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1 Introduction

Let (Ln)n≥1 be a sequence of positive linear operators defined on the Banach space
C([a, b]). The well-known Popoviciu-Bohman-Korovkin criterion asserts: if (Lnek)n≥1 con-
verges to ek uniformly on [a, b], k ∈ {0, 1, 2}, for the test functions e0(x) = 1, e1(x) = x,
e2(x) = x2, then (Lnf)n≥1 converges to f uniformly on [a, b], for each f ∈ C([a, b]). Many
classical linear positive operators have the degree of exactness one, this meaning they pre-
serve the monomials e0 and e1. The most known and investigated operators of this kind are
Bernstein operators,

Bn : C([0, 1])→ C([0, 1]), (Bnf)(x) =
n∑

k=0

(
n

k

)

xk(1− x)n−kf

(
k

n

)

, x ∈ [0, 1]. (1.1)

The present note is motivated by the following previous results.

Firstly, J.P. King [8] has presented an example of linear and positive operators Vn :
C([0, 1])→ C([0, 1]) given as follows

(Vnf)(x) =
n∑

k=0

(
n

k

)

(r∗n(x))k(1− r∗n(x))n−kf

(
k

n

)

, x ∈ [0, 1], (1.2)

where r∗n : [0, 1]→ [0, 1] are defined by

r∗n(x) =






x2, n = 1,

−
1

2(n− 1)
+

√
n

n− 1
x2 +

1

4(n− 1)2
, n = 2, 3, . . .

This sequence preserves the test functions e0, e2 and (Vne1)(x) = r∗n(x) holds. Replacing
r∗n by e1, one reobtains Bernstein operators (1.1). Further results regarding Vn operator have
been recently obtained by H. Gonska and P. Piţul [7]. By using A-statistical convergence, an
analog of King’s result has been proved by O. Dumand and C. Orhan [5]. In [1] we indicated
a general technique to construct sequences of univariate operators of discrete type with the
same property as in King’s example, i.e., their degree of exactness is null, but they reproduce
the third function of the celebrated criterion. This way we gave the modified variants of
Szász, Baskakov and Bernstein-Cholovsky operators. The iterates of this general class have
been studied in [2].

Secondly, in [4] the authors introduced and investigated a family (Bn,α)n≥2 of sequences
of Bernstein-type operators depending on a real parameter α ≥ 0 and defined by

(Bn,αf)(x) =
n∑

k=0

(
n

k

)

rkn,α(x)(1− rn,α(x))n−kf

(
k

n

)

, f ∈ C([0, 1]), x ∈ [0, 1], (1.3)

where

rn,α(x) = −
nα+ 1

2(n− 1)
+

√
(nα+ 1)2

4(n− 1)2
+
n(αx+ x2)

n− 1
, n ≥ 2, x ∈ [0, 1].

This class reproduces both e0 and the polynomial e2 + αe1. Clearly, for α = 0, Bn,0
becomes Vn operator (n ≥ 2), see (1.2). Moreover, for each n ≥ 2 and x ∈ [0, 1], if α runs to
infinity, then rn,α(x) tends to x and Bn,αf becomes the classical Bernstein polynomials Bnf ,
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see (1.1).

Our aim is to introduce a general class of discrete type operators with the same property
as in [4], to reproduce e0 and e2 + αe1. This family is defined on certain subspaces of C(J),
J ⊂ R, the space of all real-valued continuous functions on J . We take into account two kinds
of intervals: J = [0, 1] and J = R+ := [0,∞), respectively. For the first case, the local and
global rate of convergence is established by using the classical modulus of continuity ω(f ; ∙)
associated to any function f ∈ C([0, 1]). As usual, this space is endowed with the sup-norm
‖ ∙ ‖C([0,1]). For the second case, the approximation property of our class is given in the frame
of spaces of functions with polynomial growth. The involved spaces are defined via certain
weights. More precisely, for a given p ≥ 2, we consider the weight wp, wp(x) = (1 + xp)−1,
x ≥ 0, and the corresponding space

Cp(R+) := {f ∈ C(R+); wp(x)f(x) is convergent as x tends to ∞},

endowed with the norm ‖ ∙ ‖Cp , ‖f‖Cp = sup
x≥0

wp(x)|f(x)|.

We notice, since p ≥ 2, the test function ej , j ∈ {0, 1, 2}, belong to Cp(R+).

2 Construction of the class (L∗n,α)n≥2

For each n ≥ 2, let Δn := (xn,k)k∈In be a net on the interval J , where In ⊂ N is a set of
indices consistent with J , this meaning {xn,k : k ∈ In} ⊂ J . We consider the operators Ln
having the form

(Lnf)(x) =
∑

k∈In

un,k(x)f(xn,k), x ∈ J, (2.1)

where un,k ∈ C(J), un,k ≥ 0, for every (n, k) ∈ {2, 3, . . . } × In and f ∈ F(J) := {g ∈ C(J) :
the series in (2.1) is convergent}.

