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Abstract Sequences of binomial operators introduced by using umbral calculus are
investigated from the point of view of statistical convergence. This approach is based
on a detailed presentation of delta operators and their associated basic polynomials.
Bernstein—Sheffer linear positive operators are analyzed, and some particular cases
are highlighted: Cheney—Sharma operators, Stancu operators, Lupags operators.
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1 Introduction

Let (L,),>1 be asequence of linear positive operators acting on the space C([a, b]) of
all real-valued and continuous functions defined on the interval [a, b], equipped with
the norm || - || of the uniform convergence, namely ||2|| = sup |k(t)|. Bohman—

a<t<b
Korovkin’s theorem asserts: If the operators L,, n € N, map C([a, b]) into itself
such that

lim |[Lye; —e;|| = 0for j € {0, 1,2}, (1.1)
n—oo

then one has
lim |L, f — f|l =0 forevery f € C([a, b]). (1.2)
n—00
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In the above, ¢ represents the monomial of jthdegree, eg(x) = lande;(x) = x4,
j> 1

A current subject in approximation theory is the approximation of continuous
functions by using the statistical convergence, the first research of this topic being
done by Gadjiev and Orhan [5]. This approach models and improves the technique
of signals’ approximation in different function spaces.

On the other hand, sequences of polynomials of binomial type have been the
subject of many mathematical studies, drawing to light their role in approximation
theory. Practically, the theory of the approximation operators of binomial type is
based on the technique of the umbral calculus. In its modern form, this is a strong tool
for calculations with polynomials representing a successful combination between
the finite differences calculus and certain chapters of probability theory. The topic
discussed in this chapter is at the confluence of the two concepts mentioned above,
statistical convergence and binomial-type operators, from the point of view of the
approximation of some function classes. The material is structured in three sections.

First of all, we recall the variant of Bohman—Korovkin theorem via statistical con-
vergence and we present elementary facts about polynomial sequences of binomial
type. Further on, we deal with delta operators and their basic polynomials. In the last
section, we will analyze the approximation properties of some binomial operators in
terms of the statistical convergence.

We mention that at the first sight this work seems disproportionate, dominated
by a lot of notions introduced and results already achieved. The goal was to be self-
contained paper. It will be seen that for a clear understanding of the last paragraph,
it was necessary to structure the article in this way.

2 Preliminaries

The concept of statistical convergence was first defined by Steinhaus [13] and Fast
[4]. It is based on the notion of the asymptotic density of subsets of N. The density
of § € N denoted by §(S) is given by

1}1
0(S) = lim — ),
(8) nL“;on;XS(”

where Y stands for the characteristic function of the set S. Clearly, 0 < §(S) <
d(N) = 1. A sequence (x,),>; of real numbers is said to be statistically convergent
to a real number /, if, for every € > 0,

d({neN: |x, =1 =} =0,

the limit being denoted by st — lim x,, = [. Itis known that any convergent sequence
n—oo

is statistically convergent but the converse of this statement is not true. Even though
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this notion was introduced in 1951, its application to the study of sequences of
positive linear operators was attempted only in 2002. We refer to the A.D. Gadjiev
and C. Orhan [5] result, which reads as follows.

Theorem 2.1 [fthe sequence of positive linear operators L,, : C([a, b]) — B([a, b])
satisfies the condition

st — lim ||L,e; —e;|| =0, j €{0,1,2}, 2.1
n—o0
then one has

st — lim ||L, f — fll = 0 for every function f € C(la, b]). 2.2)

As usual, B([a, b]) stands for the space of all real-valued bounded functions de-
fined on [a, b], endowed with the sup norm. The identities (2.1) and (2.2) generalize,
respectively, relations (1.1), (1.2). From this moment, the statistical convergence
of positive linear operators represented a new direction in the study of so-called
KAT—Korovkin-type approximation theory.

Set Ny := N U {0}. For any n € Ny, we denote by I, the linear space of polyno-
mials of degree no greater than n and by IT the set of all polynomials of degree n.

We also set
= U I,

n>0

representing the commutative algebra of polynomials with coefficients in K, this
symbol standing either for the field R or for the field C.

A sequence p = (p,),=o such that p, € IT? for every n € Ny is called a polyno-
mial sequence.

Definition 2.2 A polynomial sequence b = (b,,),>¢ is called of binomial type if for
any (x, y) € K x K the following identities hold

n

bax+y) =Y (Z)bkmbnk(y), n € Np. (2.3)

k=0

Remark 2.3 Knowing that deg(by) = 0, we get by(x) = 1 for any x € K and by
induction we easily obtain b, (0) = 0 for any n € N.

