φ1(t) q(t) dt+ |y|γ+1
∞

∫ 1

0

φ2(t) q(t) dt

+|y|∞ ‖y′‖θ

(
∫ 1

0

[φ3(t) q(t)]
2/(2−θ) dt

)(2−θ)/2

+ |y|α+1
∞

∫ 1

0

φ4(t) q(t) |y′(t)|β dt

≤ |a|∞
λ0

‖y′‖2 + |√q|∞
( |b|2

∞

λ0
− ε

)1/2

‖y′‖2

+
1√
2
‖y′‖

∫ 1

0

φ1(t) q(t) dt+

(

1√
2

)γ+1

‖y′‖γ+1

∫ 1

0

φ2(t) q(t) dt

+
1√
2
‖y′‖θ+1

(
∫ 1

0

[φ3(t) q(t)]
2/(2−θ) dt

)(2−θ)/2

+

(

1√
2

)α+1

‖y′‖α+1+β

(
∫ 1

0

[φ4(t) q(t)]
2/(2−β) dt

)(2−β)/2

;
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here we also used Theorem 1.1. Now there exists a ρ > 0 with

( |b|2
∞

λ0
− ε

)1/2

≤ |b|∞√
λ0

− ρ,

and this together with (2.6) yields

ρ |√q|∞ ‖y′‖2 ≤ 1√
2
‖y′‖

∫ 1

0

φ1(t) q(t) dt+

(

1√
2

)γ+1

‖y′‖γ+1

∫ 1

0

φ2(t) q(t) dt

+
1√
2
‖y′‖θ+1

(
∫ 1

0

[φ3(t) q(t)]
2/(2−θ) dt

)(2−θ)/2

+

(

1√
2

)α+1

‖y′‖α+1+β

(
∫ 1

0

[φ4(t) q(t)]
2/(2−β) dt

)(2−β)/2

.

Thus there exists K0 (independent of λ) with (2.20) holding.

In both cases (2.20) holds, and now since |y|∞ ≤ (1/
√

2) ‖y′‖ we have

(2.22) |y|∞ ≤ 1√
2
K0 ≡ M0

for any solution y to (2.11)λ. Also (2.7), (2.9), (2.21) and (2.22) implies

∫ 1

0

|y′′(t)|dt ≤
∫ 1

0

φ5(t)q(t)dt+

∫ 1

0

φ6(t)q(t)|y′(t)|δdt

+

∫ 1

0

φ7(t)q(t)|y′(t)|2dt+

∫ 1

0

φ1(t)q(t)dt

+Mγ
0

∫ 1

0

φ2(t) q(t) dt+

∫ 1

0

φ3(t) q(t) |y′(t)|θ dt

+Mα
0

∫ 1

0
φ4(t) q(t) |y′(t)|β dt

≤
∫ 1

0

φ5(t) q(t) dt+Kδ
0

(
∫ 1

0

[φ6(t) q(t)]
2/(2−δ) dt

)(2−δ)/2

+ |φ7 q|∞K2
0

+

∫ 1

0

φ1(t) q(t) dt+Mγ
0

∫ 1

0

φ2(t) q(t) dt

+Kθ
0

(
∫ 1

0

[φ3(t) q(t)]
2/(2−θ) dt

)(2−θ)/2

+Mα
0 K

β
0

(
∫ 1

0

[φ4(t) q(t)]
2/(2−β) dt

)(2−β)/2

≡M1.

Finally notice since y(0) = y(1) = 0 that

|y′|∞ ≤
∫ 1

0

|y′′(t)| dt ≤M1,

so (2.12) follows with M = max{M0,M1}.
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REMARK 2.2. From the proof we see that

a(t) u2 + b(t) |u| |w|

in (2.4) can be replaced by

[a(t) + η] u2 + [b(t) + η] |u| |w|,

provided η > 0 is chosen sufficiently small.

REMARK 2.3. In (2.4) notice b(t) |u| |w| could be replaced by b(t) |u|ξ |w|2−ξ, 1 <

ξ < 2 (of course (2.6) has to be adjusted also).

REMARK 2.4. In the uniform nonresonance case (i.e. a(t) = a0 and b(t) = b0 in

(2.4)) then Theorem 2.1 guarantees a solution provided (2.6) is replaced by

a0

λ0

+
b0 |

√
q|∞√
λ0

< 1.

In this case we do not need to consider Cases (A) and (B) and there is no need to

discuss R(y) since (2.13) reduces to

‖y′‖2 ≤
(

a0

λ0

+
b0 |

√
q|∞√
λ0

)

‖y′‖2 +

∫ 1

0

φ1(t) q(t) |y(t)| dt

+

∫ 1

0

φ2(t) q(t) |y(t)|γ+1 dt+

∫ 1

0

φ3(t) q(t) |y(t)| |y′(t)|θ dt

+

∫ 1

0

φ4(t) q(t) |y(t)|α+1 |y′(t)|β dt.

REMARK 2.5. It is easy to replace (2.6) with a quadratic form condition as described

in [1, Theorem 2.1]. The details are left to the reader.
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