Clearly, each Ln is a linear positive operator. We also mention that the right-hand side of
(2.1) could be a finite sum. In this case, F(J) is just C(J).

Further on, we assume that the following identities

(Lne0)(x) = 1, (Lne1)(x) = x, (Lne2)(x) = anx
2 + bnx, x ∈ J, (2.2)

are fulfilled for each n ≥ 2. Moreover, we assume

an > 0, bn > 0, lim
n
an = 1, lim

n
bn = 0. (2.3)

On the basis of (2.2) and (2.3) according to Popoviciu-Bohman-Korovkin theorem, one has

lim
n
‖Lnf−f‖C(K) = 0, on any compact K ⊂ J . Since un,k ≥ 0 (k ∈ In) and

∑

k∈In

un,k = e0, we

deduce that each un,k belongs to CB(J), the space of all real-valued continuous and bounded
functions on J .

Let α ≥ 0 be fixed. For each n = 2, 3, . . . setting

cn,α :=
bn + α

2an
,
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we define the functions vn,α : J → R+,

vn,α(x) = −cn,α +

√

c2n,α +
x2 + αx

an
, x ∈ J. (2.4)

Clearly, vn,α ∈ C(J). Taking into account (2.1), we consider the linear and positive
operators

(L∗n,αf)(x) =
∑

k∈In

un,k(vn,α(x))f(xn,k), x ∈ J, (2.5)

where f ∈ F(J).

Theorem 2.1 Let L∗n,α, n = 2, 3, . . . , be defined by (2.5). The following relations hold.

(i) L∗n,αe0 = e0, L
∗
n,αe1 = vn,α, L

∗
n,α(e2 + αe1) = e2 + αe1.

(ii) (L∗n,αϕ
2
x)(x) = (2x + α)(x − vn,α(x)), x ∈ J , where ϕx : J → R is defined by ϕx(t) =

t− x.

Proof. (i) Since (L∗n,αf)(x) = (Lnf)(vn,α(x)), on the basis of (2.2), for f = e0 and f = e1,
the first two claimed identities are obvious. With the help of the same identities (2.2) we also
can write

(L∗n,α(e2 + αe1))(x) = (L∗n,αe2)(x) + α(L∗n,αe1)(x) = anv
2
n,α(x) + (bn + α)vn,α(x).

Taking into account (2.4), by direct computation the result follows.

(ii) Since L∗n,αϕ
2
x = L∗n,α(e2 + αe1) − (2x + α)L∗n,αe1 + x2L∗n,αe0, by using the identities

established in the first part of this theorem, we obtain the desired result. �
We indicate two elementary properties of the functions introduced to (2.4).

Lemma 2.2 Let vn,α, n = 2, 3, . . . be defined by (2.4). For each x ∈ J one has
(i) 0 ≤ vn,α(x) ≤ x,
(ii) lim

n
vn,α(x) = x.

Proof. (i) Since ϕ2x is a non-negative function and L∗n,α is a positive operator, the inequality
vn,α(x) ≤ x is implied by Theorem 2.1 part (ii).

(ii) Taking into account the assumptions (2.3), the identity is obtained by a straight
computation. �

3 Examples

Starting from some known approximation processes of the form (2.1) and verifying condi-
tions (2.2), we focus our attention on obtaining modified processes of L∗n,α-type.

Case 1: J = [0, 1]. We consider In = {0, 1, . . . , n} and the net Δn = (k/n)k=0,n.

Example 3.1 Bernstein-type operators. Choosing un,k =

(
n

k

)

xk(1 − x)n−k, Ln becomes

Bernstein operator Bn, see (1.1). We have an = 1 −
1

n
and bn =

1

n
, consequently, for n ≥ 2,
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hypotheses (2.3) take place. Taking α = 0, our operator L∗n,0 turns into Vn operator introduced
by King, see (1.2). Keeping α ≥ 0 arbitrary, L∗n,α becomes Bn,α operator specified at (1.3).

Case 2: J = [0,∞). We consider In = N and the equidistant net Δn = (k/n)k≥0.

Example 3.2 Szász-Mirakjan-Favard modified operators. We consider un,k(x) = e−nx
(nx)k

k!
.

In this case we get an = 1 and bn = 1/n. Consequently,

(L∗n,αf)(x) =
∞∑

k=0

e−nvn,α(x)
(nvn,α(x))k

k!
f

(
k

n

)

, (3.1)

where vn,α(x) = (
√

(nα+ 1)2 + 4n2(x2 + αx)− nα− 1)/2n, x ≥ 0, n ≥ 2.

