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POINT-TO-SET MAPPINGS. CONTINUITY

Mira-Cristiana ANISIU

INTRODUCTION

This paper contains some continuity properties for the point-to-set
mappings; there is not yet a general theory of continuous point-to-set
mappings, but there are different definitions, given by many authors for
specific purposes. The definitions are not generally equivalent and it is
important to know in what cases they mean the same thing.
The continuity for point-to-set mappings was defined by generalizing

some equivalent definitions of the continuity of functions; thus there
were obtained various definitions for the notions of semicontinuity. We
list here the definition for lower semicontinuity, upper semicontinuity and
upper semicompactness and the relations between them. One obtains
different definitions of continuity combining two types of semicontinuity.
Another way to define continuity for a point-to-set mapping is to

reduce the problem to the continuity of functions. This demands to
introduce an adequate topology on a family of subsets of the range; a
point-to-set mapping can be regarded as a function having values in that
family of subsets, any subset being now a point in the new topological
space.
The first chapter of the paper contains a background in topology;

there are listed some topological properties necessary in the following
sections. Chapter II includes the definition of the point-to-set map-
pings and their algebraic properties. Chapter III presents the notions
of semicontinuity and the relations between them. We give there a list
of examples. Chapter IV is dedicated to the study of the continuity of
the point-to-set mappings. It contains various ways to topologize some
families of subsets of the range to obtain suitable definitions for the con-
tinuity of the point-to-set mappings regarded as functions. At the end
of this chapter there are two examples showing the natural way in which
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point-to-set mappings arise in mathematical programming and optimal
control.
To make the difference between a function defined on the set X with

values in Y and a point-to-set mapping, we use for functions the notation
f : X → Y and for the point-to-set mappings F : X ( Y .
The paper refers only to the basic continuity properties for point-

to-set mappings and the relations between then. The study could be
extended to other properties of the point-to-set mappings.
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CHAPTER I

ELEMENTS OF TOPOLOGY

1 Topological Spaces. Definitions

Let X a set and P (X) = {A|A ⊂ X} the family of the subsets of X.

Definition 1.1 A topological structure (or a topology) on the set X is
a system T ⊂ P (X) which satisfies the following conditions

(T1) ∅ ∈ T and X ∈ T ;

(T2) any union of elements in T is an element in T ;

(T3) any finite intersection of elements in T is an element in T .

Definition 1.2 The pair (X, T ) formed of a set X and a topology T on
X is called a topological space. The elements of the set X are called
points of the topological space, and the elements of T are called open
sets.

Example 1.1 Let Rn = {(x1, ..., xn)
∣∣xi ∈ R, i = 1, n} and T the system

formed of ∅ and the subsets G of Rn that satisfy the following condition:
for any x ∈ Rn, there is I = (a1, b1)× ...× (an, bn) , with (ai, bi) open

intervals, i = 1, n and x ∈ I ⊂ G.
Then (Rn, T ) is a topological space and T is the usual (natural) topol-

ogy on Rn. From now on Rn will be considered with the usual topology,
unless there is another specification.

Example 1.2 For X 6= ∅, T = {∅, X} satisfies the conditions (T1) −
(T3), so T is a topology on X; it is called the indiscrete topology on X.

Example 1.3 For X 6= ∅, T = P (X) satisfies the conditions (T1) −
(T3); the topology is called discrete.

Example 1.4 For X 6= ∅, T = {A ⊂ X
∣∣{A finite} ∪ {∅} is a topology

named the topology of the finite complements.

Definition 1.3 In the topological space (X, T ) a neighbourhood of the
point x ∈ X is any subset V of X which includes an open set containing
x.

Example 1.5 a) X is a neighbourhood for all its points.
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b) In (Rn, T ) a set V ⊂ Rn is a neighbourhood of x iff there is an n -
dimensional open interval I such that x ∈ I ⊂ V .

The following theorems give a characterization of the open sets and
some important properties of the system V (x) of all the neighbourhoods
of x.

Theorem 1.1 A set M is open in the topological space (X, T ) iff it is
a neighbourhood of any x ∈M .

Theorem 1.2 For any point x ∈ X the system V (x) of all the neigh-
bourhoods of x has the following properties

(N1) ∀V ∈ V (x), x ∈ V

(N2) V ∈ V (x), V ⊂ U ⇒ U ∈ V (x)

(N3) ∀n ∈ N , ∀V1, ..., Vn ∈ V (x)⇒ ∩ni=1Vi ∈ V (x)

(N4) ∀V ∈ V (x),∃U ∈ V (x) such that ∀y ∈ U , V ∈ V (y).

Definition 1.4 A set of neighbourhoods V ′ (x) of the point x having the
property that for any V ∈ V (x) there is a V ′ ∈ V ′ (x) such that V ′ ⊂ V
is called a fundamental system of neighbourhoods of the point x.

Example 1.6 In (Rn, T ) the system of all the open n-dimensional inter-
vals which contain the point x is a fundamental system of neighbourhoods
of x.

Definition 1.5 A set F ⊂ X is called a closed set if its complement
{F is an open set.

One can easily prove

Theorem 1.3 The closed sets of a topological space (X, T ) have the
following properties

(C1) X and ∅ are closed sets

(C2) any intersection of closed sets is a closed set

(C3) any finite union of closed sets is a closed set.

Definition 1.6 Let M ⊂ X, X being endowed with the topology T . A
point x ∈ X is called an adherent point of the setM if for any V ∈ V (x),
M ∩ V 6= ∅.
The set of the adherent points of M is called the adherence (closure)

of the set M ; it is denoted by M .
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We have the following theorem

Theorem 1.4 A set M ⊂ X is closed iff M =M .

Definition 1.7 Let X ⊂ M , X being endowed with the topology T . A
point x ∈ X is called a cluster (accumulation) point of the set M if for
any V ∈ V (x) we have V ∩ (M \ {x}) 6= ∅.
The set of the accumulation points of the set M is denoted by M ′

and it is called the cluster (derived) set of M .

Remark 1.1 The following equality is true: M =M ∪M ′.