The most common example of binomial sequence is e = (e,),>0 (the monomials).
Some nontrivial examples are given below.
(a) The generalized factorial power with the step a: p = (Pp)n>0,

po(x) = x%4 =T and p,(x) = x" :=x(x —a)--- (x = (n — Da), n € N.
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The Vandermonde formula, i.e.,

n
n
(x + y)[n,a] — Z (k>x[k,a]y[n—k.a]’
k=0

guarantees that this is a binomial-type sequence. There are two particular cases:
For a = 1, we obtain the lower factorials which, usually, are denoted by (x),; for
a = —1, we obtain the upper factorials denoted by Pochhammer’s symbol (x),. By
convention, we consider

K7l = 1/(x 4 na)l™al,

(b) Abel polynomials: @ = (a\"") =0,
aé‘” =1,a"x) =x(x—na)""", neN, a #0.

Rewriting the identity (2.3) for these polynomials, we obtain the Abel-Jensen (1902)
combinatorial formula

n

(X + ) +y+na)t = Z(

k=0

n

k>xy(x +ka)* 'y +m—ka)" ' * neN.

(c) Gould polynomials: g = (gﬁ,a’b))nzo,

b
g =1, gl () =

x <x—an

3 >n,n€N, ab # 0.

X —an
The space of all linear operators T : IT — IT will be denoted by .. Among these
operators, an important role will be played by the shift operator, named E“. For
every a € K, E* is defined by

(Ep)(x) = p(x + a), where p € 1.
An operator T € . which switches with all shift operators, that is

TE® = E°T forevery a € K,

is called a shift-invariant operator, and the set of these operators is denoted by ..

3 On Delta Operators

Definition 3.1 An operator Q : IT — I is called delta operator if Q € .%; and Qe;
is a nonzero constant.
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Let .Z; denote the set of all delta operators. For a better understanding, we present
some examples of delta operators. In the following, the symbol I stands for the
identity operator on the space I1.

(a) The derivative operator, denoted by D.
(b) The operators used in calculus of divided differences. Let & be a fixed number
belonging to the field K. We set

Ay, := E" — I, the forward difference operator,
Vy :=1 — E7", the backward difference operator,

8y = E"M? — E7"2 | the central difference operator.

It is evident that V;, = ALE~", §, = A,E~"? = V, E"/?. The properties of these
operators as well as their usefulness can be found in [6].

d
(c) Abel operator, A, := DE®.Forany p € I1, (A, p)(x) = d—p(x + a).
X
Writing (symbolically) Taylor’s series in the following manner

o0
hl/DV
EM = Z =P, (3.1)

V!
v=0

we can also get A, = D(eP).
(d) Gould operator, G, j, := AyE® = E“** — E¢ ab # 0.

Definition 3.2 Let Q be a delta operator. A polynomial sequence p = (pn)n>0 is
called the sequence of basic polynomials associated with Q if

(1) po(x) = 1 forany x € K.

(ii) p,(0) = 0 for any n € N.

(iii) (Qpn)(x) = np,_i(x) foranyn € Nand x € K.

Remark 3.3 If p = (p,)n>o0 1s a sequence of basic polynomials associated with Q,
then {po, p1, .., Pn—1, €x} is a basis of the linear space I1,. Taking this fact into
account, by induction it can be proved that every delta operator has a unique sequence
of basic polynomials; see [9, Proposition 3].

Here are some examples. The basic polynomials associated with the operators
Q=D, Q=A, and Q =V, are, respectively, (e,),=0, (x"""),-0, and ((x +
(n — D)"Yy, . Also, we can easily prove that @ = (af,“)),,zo respectively g =
(gflu’m)nzo is the sequence of basic polynomials associated with Abel operator A,,
respectively Gould operator G, 5.

The connection between the delta operator and the binomial-type sequences is
given by the following result [9, Theorem I].

Theorem 3.4 Let p = (pu)n>0 be a sequence of polynomials. It is a sequence of
binomial type if and only if it is a basic sequence for some delta operator.
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The following statement generalizes the Taylor expansion theorem to delta oper-
ators and their basic polynomials.