Example 3.3 Baskakov modified operators. Choosing un,k(x) =

(
n+ k − 1

k

)

xk(1 + x)−n−k,

we deduce an = 1+
1

n
and bn =

1

n
. Hypotheses (2.3) are verified. The corresponding operators

have the form

(L∗n,αf)(x) =
∞∑

k=0

(
n+ k − 1

k

)
vkn,α(x)

(1 + vn,α(x))n+k
f

(
k

n

)

, (3.2)

where, on the basis of (2.4), one has

vn,α(x) =

√
(nα+ 1)2 + 4n(n+ 1)(x2 + αx)− nα− 1

2(n+ 1)
, x ≥ 0, n ≥ 2.

We mention that choosing both in (3.1) and in (3.2) α = 0, we reobtain the modified
operators in King’s sense introduced in [1; §4].

4 Approximation properties, case J = [0, 1]

Taking in view Theorem 2.1(i) and Lemma 2.2(ii), on the basis of Popoviciu-Bohman-
Korovkin theorem, we can state

Theorem 4.1 Let L∗n,α, n = 2, 3, . . . , be defined by (2.5), where J = [0, 1]. For any f ∈
C([0, 1]) one has

lim
n
‖L∗n,αf − f‖C([0,1]) = 0.

For exploring the rate of convergence of L∗n,α (n ≥ 2, α ∈ R+) operators, we need the
following technical result.

Lemma 4.2 Let vn,α, n = 2, 3, . . . , be given by (2.4).

(i) For α > 0, one has x− vn,α(x) ≤
(an − 1)x2 + bnx

bn + α
.

(ii) For α = 0, one has x− vn,α(x) ≤
|an − 1|
√
an

x+
bn

2an
.
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Proof. (i) In the harmony with (2.4), we can write successively

x− vn,α(x) =

(

1−
1

an

)

x2 +
bn
an
x

x+ cn,α +

√

c2n,α +
x2 + αx

an

≤

(

1−
1

an

)

x2 +
bn

an
x

2cn,α
=

(an − 1)x2 + bnx

bn + α
.

(ii) For α = 0, an upper bound for e1 − vn,0 can be immediately established

x− vn,0(x) = x+
bn

2an
−

√
x2

an
+

b2n
4a2n
≤

(

1−
1
√
an

)

x+
bn

2an
≤
|an − 1|
√
an

x+
bn

2an
. �

For obtaining information regarding the rate of convergence we use the result due to B.
Mond [9]. It can be read as follows. For any linear positive functional F on the space C([0, 1])
we have

|F (f)− f(x)| ≤ |F (e0)− 1||f(x)|+ (F (e0) + h−2F ((e1 − xe0)
2))ω1(f ;h), (4.1)

for any f ∈ C([0, 1]), x ∈ [0, 1] and h > 0.

Theorem 4.3 Let L∗n,α, n = 2, 3, . . . , be defined by (2.5), where J = [0, 1]. We assume that
the sequence ((an − 1)/bn)n≥2 is bounded. Let f belong to C([0, 1]).
(i) For α > 0, one has

|(L∗n,αf)(x)− f(x)| ≤

(

1 + (2x+ α)x
(an − 1)x+ bn

bn(bn + α)

)

ω1(f ;
√
bn). (4.2)

(ii) For α = 0, one has

|(L∗n,0f)(x)− f(x)| ≤

(

1 +
x

an

(

1 + 2
√
an
|an − 1|
bn

x

))

ω1(f ;
√
bn). (4.3)

Proof. (i) We use the result (4.1) with h :=
√
bn. Taking into account the identity

L∗n,αe0 = e0, Theorem 2.1(ii) and Lemma 4.2(i), the result follows.

(ii) Following a similar route: relation (4.1) with h :=
√
bn, Theorem 2.1(ii) and Lemma

4.2(ii), we obtain (4.3). �
We point out that the additional assumption regarding the boundness of the sequence

((an − 1)/bn)n≥2 guarantees that the quantities which appear in front of the modulus
ω1(f ;

√
bn) are bounded for n tending to infinity. Otherwise, an inequality of the form (4.2)

or (4.3) is not useful for evaluating the rate of convergence of the involved operators.
As a matter of fact, applying (4.2) for Bn,α operators defined at (1.3), we obtain the

following upper bound of the local rate of convergence

|(Bn,αf)(x)− f(x)| ≤

(

1 +
(2x+ α)x(1− x)

α+ 1/n

)

ω1

(

f ;
1
√
n

)

,

which is similar to [4, Eq. (5)].
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Remark 4.4 The requirement regarding the boundness of the sequence ((an − 1)/bn)n≥2 is
not necessary. We can strike out this claim, but in this case the inequality (4.2) is replaced
with a coarser one. For example, for α > 0, starting from Lemma 4.2(i), we can write

x− vn,α(x) ≤
|an − 1|x2 + bnx

bn + α
≤ λn(x

2 + x), x ∈ [0, 1],

where λn := max

{
|an − 1|
bn + α

,
bn

bn + α

}

, n ≥ 2. Relation (2.3) ensures lim
n
λn = 0. Choosing

h :=
√
λn in (4.1), we deduce

|(L∗n,αf)(x)− f(x)| ≤ (1 + x(x+ 1)(2x+ α))ω1(f ;
√
λn), x ∈ [0, 1].