Theorem 1.5 A setM ⊂ X is closed iff it contains all its cluster points.

Definition 1.8 A point x ∈ M is called an interior point of the set M
if M is a neighbourhood of x.
The set of the interior points of the set M is denoted by Int M and

it is called the interior of the set M .

Theorem 1.6 A set M is open iff Int M =M .

Definition 1.9 A set M ⊂ X is called dense in X if M = X.

Example 1.7 The set of all rational numbers Q is dense in R endowed
with the usual topology.

2 Basis. Subbasis. The Axiom of Countability

In this section X = (X, T ) denotes a topological space, unless there is
another specification.

Definition 2.1 A family B ⊂ T is called a basis for the topology T if
any open set G ∈ T is a union of elements from B.

Remark 2.1 We consider that
⋃
i∈∅
Bi = ∅.

Theorem 2.1 Let X be a topological space, B a basis for the topology on
X and u (B) the family of unions of elements from B. Then T = u (B).

We have the following characterization of a basis.

Theorem 2.2 Let X be a set; B ⊂ P (X) is a basis for a topology on
X iff
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a) X =
⋃
B∈B

B

b) for any B1, B2 ∈ B, B1 ∩B2 is a union of elements from B.

Proof.
1. Let B be a basis. X being an open set, X =

⋃
B∈B

B. For B1,

B2 ∈ B ⊂ T , B1 ∩B2 ∈ T , so B1 ∩B2 is a union of elements from B.
2. Let B ⊂ P (X) having the properties a) and b). We show that

u (B) is a topology.
We have obviously ∅,X ∈ u (B).
If G1 and G2 are in u (B), G1 =

⋃
i∈I
Bi and G2 =

⋃
j∈J

Bj, hence

G1∩G2 =
⋃
i∈I

⋃
j∈J
(Bi ∩Bj); by the condition b) it following thatG1∩G2 ∈

u (B).
We have proved that u (B) is a topology, B being a basis for it. If

(X, T ) is a topological space, the theorem 1.1 shows that u (B) = T .
There is a connection between the basis for a topology and the fun-

damental system of neighbourhoods of the points x ∈ X.

Theorem 2.3 A family of open sets B ⊂ T forms a basis iff for any
x ∈ X the set B (x) = {B ∈ B|x ∈ B} is a fundamental system of
neighbourhoods of x.

Example 2.1 The family of the n-dimensional open intervals in Rn
forms a basis for the usual topology in Rn.

Definition 2.2 A family S ⊂ P (X) composed of some subsets of the
topological space X is called a subbasis for the topology T if the family
of all finite intersections of elements in S is a basis for T .

Remark 2.2 If S is a subbasis for a topology T , any open set G ∈ T
is a union of finite intersections of elements in S.

Definition 2.3 A topological space X satisfies the first countability ax-
iom if any point x ∈ X has a countable fundamental system of neigh-
bourhoods.

Example 2.2 a) R with the usual topology satisfies the first countabil-
ity axiom.

b) Let X = R ∪ {ω} where ω is not a real number. Let T be the family
of all the open sets in the usual topology on X and of all the sets D
which contain ω and have finite complements. Then T is a topology
on X and (X, T ) does not satisfy the first countability axiom.
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Remark 2.3 If X satisfies the first countability axiom, then any point
x ∈ X has a countable fundamental system of neighbourhoods, such that
Bj ⊂ Bi if j ≥ i, i, j ∈ N. Indeed, if {Vn|n ∈ N} is a countable
fundamental system of neighbourhoods, the system B1 = V1, B2 = V1 ∩
V2,... has the required property.

Definition 2.4 A topological space X satisfies the second countability
axiom if it has a countable basis. Then X is also called a space with a
countable basis.

Definition 2.5 A topological space X is called separable if there is a
countable subset of X which is dense in X.

The next theorems show the connection between these notions.

Theorem 2.4 Any space with a countable basis is separable.

Theorem 2.5 Any space with a countable basis satisfies the first count-
ability axiom.

We give now an example of separable space with no countable basis.

Example 2.3 Let X be an uncountable set and T the topology of the
finite complements. An infinite set D is dense in (X, T ) because it inter-
sects any non-void open set. The intersection of all the open sets which
contain a point x0 ∈ X is the set {x0}, because the complement of any
set {x} 6= {x0} is an open set containing x0. If X has a countable basis
B, the intersection of the sets in B that contain x0 will be

⋂
i∈I
Bi = {x0}.

The complement {{x0} =
⋃
i∈I
{Bi is a countable union of finite sets {Bi,

so it will be countable; this contradicts the fact that X is an uncountable
set.

Example 2.4 A space which satisfies the first countability axiom, but
does not satisfy the second one.
Let X be an uncountable set with the discrete topology. For any

x ∈ X, the set {x} forms a finite fundamental system of neighbourhoods
of x, but the space has not a countable basis. X is also not separable.

Definition 2.6 A covering of a set M is a family of sets A = { Ai| i ∈
I} such that M ⊂

⋃
i∈I
Ai. The covering is called open if any set Ai, i ∈ I

is open. If the set I is finite (countable), the covering A is called finite
( countable). A subcovering of A is a covering A′ such that A′ ⊂ A.
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Definition 2.7 A topological space X is called Lindelöf if any open cov-
ering has a countable subcovering.

Theorem 2.6 (Lindelöf) Any open covering of a subset M ⊂ X, X
being a topological space with a countable basis, has a countable subcov-
ering.

Proof. Let B be a countable basis of T and A an open covering of M .
For any A ∈ A ⊂ T we have A =

⋃
i∈I
Bi, where I is at most a countable

set and Bi ∈ B. It follows that M is covered by the subfamily B′ ⊂ B
of the sets Bi that appear in the union which describes the sets A ⊂ A.
For any B′ ⊂ B′ we consider a set A′ ∈ A such that B′ ⊂ A′. The family
of the sets A′ determines a subcovering A′⊂ A of the set M .

Remark 2.4 Th. 2.6 means that any space with a countable basis is a
Lindelöf space.

The next theorem shows a way to construct a basis for a topology
on a cartesian product of topological spaces.

