A. Pop, C. Vamoş, Orbital period modulation of the eclipsing binary system ER Vulpeculae: Real or not?

Uncategorized

Abstract

The reanalysis of the timing data of the binary system ER Vulpeculae revealed the superposition of a relatively slow increasing linear trend in the orbital period, having a relative period change rate of 2:73 108 yr1, and a low amplitude (3.5 min) periodic modulation with a period of about 17.78 yr. This periodicity is significantly shorter than that previously published, i.e., 30.6 yr. We propose a methodology relying on Monte Carlo simulations which is intended to evaluate the detectability of the inferred signal. Both frequentist and Bayesian approaches have been considered. The actual amplitude of the orbital period modulation might be lower than that obtained via nonlinear least-squares modelling of the timing data, namely about 2.0 min. Consequently, the amplitude of the underlying mechanism will be lower too. In the case of ER Vul, within the hypothesis of a third companion in the system, it could be a low mass star of about 113.8 MJupiter, but also a brown dwarf of about 64.7 MJupiter. Further theoretical and observational studies are needed in order to discriminate between this mechanism and the cyclic magnetic activity occurring in both component stars, as possible causes of the observed period variation.

Authors

C. Vamoș
-Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

A. Pop

Keywords

Methods:data analysis Methods:statistical Binaries:Eclipsing Stars:individual:ER Vul

Cite this paper as:

A. Pop, C. Vamoş, Orbital period modulation of the eclipsing binary system ER Vulpeculae: Real or not?New Astronomy 23-24, 27-35 (2013)

References

PDF

Not available yet.

About this paper

Journal
Publisher Name

Elsevier

DOI
Print ISSN

1384-1076

Online ISSN

MR

?

ZBL

?

References

Paper in html format

References

[1] Applegate, J.H., 1992. ApJ 385, 621.

[2] Appourchaux, T., 2011. arXiv:1103.5352v2 [astro-ph.IM].

[3] Axelsson, S., 1999. The base-rate fallacy and its implications for the difficulty of intrusion detection. In: Proceedings of the 6th ACM Conference on Computer and Communications Security (CCS ’99). Kent Ridge Digital Labs, Singapore, pp. 1–7.

[4] Bilir, S., Ak, T., Soydugan, E., Soydugan, F., Yaz, E., Filiz Ak, N., Eker, Z., Demircan, O., Helavci, M., 2008. AN 329, 835.

[5] Borkovits, T., Elkhateeb, M.M., Csizmadia, Sz., Nuspl, J., Bíró, I.B., Hegedüs, T., Csorvási, R., 2005. A&A 441, 1087.

[6] Çakirli, Ö., Ibanoglu, C., Fraska, A., Catalano, S., 2003. A&A 400, 257.

[7] Deeming, T.J., 1975. Ap&SS 36, 137.

[8] Dryomova, G., Perevozkina, E., Svechnikov, M., 2005. A&A 437, 375.

[9] Duemmler, R., Doucet, C., Formanek, F., Ilyin, I., Tuominen, I., 2003. A&A 402, 745.

[10] Ekmekçi, F., Özeren, F.F., Ak, H., 2002. AN 323, 31.

[11] Fawcett, T., 2006.  Pattern Recogn. Lett. 27, 861.

[12] Gunn, A.G., Doyle, J.G., 1997. A&A 318, 60.

[13] Hall, D.S., 1976. The RS CVn binaries and binaries with similar properties. In: Fitch, W. (Ed.), Multiple Periodic Variable Stars. Reidel, Dordrecht, pp. 287–348.

[14] Hall, D.S., 1989. SSR 50, 219.

[15] Hall, D.S., 1990. Period changes and magnetic cycles. In:  Ibanoglu, C. (Ed.), Active Close Binaries. Kluwer Academic Publishers, Dordrecht, pp. 95-119.

[16] Harmanec, P., Bozic, H., Thanjavour, K., Robb, R.M., Ruzdjak, D., Sudar, D., 2004. A&A 415, 289.

[17]  Ibanoglu, C., Evren, S., Akan, M.C., Tunca, Z., Keskin, V., 1993. A&A 269, 310.

[18] Kalimeris, A., Rovithis-Livaniou, H., Rovithis, P., 1994. A&A 282, 775.

[19] Kjurchieva, D.P., Marchev, D.V., Zola, S., 2003. A&A 404, 611.

[20] Lanza, A.F., 2005. MNRAS 364, 238.

[21] Lanza, A.F., Rodonò, M., 1999. A&A 349, 887.

[22] Lanza, A.F., Rodonò, M., Rosner, R., 1998. MNRAS 296, 893.