Theorem 3.5 Let T be a shift-invariant operator, and let Q be a delta operator with
its basic sequence (py)n>0. Then, the following identity holds

Tpo) (0
T=Y %Qk. (3.2)

k>0

Let Q be a delta operator, and let (F, 4+, -) be the ring of the formal power series
in the variable r over the same field. Here, the product means the Cauchy product
between two series. Further, let (£, +, -) be the ring of shift-invariant operators,
the product being defined as usually: For any Py, P, € %, we have P, P, : I1 — TII,
(P1Py)(q) = P1(P2(q)), g € T1. Then, there exists an isomorphism ¢ from JF onto
%, such that

W(f(0) =T, where f(1) =Y %z" and 7= %Qk. (3.3)

k=0 k>0

This isomorphism allows us to conclude: A shift-invariant operator T is invertible
if and only if T'ey # 0. Since for every Q € %5 we have Qe¢y = 0, we deduce that
any delta operator is not invertible. Also, we can write T = ¢(D), where T € .%;
and ¢(t) is a formal power series, to indicate that the operator 7' corresponds to the
series ¢(t) under the isomorphism defined by (3.3).

Remark 3.6 Inrelation (3.1), we choose 7' = E* and expand E* in terms of Q. Due
to the identity (E* pr)(0) = py(x) and the relation (3.2), one obtains

oD — Z pk(‘x) ¢k(D).

k!
k=0

Substituting D by u, the series terms lead us to the following result [9, Corollary 3].

Theorem 3.7 Let Q be a delta operator with p = (pn)a>0 its sequence of basic
polynomials. Let ¢(D) = Q and ¢(t) be the inverse formal power series of ¢(u).
Then,

oo _ N P

n!
n>0

, 3.4)

where @(t) has the form cit + cat> +--- (¢; # 0).

Another characterization of delta operators was included in [9] without proof. For
this reason, we prove the following statement.

Theorem 3.8 Q € %, is a delta operator if and only if Q = DP for some shift-
invariant operator P, where the inverse operator P~ exists.
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Proof 1f in (3.3) we substitute 7' by a delta operator Q, then we getagp = Q(ep) =0
and a; = Q(e;) = ¢ # 0. Consequently, we can write

0=Y" %Dk. (3.5)

k>1

a
Denoting Z k—]:Dk’l by P, we have P € %, and P(eg) = a; # 0; thus, P is in-
k>1 "
vertible; see the conclusion that emerges from (3.3). So, Q can be written as D P.
Reciprocally, for every P € %, such that P is invertible, D P is a shift-invariant
operator, E(DP) = (DP)E“, and

(DP)(e1) = P(D(e1)) = Peg) =c #0

thus DP € %;. O

Now we are ready to analyze some binomial operators investigating their statistical
convergence to the identity operator.

4 Classes of Binomial Operators

We consider a delta operator Q and its sequence of basic polynomials p = (p,),>0,
under the assumption that p, (1) # O for every n € N. Also, according to Theorem
3.7, we shall keep the same meaning of the functions ¢ and . For every n > 1, we
consider LnQ : C([0,1]) — C([0, 1]) defined as follows

n

1 k
LENHW =3 (Z)m(x)pn_k(l ~x0)f (;) . (@.1)

k=0

They are called by P. Sablonniere [10] Bernstein—Sheffer operators. As D.D. Stancu
and ML.R. Occorsio motivated in [12], these operators can be named Popoviciu oper-
ators. T. Popoviciu [8] indicated the construction (4.1) in front of the sum appearing
the factor d, ! from the identities

o0
. "
(1+d1[+d2l2+"')x=€ly(r) = E pn(X);a
n=0 :

see (3.4). If we choose x = 1, it becomes obvious that d, = p, (1)/n!.

In the particular case Q = D, L? becomes genuine Bernstein operator of degree
n. An integral generalization of L¢ in Kantorovich sense was introduced and studied
in [1].
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The operators L2, n € N, are linear and reproduce the constants. Indeed, choosing
in (2.3) y := 1 — x, we obtain LZ¢, = ¢y. The positivity of these operators is given
by the sign of the coefficients of the series ¢(t) = ¢ + c2t + -+ (¢ # 0). More
precisely, in [8, 10], the authors established the following.

Lemma 4.1 L9 is a positive operator on C([0, 1]) for every n > 1 if and only if
¢y >0andc, > 0foralln > 2.