Theorem 2.7 If (X1, T1) and (X2, T2) are two topological spaces, then
the family B = {A ⊂ X1 ×X2|A = G1 × G2, G1 ∈ T1, G2 ∈ T2} is a
basis for a topology T on the set X = X1 ×X2.

Definition 2.8 The topology T from Th. 2.7 on X = X1×X2 is called
the product topology. The spaces (X1, T1) and (X2, T2) are the coordi-
nate spaces of the product space X. The product topology is also denoted
by T = T 1 × T2. One can define is a similar way the product topology
for a finite number of topological spaces.

Remark 2.5 The system S of the sets S1,G1 = {x ∈ X1 ×X2|x1 ∈ G1}
and S2,G2 = {x ∈ X1 ×X2|x2 ∈ G2} where G1 ∈ T1 and G2 ∈ T2 forms
a subbasis for the product topology on X1 ×X2.

3 Separation Properties

Definition 3.1 A topological space X is called a T0-space if for any x,
y ∈ X, x 6= y, there is an open set G which contains one point but does
not contain the other one.

X is called a T1-space if for any x, y ∈ X, x 6= y, there are two open
sets G1 and G2, x ∈ G1, y 6= G1 and y ∈ G2, x 6= G2.

X is called a T2-space (a Hausdorff space) if for any x, y ∈ X, x 6= y,
there are two open sets G1 and G2 with x ∈ G1 and y ∈ G2, G1∩G2 = ∅.
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X is called a T3-space if for any closed set A and x /∈ A, there are
two open sets G1 and G2, x ∈ G1, A ⊂ G2 and G1 ∩G2 = ∅.
A topological space which is T1 and T3 is called a regular space.
X is called a T4-space if for any closed disjoint sets A, B there are

two open and disjoint sets G1 and G2, A ⊂ G1 and B ⊂ G2.
A topological space which is T1 and T4 is called a normal space.
X is called a T5-space if for any A, B ⊂ I with A∩B = ∅, A∩B = ∅

there are two open disjoint sets G1 and G2 with A ⊂ G1 and B ⊂ G2.
A topological space which is T1 and T5 is called completely normal.

Example 3.1 [31]

1) Topological spaces which are T0.

a) X = {a, b}, T = {∅, {a}, {a, b}}.
b) X = [−1, 1] with the topology generated by a subbasis consisting
of the sets [−1, b) for b > 0 and (a, 1] for a < 0 (the overlapping
interval topology).

2) Let X be a countable space with the topology of finite complements;
X is then a T1-space.

3) Topological spaces which are T2.

a) (R, T ) with the usual topology is a T2- space.
b) Let X = {(x, y) ∈ Q2| y ≥ 0} and an irrational number θ. The
irrational slope topology T on X is generated by ε- neighbourhoods
of the form Nε (x, y) = {(x, y)}∪Bε (x+ y/θ)∪Bε (x− y/θ), where
Bε (z) = {r ∈ Q| |r − z| < ε}. Each Nω (x, y) consists of the point
(x, y) and two intervals on the rational x-axis centered at the two
irrational points x±y/θ; the lines joining these point to (x, y) have
slope ±θ. The topological space X is T2 (so it is also T1 and T0),
but has not other separation properties.

4) Let X =
∞⋃
i=0

Li be the union of lines in the plane, where L0 =

{(x, 0)|x ∈ (0, 1)} and for i ≥ 1, Li = {(x, 1/i)|x ∈ [0, 1)}. If
i ≥ 0, each point of Li except for (0, 1/i) is an open set; the basis
neighbourhoods of (0, 1/i) are the subsets of Li with finite comple-
ments. Similarly, the sets Ui (x, 0) = {(x, 0)} ∪ {(x, 1/n)|n > i}
form a basis for the points in L0.

The space X with this topology is T3, but not T4.
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5) Let X be the set of the real numbers; for each irrational x we choose a
sequence (xi)i∈N of rationals converging to it in the usual topology.
The rational sequence topology T is then defined by declaring each
rational open, and selecting the sets Un (x) = {xi}∞i=n ∪ {x} as a
fundamental system of neighbourhoods for the irrational point x.

The topological space X is then regular, but not normal.

6) Let X = {x ∈ Z+|x ≥ 2} together with the topology generated by the
sets of the form Un = {x ∈ X|x divides n} for n ≥ 2. The space
X with the divisor topology is T4. It is also T0, but has not other
separation properties.

7) Let X be the closed unit square [0, 1] × [0, 1]; for the points p =
(s, t) which are not on the diagonal 4 = {(x, x)|x ∈ [0, 1]}
a fundamental system of neighbourhoods is formed by the inter-
section of X − 4 with an open vertical line segment centered
at p, Nε (s, t) = {(s, t) ∈ X −4| |t− y| < ε}. For the points
(x, x) ∈ 4 the neighbourhoods are the intersection of X with
the open horizontal stripes less a finite number of vertical lines:
Mε (s, s) = {(x, y) ∈ X| |y − s| < ε, x 6= x0, x1, ..., xn}. This topo-
logical space, named the Alexandroff square, is normal, but not T5.

8) The indiscrete topology is T5, but not completely normal.

9) X = R with T determined by the basis B = {(a, b]| a < b} (the upper
limit topology) is completely normal.

We give now some results that we shall use in the following sections.

Theorem 3.1 A topological space X is a T1-space iff any one-point set
is closed.

Theorem 3.2 Any neighbourhood of a cluster point of the infinite set
M in a T1-space contains infinitely many points of the set.

Theorem 3.3 In a T2-space any convergent sequence (xn)n∈N has a
unique limit.

Definition 3.2 The sequence (xn)n∈N is convergent to the point x if any
neighbourhood V ∈ V (x) contains all the terms of the sequence, except
for a finite number of them.
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4 Relativization

In many cases it is necessary to topologize subsets of a topological space,
the topology being related to the initial topology. Let (X, T ) be a topo-
logical space and M ⊂ X a subset. In the most natural way, the open
sets in M will be intersections with M of the open sets in X.

Theorem 4.1 The system TM = {G ∩M |G ∈ T } is a topology on M .