As regards inequality (4.3) a similar reasoning can be made.

5 Approximation properties, case J = R+

Corresponding to the unbounded interval R+, the function f is allowed to be unbounded,
however with some restrictions concerning the growth of f at infinity. In the sequel we discuss
functions belonging to the space Cp(R+), already presented in Introduction. Let us remark
that the incorporation of the weight wp, p ≥ 2, into our approach is the main point which
leads to the global estimate of the rate of convergence.

Lemma 5.1 Let L∗n,α, b = 2, 3, . . . , be defined by (2.5), where J = R+.

(i) For any p ≥ 2 one has

|(L∗n,αe1)(x)− x|

1 + xp
≤

∣
∣
∣
∣1−

1
√
an

∣
∣
∣
∣+
|bn(
√
an + 1)− α(

√
an − 1)|

√
an(bn + α)

, x ≥ 0; (5.1)

(ii) lim
n
‖L∗n,αe1 − e1‖Cp = 0.

Proof. (i) Let us fix n ≥ 2. Since (L∗n,αe1)(0) = 0, for x = 0 the inequality is evident. In
what follows, we consider x > 0. Clearly, for each x > 0, one has 1 + xp > x. Taking into
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account both Lemma 2.2(i) and (2.4), we get

|(L∗n,αe1)(x)− x|

1 + xp
≤
x− vn,α(x)

x

=

(

1−
1

an

)

x+

(

2cn,α −
α

an

)

x+ cn,α +

√

c2n,α +
x2 + αx

an

≤

(

1−
1

an

)

x+
bn
an(

1 +
1
√
an

)

x+ cn,α

=

(

1−
1
√
an

)[(

1 +
1
√
an

)

x+ cn,α

]

+
bn

an
−

(

1−
1
√
an

)

cn,α
(

1 +
1
√
an

)

x+ cn,α

≤

∣
∣
∣
∣1−

1
√
an

∣
∣
∣
∣+

∣
∣
∣
∣
bn
an
−

(

1−
1
√
an

)

cn,α

∣
∣
∣
∣

cn,α

=

∣
∣
∣
∣1−

1
√
an

∣
∣
∣
∣+
|bn(
√
an + 1)− α(

√
an − 1)|

√
an(bn + α)

.

(ii) The claimed identity is implied by (5.1) and the assumption (2.3). �
Further on, we show that the sequence (L∗n,α)n≥2 furnishes a new strong approximation

process on the weighed space Cp(R+), p ≥ 2.

Theorem 5.2 Let L∗n,α, n = 2, 3, . . . , be defined by (2.5), where J = R+. For every f ∈
F(R+) ∩ Cp(R+), p ≥ 2, the following identity

lim
n→∞

‖L∗n,αf − f‖Cp = 0, (5.2)

holds.

Proof. It is known that {e0, e1, e2} is a Korovkin set in Cp(R+), see e.g. [[3], Proposition
4.2.5]. Taking in view both the property L∗n,αe0 = e0 and Lemma 5.1(ii), it remains to prove
(5.2) for f = e2. On the basis of Theorem 2.1(i), we get

‖L∗n,αe2 − e2‖Cp ≤ ‖L
∗
n,α(e2 + αe1)− (e2 + αe1)‖Cp + α‖L∗n,αe1 − e1‖Cp

= α‖L∗n,αe1 − e1‖Cp .

By using again Lemma 5.1(ii), the proof is ended. �

Remark 5.3 The operator L∗n,α is non-expansive on the space Cp(R+). Indeed, if f ∈
Cp(R+), then

wp(x)|(L∗n,αf)(x)| ≤
∑

k∈In

un,k(vn,α(x))‖f‖Cp = ‖f‖Cp ,
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and, consequently, ‖L∗n,αf‖Cp ≤ ‖f‖Cp holds.
Also, it is evident that L∗n,α maps CB(R+) into itself. Here CB(R+) stands for the space

of all real-valued continuous and bounded functions defined on R+.

Remark 5.4 In [6], the authors had examined the statistical convergence in Approximation
Theory establishing some Korovkin-type theorems. On the basis of [6, Theorem 1], Theorem
2.1(i) leads us to the following result.

If st − lim
n
‖vn,α − e1‖C(K) = 0, then st − lim

n
‖L∗n,αf − f‖C(K) = 0, for any function f

belonging to CB(R+), where K ⊂ R+ is an arbitrary compact.
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