[23] Liao, W.-P., Qian, S.-B., 2010. MNRAS 405, 1930.

[24] Liteanu, C., Rîca, I., 1985. Optimizarea proceselor analitice. Editura Academiei Republicii Socialiste România, Bucuresti.

[25] Mennella, V., 1990. A&A 234, 203.

[26] Milano, L., Mancuso, S., Vittone, A., D’Orsi, A., Marcozzi, S., 1986. Ap&SS 124, 83.

[27] Nanouris, N., Kalimeris, A., Antonopoulou, E., Rovithis-Livaniou, H., 2011. A&A 535, 1–11.

[28] Northcott, R.J., Bakos, G.A., 1967. AJ 72, 89.

[29] Oláh, K., Budding, E., Kim, H.-I., Etzel, P., 1994. A&A 291, 110.

[30] Percy, J.R., Hosick, J., Leigh, N.W.C., 2003. PASP 115, 59.

[31] Percy, J.R., Jakate, S.M., Matthews, J.M., 1981. AJ 86, 53.

[32] Percy, J.R., Ralli, J.A., Sen, L.V., 1993. PASP 105, 287.

[33] Pohl, E., Evren, S., Tümer, O., Sezer, C., 1982. IBVS, No. 2189.

[34] Pop, A., 1999. IBVS, No. 4801.

[35] Pop, A., 2005. On the orbital period modulation of the eclipsing binary system Y Leonis. In: Sterken, C. (Ed.), The Light-Time Effect in Astrophysics. ASP Conf. Ser., pp. 263–268, vol. 335.

[36] Pop, A., 2007. Romanian Astron. J. 17, 35. Pop, A., Barbosu, M., 2006. Romanian Astron. J. 16, 179–183.

[37] Pop, A., Vamos, C., 2007. Romanian Astron. J. 17, 101.

[38] Pop, A., Vamos, C., 2012. NewA 17, 667. Pop, A., Liteanu, V., Moldovan, D., 2003. Ap&SS 284, 1207.

[39] Pop, A., Turcu, V., Marcu, A., 2011. Ap&SS 333, 17.

[40] Pop, A., Vamos, C., Turcu, V., 2010. AJ 139, 425.

[41] Press, W.H., Rybicki, G.B., 1989. ApJ 338, 277.

[42] Qian, S.B., 2001. Possible magnetic activity cycles of four chromospherically active binaries: ER Vul, UV Psc, AR Lac and BH Vir. In: Brekke, P., Fleck, B., Gurman, J.B. (Eds.), Proc. IAU Symposium, 203, Recent Insights into the Physics of the Sun and Heliosphere: Highlights from SOHO and Other Space Missions, pp. 437– 440.

[43] Qian, S., Liu, Q., Yang, Y., 1998. Ap&SS 257, 1.

[44] Roberts, D.H., Lehár, J., Dreher, J.W., 1987. AJ 93, 968. Samolyk, G., 2012. JAAVSO 40, 975.

[45] Scargle, J.D., 1982. ApJ 263, 835.

[46] Shkolnik, E., Walker, G.A.H., Rucinski, S.M., Bohlender, D.A., Davidge, T.J., 2005. AJ 130, 799.

[47] Srivastava, R.K., Padalia, T.D., Srivastava, J.B., 1991. Ap&SS 182, 281.

[48] Sturrock, P.A., Scargle, J.D., 2009. ApJ 706, 393.

[49] Szebehely, V., Zare, K., 1977. A&A 58, 145.

[50] Welsh, W.F., 1997. Measuring variability in the presence of noise. In: Maoz, D., Sternberg, A., Leibowitz, E.M. (Eds.), Astronomical Time Series, Astrophysics and Space Science Library. Kluwer Academic Publishers, Dordrecht, pp. 171–174, vol. 218.

[51] Wilson, R.E., Raichur, H., 2011. MNRAS 415, 596.

[52] Yuan, J., Qian, S., 2007. ApJ 669, L93.

[53] Zeinali, F., Edalati, M.T., Mirtorabi, M.T., 1995. IBVS, No. 4190.

[54] Zwintz, K., Weiss, W.W., Kuschnig, R., Gruber, R., Frandsen, S., Gray, R., Jenkner, H., 2000. A&AS 145, 481.

[37] C. Vamoş, N. Suciu, H. Vereecken, Generalized random walk algorithm for the numerical modeling of complex diffusion processesJ. Comput. Phys., 186 (2) (2003), pp. 527-544
CrossRef  (DOI)

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Fill out this field
Fill out this field
Please enter a valid email address.

Menu