We can give now

Definition 4.1 The topology TM = {G ∩M |G ∈ T } is called the rela-
tive topology of M , M being a subset of X.

Remark 4.1 An open set in the relative topology is not necessarily open
in the total space. So, if we consider in R with the usual topology the set
M = [−1, 1], the set (0, 1] =M ∩ (0, 2) is open in M, but not in R.

However, we have the following result

Theorem 4.2 Any set G ∈ TM is open in X iff M is open in X.

The next theorems establish relations between the closed sets of X
and M .

Theorem 4.3 A set F ⊂ M is closed in M iff F = H ∩M, H being a
closed set in X.

Theorem 4.4 Any closed set in M is closed in X iff M is closed in X.

The neighbourhoods in (M, TM) are related to those in (X, T ) by

Theorem 4.5 A set V ⊂ M is a neighbourhood of x in the space
(M, TM) iff V = U ∩M, where U is a neighbourhood of x in (X, T ).

We obtain from Th. 4.5.

Theorem 4.6 Any neighbourhood of x in (M, TM) is a neighbourhood
of x in (X, T ) iff M is a neighbourhood of x in (X, T ).

The next theorems refer to adherence.

Theorem 4.7 A point x ∈ M is an adherent point of the set A ⊂ M
in (M, TM) iff it is an adherent point for A in (X, T ).

Theorem 4.8 The adherence of a set A in (M, TM) is the intersection
of M with the adherence of A in (X, T ), that is AM = A ∩M .
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5 Nets

Definition 5.1 Let D 6= ∅ a set and ≥ a binary relation having the
properties

1) a ≥ b and b ≥ c⇒ a ≥ c (transitivity)

2) a ≥ a (reflexivity)

3) ∀a, b ∈ D, there exists c ∈ D such that c ≥ a and c ≥ b.

The pair (D, ≥) is a directed set.

Example 5.1 a) (R,≥) and (N,≥) with the natural order are directed
sets.

b) (V (x) ,⊂) is a directed set, where V (x) is the family of all neighbour-
hoods of the point x and A ⊂ B means that B includes A.

c) (Pf ,⊃) is also a directed set where Pf is the family of all finite subsets
of a non-void set M and A ⊃ B means that A includes B.

Definition 5.2 A net in X is a function s : (D,≥)→ X, where (D,≥)
is a directed set. We write s (d) = sd.

Definition 5.3 A net s : (D, ≥) → X is in the set A if sd ∈ A,
∀d ∈ D. The set is eventually in A if there is an element d0 ∈ D such
that for each d ≥ d0, sd ∈ A; the net is frequently in A if for each
d0 ∈ D, there is d ≥ d0 such that sd ∈ A.

If s is frequently in A, the set E = {d ∈ D| sd ∈ A} has the property
that for each d ∈ D, there is d′ ∈ E such that d′ ≥ d. Such subsets of D
are called cofinal. A cofinal subset of D is also directed by ≥, because
for a, b ∈ E there is c ∈ D such that c ≥ a, c ≥ b; but for c ∈ D there is
d ∈ E, d ≥ c, so d ≥ a and d ≥ b.
We have the following obvious property.

Theorem 5.1 A net s is frequently in A iff a cofinal subset of D maps
in A; this happens iff the net is not eventually in the complement of A.

Definition 5.4 A net s in a topological space (X, T ) converges to x in
the topology of X if it is eventually in any neighbourhood of x.

Example 5.2 a) If X is a discrete space, s converges to x iff s is even-
tually in {x}; that is that there is an element d0 ∈ D such that for
each d ≥ d0, s0 = x.
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b) If X is an indiscrete space, any net converges to any point of X. It
follows that a net may converge to more than one point.

Theorem 5.2 In a topological space X, a point x ∈ X is an accumu-
lation point for the subset A of X iff there is a net in A \ {x} which
converges to x.

Proof.
1. Let x be an accumulation point for the subset A; then for each

U ∈ V (x), there is sU ∈ A ∩ (U \ {x}). The family V (x) of the neigh-
bourhoods of x is directed by ⊂, so we obtain a net s which is in A\{x}.
We show that s is eventually in any neighbourhood of x. Let V ∈ V (x)
and V ′ ⊂ V ; it results that sV ′ ∈ V ′ ⊂ V , so that sV ′ ∈ V for each
V ′ ⊂ V .
2. If there is a net in A\{x} which converges to x, then it has values

in any neighbourhood of x, so A \ {x} intersects any neighbourhood of
x.
The next theorems have similar proofs.

Theorem 5.3 A point x ∈ X is in A iff there is a net in A which
converges to x.

Theorem 5.4 A subset A ⊂ X is closed iff there is not a net in A which
converges to a point of X \ A.

The following theorem gives a characterization of Hausdorff spaces.

Theorem 5.5 A topological space is Hausdorff iff any net converges to
at most one point.

Proof.
1. Let X be a Hausdorff space and x 6= y. Then there are U ∈ V (x)

and V ∈ V (y), U ∩ V = ∅. But a net cannot be eventually in both sets,
and it follows that a net in X cannot converge both to x and y.
2. We assume that X is not a Hausdorff space; let x 6= y be two

points such that any neighbourhood of x intersects any neighbourhood
of y. Let (V (x) ,⊂) and (V (y) ,⊂) be directed sets; we define an order
on the cartesian product V (x) × V (y) by setting (U, V ) ≥ (U ′, V ′) if
U ⊂ U ′ and V ⊂ V ′. The cartesian product is obvious directed by ≥.
For any (U, V ) ∈ V (x)×V (y) we have U ∩V 6= ∅; let s(U,V ) ∈ U ∩V .

If (U ′, V ′) ≥ (U, V ), then s(U ′,V ′) ∈ U ′ ∩ V ′ ⊂ U ∩ V and it follows that
the net

(
s(U,V )

)
(U,V )∈V(x)×V(y) converges to both x and y. It remains that

if any net converges to at most one point, the space is Hausdorff.
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Definition 5.5 Let s : (D,≥) → X a net and s′ : (D′,≥′) → D a net
in D that satisfies the condition

(1) ∀a ∈ D, ∃ a′ ∈ D′ such that [b′ ∈ D′, b′ ≥′ a′ ⇒ s′ (b′) ≥ a].