Moreover, if L,? satisfies the above conditions, then one has

LnQel =e¢;, n €N, and LnQeg =ey+a,(eg —ey), n > 2, “4.2)
1 rp—2(1) .

wherea, = - |14+ ®n —1) o ) the sequence (r,(x)),>0 being generated by
n Pn

n

P exprp0) = 3 )

n>0

Theorem 4.2 Let the operators LY, n € N, be defined by (4.1) such that the hypoth-
esis of Lemma 4.1 takes place.
n—2 ( 1 )

If st — lim =0, then
n—co py(1)
st — lim L2 f — fl =0, f € C(l0, 1)). (4.3)
n—0oQ

Proof We apply Theorem 2.1. Based on algebraic operations with statistically con-
vergent sequences of real numbers, our hypothesis guarantees the identity (4.3). For
a profound documentation of operations with such sequences [2, Theorem 3.1] can
be consulted. (]

Further, choosing particular delta operators Q, we reobtain some classical linear
positive operator of discrete type.

Example 4.3 1If Q = A, with its basic sequence @ and assuming that the param-
eter a depends on n, a := t,, one obtains the Cheney—Sharma operators [3]. The
corresponding operators Q, , n € N, are defined by the equation

(Qu )(x):=(1 + nt,)' ™" Z(Z)x(x + k) (1 =0 = x + (0 = b, 1"
k=0

Clearly, Q,eq = ey. To compute Q,¢;, j € {1, 2}, we follow the same path as in
[3, Section 3]. We can deduce: If the sequence (nt,),> is statistically convergent to
zero, then (4.3) takes place.
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1 o . .
Example 4.4 1f Q = —V,, a # 0, with its basic polynomials
«
pn(x) = (x + (n — D)™,
L2 becomes Stancu operator [11] denoted by P,
- k
P["] X w, (x; o -,
HE) = § wk (3 @) f (n)

n x[k,—u](l _ x)[n—k,—a]
Wy k(x5 @) = k ,

1 [n,—a]

a being a parameter which may depend on a natural number n. One has

1 1-—
Plle;=e;, j €10, 1}, and (Pe;)(x) = —<u +x(x + 04)) ,
14+« n

in accordance with [11, Lemma 4.1].
If0 < a:=a(n) and st — lim a(n) = 0, then (4.3) takes place.
Indeed, it is enough to prove (2.1) for j = 2. We get

1
14+«

(L)<t
I+a\dy %) =g, T

x(1—x)
n

— ax2 + xa

[(PI"ey) (x) — %7

IA

and the conclusion follows.

At this moment, we take a break in order to illustrate some further properties of
the binomial sequences. Keeping the notations Q € %5, p = (pn)us0, Q = &(D),
qb_l = ¢, we assume that the conditions of Lemma 4.1 are fulfilled.

In [7], A. Lupag proved new inequalities between the terms of the binomial se-
quences p. For any x > 0 and n > 2, one has

O<C pnfl(x) < (Q/ zpn 2)( )< pn( )
| x2 (n N (4.4)
— < pa(Q) < 1, where p,(Q) i=1 — ———(0" " p,2)(x).

Pn(n)

In the above, Q' represents Pincherle derivative of Q. The concept is detailed
further.

Knowing that the operator X : [T — I, (Xp)(x) = xp(x) is called multiplication
operator, we recall that the Pincherle derivative of an operator U € .Z is defined by
the formula

U=UX-XU.
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For example, we get I’ =0, D' = I, (D*) = kD", k > 1.

Example 4.5 Following Lupas, we can define the operators ZHQ :C([0, 1)) —
C([0,1D,n e N,

-~ 1 " k
2N = kX:(; (Z)pk(nmpnk(n —nx) f (;) .

It is proved that
L2 =e;. i €{0.1}, and L2e; = es + (e — €2)pu(Q),
see (4.4). Consequently, if

st — lim m(Q/_zpnfz)(x) =1,
n—oo  p,(n)

then the operators L2

n?

n € N, satisfy identity (4.3).

Concluding remarks. The paper reintroduces some linear positive operators of dis-
crete type by using umbral calculus. Relative to these operators have been studied
approximation properties in Banach space (C[0, 1], || - ||). The approach was based
on Bohman—Korovkin theorem via statistical convergence. The usefulness of this
type of convergence can be summarized as follows: The statistical convergence of
a sequence is that the majority, in a certain sense, of its elements converges and
we are not interested in what happens to the remaining elements. The advantage of
replacing the uniform convergence by statistical convergence consists in the fact that
the second convergence is efficient in summing divergent sequences which may have
unbounded subsequences. In short, it is more lax.
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