The net s ◦ s′ : (D′,≥′)→ X is called a subnet of s.

Remark 5.1 The way in which we defined the subnet s ◦ s′ implies that
if s is eventually in a set A, the subnet s ◦ s′ is also eventually in A.

Example 5.3 a) Let E ⊂ D a cofinal subset, directed by the induced
relation and s : (D,≥) → X a net. If s′ : (E,≥) → D is the
identical function on E, s ◦ s′ will be subnet of s.

b) Another way of obtaining subnets is the following. Let (D′,≥′) be
a directed set and s′ : (D′ ≥′) → (D,≥) an isotone function
(s′ (a) ≥ s′ (b) if a ≥′ b) such that Im s′ is a cofinal subset in D.
Then s ◦ s′ will be a subnet of s. This way of constructing subnets
is used in Lemma 5.1.

Definition 5.6 A point x ∈ X is a cluster point of the net s if s is
frequently in any neighbourhood of x.

Example 5.4 a) A net with no cluster point. The sequence (n)n∈N
considered as a net has no cluster point in the usual topology of R.

b) A net with infinitely many cluster points. For the sequence of all
rational numbers considered as a net any real number is a cluster
point.

Remark 5.2 If a net converges to a point, this is obviously a
cluster point. But the converse is not true. For the sequence
−1, 1,−1,−2,−1, 3, ... the point −1 is the unique cluster point, but the
sequence fails to converge to −1.

Theorem 5.6 A point x is a cluster point of the net s iff s has a subnet
which converges to x.

In the proof we need the following

Lemma 5.1 Let s be a net, A a family of subsets of X directed by ⊂
such as s is frequently in any member of A. Then there is a subnet of s
which is eventually in any member of A.
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Proof. Let s : (D,≥) → X the net which is frequently in any member
of A and D′ = {(d,A)| d ∈ D, A ∈ A, sd ∈ A}. Then D′ is directed by
the relation (d,A) ≥′ (e, B) if d ≥ e and A ⊂ B; indeed, for (d,A) and
(e, B) there is a C ∈ A, C ⊂ A and C ⊂ B, and c ∈ D, c ≥ d, c ≥ e
with sc ∈ C. Then (c, C) ∈ D′ and (c, C) ≥′ (d,A) and (c, C) ≥′ (e, B).
We define s′ : (D′,≥′) → D by s′ (d,A) = d. The function s′ is

obviously isotone and Im s′ is a cofinal set in D, because s is frequently
in any member of A. It follows that s ◦ s′ is a subnet of s. The subnet
s ◦ s′ is eventually in any member of A.
We give now the proof of Th. 5.6

Proof.
1. Let x be a cluster point for s and A = V (x). In this case Lemma

5.1 applies and we obtain a subnet of s which is eventually in any member
of A, that is it converges to x.
2. If x is not a cluster point for s, there is a neighbourhood V of x

such that s is not frequently in V ; it follows that s is eventually in {V .
Then any subnet of s is (by Remark 5.1) eventually in {V , and cannot
converge to x. It follows that if there is a subnet of s which converges
to x, then x is a cluster point for s.
The next theorem gives a characterization of cluster points by means

of closure.

Theorem 5.7 Let s be a net; for any d ∈ D we consider the set Ad =
{se| e ≥ d}. Then x is a cluster point for s iff x ∈ Ad for any d ∈ D.

The connection between subsequences and subnets is given in

Theorem 5.8 Any subsequence of a sequence is a subnet of the sequence
considered as a net. It is not true that any subnet of a sequence is a
subsequence.

Proof. The first assertion is obvious. To prove the second we consider
the next example.
Let (N,≥) be the set of all natural numbers with the usual order and

s : N→ R defined by s (n) = n, n ∈ N. The net s∗ ◦ s : N→ R given by
s∗ ◦ s (n) = n−

[
n
4

]
is not a subsequence of s, but it is a subnet.

6 Continuous functions

Definition 6.1 Let X and Y be two sets. A function defined on X,
with values in Y is a subset f of the cartesian product X × Y , having
the property that for any x ∈ X, there is a y ∈ Y and only one such that
(x, y) ∈ f .
We denote a function by f : X → Y . Instead of (x, y) ∈ f , one

usually writes y = f (x).
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Definition 6.2 The inverse of the function f : X → Y is a subset f−1

of the cartesian product Y ×X, given by f−1 = {(y, x) ∈ Y ×X| (x, y) ∈
f}.

Remark 6.1 Usually f−1 is not a function, f−1 (y) being not formed by
a unique point.

Definition 6.3 If A ⊂ X, the set f (A) = {f (x)|x ∈ A} is called the
image through f of the set A. If B ⊂ Y , the set f−1 (B) = {x| f (x) ∈
B} is called the counter image through f of the set B.

Definition 6.4 The function f is surjective, if f (X) = Y and is one-
to-one if

f (x) = f (x′)⇒ x = x′,

that is if card f−1{y} ≤ 1, ∀y ∈ Y .
The function f is bijective if it is both surjective and one-to-one. If

f is bijective, f−1 : Y → X is also a function.

Definition 6.5 Let f : X → Y and g : Y → Z be two functions. The
function g ◦ f : X → Z given by g ◦ f (x) = g (f (x)) is called a function
of a function ( composed function).

Theorem 6.1 Let f : X → Y and g : Y → Z functions, A, B, Ai,
i ∈ I subsets of X and M , N , Mj, j ∈ J subsets of Y . The following
properties are true

(1) A ⊂ B ⇒ f (A) ⊂ f (B)

(1′) M ⊂ N ⇒ f−1 (M) ⊂ f−1 (N)

(2) f

(⋃
i∈I

Ai

)
=
⋃
i∈I

f (Aj)

(2′) f−1

(⋃
j∈J

Mj

)
=
⋃
j∈J

f−1 (Mj)

(3) f

(⋂
i∈I
Ai

)
⊂
⋂
i∈I
f (Ai)

(3′) f−1

(⋂
j∈J

Mj

)
=
⋂
j∈J

f−1 (Mj)

(4) f (A \B) ⊃ f (A) \ f (B); it follows that f
(
{XA

)
⊃ f (X) \ f (A)
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(4′) f−1 (M \N) = f−1 (M) \ f−1 (M); it follows that f−1
(
{YM

)
=

{Xf−1 (M)

(5) f−1 (f (A)) ⊃ A

(5′) f (f−1 (M)) ⊂M

(6) f (f−1 (M) ∩ A) =M ∩ f (A); if M ⊂ f (X), f (f−1 (M)) =M

(7) (g ◦ f)−1 (C) = f−1(g−1 (C)), ∀C ⊂ Z.

Definition 6.6 Let A ⊂ X and f : X → Y . The restriction of f to the
set A is a function f |A : A → Y such that f |A (x) = f (x), ∀x ∈ A. f
is called then an extension of f |A.

Definition 6.7 Let (X, TX) and (Y, TY ) be two topological spaces. The
function f : X → Y is called continuous at x ∈ X if for any neighbour-
hood U of f (x) there is a neighbourhood V of x such that f (V ) ⊂ U .

Remark 6.2 The function f is continuous at x iff in the above condition
U and V are members of a fundamental system of neighbourhoods of
f (x) and x.

From now on we shall denote X = (X, TX) and Y = (Y, TY ). It is
easy to establish the following test of continuity.

Theorem 6.2 The function f : X → Y is continuous at x ∈ X iff for
any neighbourhood U of f (x), f−1 (U) is a neighbourhood of x.

Definition 6.8 The function f : X → Y is called continuous on X if
it is continuous at any point of X.

The next theorem and its corollary give a characterization of the
continuity on X.

Theorem 6.3 For the function f : X → Y , the following statements
are equivalent

(1) f is continuous on X

(2) for any A ⊂ X, f
(
A
)
⊂ f (A)

(3) if M is an open set in Y , then f−1 (M) is open in X

(4) if M is a closed set in Y , then f−1 (M) is closed in X.
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Corollary 6.1 Let f : X → Y be a function and S a subbasis of the
topology on Y ; f is continuous on X iff for any S ∈ S, f−1 (S) is open
in X.

The next theorem is related to the continuity of the composed func-
tions and of some restrictions; its proof is simple using the test (4) of
Th. 6.3.

Theorem 6.4 Let X, Y and Z be topological spaces. Then the following
statements are true.

(1) If f : X → Y and g : Y → Z are continuous, g ◦ f is continuous.

(2) If f : X → Y is continuous and A ⊂ X is endowed with the relative
topology then f |A : A→ Y is continuous.

(3) If f : X → Y is continuous and f (X) is endowed with the relative
topology, then f1 : X → f (X), f1 (x) = f (x) is continuous on X.

Remark 6.3 The image of a closed (open) set through a continuous
function f is not necessary a closed (open) set.

7 Compact spaces

Definition 7.1 A topological space X is called a compact space if every
system of open sets of X which covers X contains a finite subsystem also
covering X.

Example 7.1 R with the usual topology is not compact, but any closed
interval [a, b] ⊂ R with the relative topology is compact.

It is well-known the following characterization of compactness.

Theorem 7.1 In a topological space X, the following statements are
equivalent

(1) X is a compact space

(2) Any system of closed subsets of X having the finite intersection prop-
erty (every finite subsystem has a non-void intersection) has a non-
void intersection.

Corollary 7.1 If in the compact space X we have F1 ⊃ F2 ⊃ ... ⊃ Fn ⊃
..., where Fi are closed and non-void sets, i ∈ N, then

∞⋂
i=1

Fi 6= ∅.
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Definition 7.2 A topological space is called sequential compact if every
sequence of points of the space contains a convergent subsequence.

Theorem 7.2 In a topological space which satisfies the second count-
ability axiom, the sequential compactness implies the compactness.

Theorem 7.3 In a topological space which verifies the first countability
axiom, the compactness implies the sequential compactness.

By Th. 2.5 we also obtain

Corollary 7.2 In a topological space which satisfies the second count-
ability axiom, the sequential compactness is equivalent to the compact-
ness.

Generally speaking, in a topological space the sequential compact-
ness and the compactness are distinct notions. The compactness can be
characterized in terms of nets.

Theorem 7.4 A topological space is compact iff any net has a cluster
point.

Using Th. 5.6 we obtain

Corollary 7.3 A topological space is compact iff any net has a conver-
gent subnet.

We have also the following result given by Alexander.

Theorem 7.5 Let X be a topological space and S a subbasis of its topol-
ogy. If every covering of X formed by member of the subbasis S contains
a finite subcovering, then the space is compact.

We can define a notion of compactness for subsets of a topological
space.

Definition 7.3 A subset M of the topological space (X, T ) is compact
if (M, TM), where TM denotes the relative topology, is compact.

It is easy to prove

Theorem 7.6 A subset M of the topological space is compact iff any
open covering of M with open subsets of (X, T ) contains a finite subcov-
ering.
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Theorem 7.7 IfM1 andM2 are compact sets, M1∪M2 is also compact.

Remark 7.1 It follows from Th. 7.7 that any finite union of compact
sets is compact.

The next theorems give relations between compactness, closure and
separation properties of X.

Theorem 7.8 Any closed subset of a compact space is compact.

Theorem 7.9 Any compact subset of a Hausdorff space is closed.

Remark 7.2 In a compact Hausdorff space, a subset is compact iff it is
closed.

Theorem 7.10 A compact Hausdorff space is T3 and T4.

The continuous functions defined on compact spaces have special
properties described below.

Theorem 7.11 If f : X → Y is a continuous function on the compact
space X, then f (X) is compact.

Remark 7.3 The compactness is an invariant of continuity.

Theorem 7.12 Let X be a compact space and Y a Hausdorff space. If
f : X → Y is continuous, then f is closed.

At the end of this section, we give a theorem due to Tychonoff, which
can be proved using Th. 7.11, Remark 2.5 and Th. 7.5.

Theorem 7.13 A topological product space is compact iff the spaces of
coordinates are compact.

Remark 7.4 The theorem of Tychonoff is true for any product space
(the product being not necessary finite).
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8 Metric spaces

Definition 8.1 For a given set X, we call a distance or a metric on X
a function d : X ×X → R having the properties

(1) d (x, y) = 0⇔ x = y

(2) d (x, y) = d (y, x) , ∀x, y ∈ X

(3) d (x, z) ≤ d (x, y) + d (y, z) , ∀x, y, z ∈ X (the triangular inequality).

Remark 8.1 From (1) - (3) it follows that d (x, y) ≥ 0, ∀x, y ∈ X.
The couple (X, d) is called a metric space.

Example 8.1 1) (C, d) where C denotes the set of all complex numbers
and d (z1, z2) = |z1 − z2| is a metric space.

2) (Rn, d) with d (x, y) =
√∑n

i=1 (xi − yi)
2 is a metric space; d is called

the euclidian metric.

3) C [a, b], the set of all continuous functions defined on [a, b] with real
values, with d (f, g) = maxx∈[a,b] |f (x)− g (x)| (the Tchebycheff
metric) is a metric space.

4) Let (X, d) be a metric space and 2X the family of the non-void

bounded closed subsets of X and D (A,B) = max
{
sup
x∈A

inf
y∈B

d (x, y) ,

sup
y∈B

inf
x∈A

d (x, y)

}
, ∀A, B ∈ 2X (the Pompeiu-Hausdorff metric).

Then
(
2X , D

)
is a metric space (see §1, Ch. IV).

Definition 8.2 Let (X, d) be a metric space. The number d (x, y) is
called the distance between x and y. The distance from the point x to
the set A ⊂ X, A 6= ∅ is the number d (x,A) = inf{d (x, a)| a ∈ A}. The
distance between the non-void sets A and B is the number d (A,B) =
inf{d (a, b)| a ∈ A, b ∈ B}.

Definition 8.3 The diameter of the non-void set A is d (A) =
sup{(d(x, y)|x, y ∈ A}. The set A is called a bounded set if d (A)
is finite.

Definition 8.4 An open (closed) ball of center x and radius r (x ∈ X,
r > 0) is the set B (x, r) = {y| d (x, y) < r} (respectively B (x, r) =
y| d (x, y) ≤ r}. A sphere of center x and radius r is the set S (x, r) =
{y| d (x, y) = r}.
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We will topologize now the metric space with a topology determined
by the metric d.

Definition 8.5 A set G ⊂ X is called open if G = ∅ or if for any
x ∈ G, there is a positive number r such that B (x, r) ⊂ G.

Theorem 8.1 The family T of the open sets defined above determines
on X a topological structure.

Remark 8.2 1) The family B of all the open balls of the metric space
(X, d) is the basis of a topology on X.

2) The system {B (x, r)| r > 0} is a fundamental system of neighbour-
hoods of x in the topology determined by d.

3) All metric spaces satisfy the first countability axiom, because
{B (x, q)| q ∈ Q, q > 0} is a fundamental countable system of
neighbourhoods for x.

4) For A ⊂ X, A 6= ∅, we have d (x,A) = 0 iff x ∈ A.

The distance function (the metric) has the following continuity prop-
erties.

Theorem 8.2 The function d : X ×X → R is continuous.

Theorem 8.3 If M ⊂ X is a fixed non-void set, the function d (·,M) :
X → R is continuous.

The continuity of the functions defined between metric spaces can be
characterized in the following way.

Theorem 8.4 (Heine) Let f : (X, d) → (X ′, d′) be a function; f is
called continuous at the point x ∈ X iff for any sequence (xn)n∈N which
converges to x, the sequence (f (xn))n∈N converges to f (x) ∈ Y .

The metric spaces have important separation properties, like the fol-
lowing ones.

Theorem 8.5 Any metric space is T1.

Theorem 8.6 Any metric space is T2.

Theorem 8.7 Any metric space is normal.

We have also
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Theorem 8.8 A metric space which is separable has a countable basis.

It follows by Th. 2.4.

Corollary 8.1 A metric space (X, d) is separable iff it has a countable
basis.

The compact metric spaces have all the properties of compact spaces,
but in this case the compactness can be characterized in a peculiar way.

Definition 8.6 In the metric space (X, d) an ε-net is a finite set Nε ⊂
X having the property that d (x,Nε) < ε, ∀x ∈ X.

It follows easily

Theorem 8.9 If the metric space (X, d) has an ε-net, then X is
bounded.

Definition 8.7 A metric space is totally bounded if for any ε > 0 the
space possesses an ε-net.

Remark 8.3 From Th. 8.9 it follows that any totally bounded space is
bounded.

The following theorems contain a characterization of totally bound-
edness.

Theorem 8.10 A metric space (X, d) is totally bounded iff for any ε >
0 there is a finite covering of the space with sets of diameter smaller than
ε.

Theorem 8.11 Any totally bounded metric space is separable.

We have by Th. 8.8.

Corollary 8.2 Any totally bounded metric space satisfies the second
countability axiom.

There is the next relation between totally boundedness and sequential
compactness.

Theorem 8.12 A sequential compact metric space is totally bounded.

Definition 8.8 The metric space (X, d) has the Bolzano - Weierstrass
property if any infinite set has an accumulation point.
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The next theorem gives some tests of compactness for metric spaces,
which are joined to those more general from Th. 7.1.

Theorem 8.13 In a metric space (X, d) the following conditions are
equivalent

(1) The space is compact.

(2) The space is sequential compact.

(3) The space has the Bolzano-Weierstrass property.

An important class of metric spaces in the class of complete spaces.

Definition 8.9 A sequence (xn)n∈N in a metric space (X, d) is called a
fundamental sequence (or Cauchy sequence) if for any ε > 0 there is a
natural number nε such that d (xm, xn) < ε, ∀m,n > nε.

Remark 8.4 A sequence is fundamental iff for any ε > 0 there is a
nε ∈ N such that d (xn, xnε) < ε, ∀n > nε.

We have the following

Theorem 8.14 Any convergent sequence in a metric space X is funda-
mental.

Remark 8.5 The converse of Th. 8.14 is not true. Indeed, if in (X, d)
we have a sequence converging to x0, in the space (X r {x0}, d′), d′
being the related metric, this sequence does not converge. But it is a
fundamental sequence.

We give now

Definition 8.10 A metric space in which any fundamental sequence is
convergent is called a complete space.

Example 8.2 C, Rn and C [a, b] with the metrics of Ex. 8.1 are com-
plete. The set of rational numbers with the related metric is a non-
complete space.

The totally boundedness and compactness of a metric space can be
characterized using the fundamental sequences and the completeness.

Theorem 8.15 A metric space is totally bounded iff any sequence has
a fundamental subsequence.
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Theorem 8.16 A metric space is compact iff it is complete and totally
bounded.

Corollary 8.3 A closed subset of a complete space is compact iff it is
totally bounded.

Definition 8.11 A function f : (X, d) → (Y, d′) is called uniformly
continuous on X if for any ε > 0 there is η > 0 such that for any
x,y ∈ X with d (x, y) < η, we have d′ (f (x) , f (y)) < ε .

Theorem 8.17 If (X, d) is a compact metric space and f : (X, d) →
(Y, d′) is continuous, then f is uniformly continuous.

9 Connectedness

Definition 9.1 A topological space is called connected if it cannot be
represented as a union of two closed, non-void, disjoint sets. A space
which is not connected is called disconnected. A subset M ⊂ X is called
a connected set if (M, TM) is connected topological space, TM being the
relative topology on M .

Definition 9.2 The sets A and B are called separated if J (A,B) =(
A ∩B

)
∪
(
A ∩B

)
= ∅.

The connectedness can be characterized in the following way.

Theorem 9.1 A set M ⊂ X is connected iff it cannot be represented as
a union of two non-void and separated sets.

The connected sets have also the following property.

Theorem 9.2 If a connected set M is included in the union of two
separated sets, then M is included in one of those sets.
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CHAPTER II
POINT-TO-SET MAPPINGS. GENERALITIES

1 Point-to-set mappings, semi-univocal mappings,
functions

The notion of function, which requires for any element of the domain an
element and only one of the range, is too restrictive and it excludes some
of the most frequent correspondences in mathematics. Thus, if we want
to establish a correspondence between a complex number and the n-root
of that number (n ≥ 2, n ∈ N), we observe that to one number there
correspond more than one number of C. Precisely the correspondence
n
√

: C→P (C), n
√
z = {t ∈ C| tn = z} associates to one element of C a

subset of C, not a single element. We call then n
√
· a point-to-set mapping.

Another reason which determines a study of the point-to-set mapping is
the asymmetry between functions and their inverses; one knows that the
inverse of a function is not a function, but an object of another nature
- and it will be called a point-to-set mapping. Of course, the function
will be a special case of point-to-set mappings, where the image of any
element of the domain is a set which contains one element and only one.
So, the point-to-set mappings are a natural generalization of functions.
The algebraic properties of functions are similar to those of point-to-set
mappings; they are the subject of this chapter.
Let X and Y be two sets, X 6= ∅.

Definition 1.1 A point-to-set mapping (multifunction) or, briefly, a
mapping defined on X with values in Y is a function F : X → P (Y ),
where P (Y ) = {A|A ⊂ Y } is the family or all the subsets of Y . It is
denoted by F : X ( Y. The set F (x) is called the image through F of
x.
The effective domain of F is D (F ) = {x ∈ X|F (x) 6= ∅}, and the

range of F is R (F ) =
⋃
x∈X

F (x).

Definition 1.2 The set Γ (F ) = {(x, y) ∈ X × Y | y ∈ F (x)} is called
the graph of the mapping F : X ( Y .

Definition 1.3 If the point-to-set mapping F : X ( Y satisfies the
condition card F (x) = 1 for any x ∈ X, the mapping is called a single-
valued mapping or a function. We will denote the mappings by capital
letters, and the functions by small ones.

Definition 1.4 A point-to-set mapping is called semiunivocal if F (x)∩
F (x′) = ∅ implies that F (x) = F (x′).
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It is obvious that a function is also a semi-univocal mapping.

Example 1.1 A semi-univocal mapping which is not single-valued.
Let F : Rn \ {0}( Rn, F (x) = {λx|λ > 0}.

Definition 1.5 A mapping F : X ( Y is called one-to-one if for any
x, x′ ∈ X, x 6= x′ we have F (x) ∩ F (x′) = ∅; F is surjective (onto) if
R(F ) = Y .

Any one-to-one mapping is a semi-univocal one.

Example 1.2 A semi-univocal mapping which is not injective.
Let F : X ( Y , F (x) = A, where A 6= ∅ is a fixed subset of Y .

Definition 1.6 The inferior inverse (or, briefly, the inverse) of the
point-to-set mapping F : X ( Y is the mapping denoted by F− : Y (
X and given by F− (y) = {x ∈ X| y ∈ F (x)}.
The effective domain of F− is R (F ).
For B ⊂ Y , B 6= ∅ we denote F− (B) = {x ∈ X|F (x) ∩ B 6= ∅}.

We admit that F− (∅) = ∅.

Example 1.3 Let F : [0, 1] ( [0, 1] given by F (x) = [0, x]. Then
F− (y) = [y, 1], ∀y ∈ [0, 1]. We have also F−

([
1
4
, 3
4

])
−
[
1
4
, 1
]
and

F−
([

0, 1
4

])
= [0, 1]. The graph of F is given in Fig.1.

Definition 1.7 The superior inverse of the mapping F : X ( Y is
F+ : P (Y ) → P (X) given by F+ (B) = {x ∈ D (F )|F (x) ⊂ B}. We
put conventionally F+ (∅) = ∅.
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Example 1.4 For F in example 1.3 we have F+
([
1
4
, 3
4

])
= ∅ and

F+
([

0, 1
4

])
=
[
0, 1

4

]
.

Remark 1.1 It is true that F+ (B) ⊂ F− (B), ∀B ⊂ Y .

Remark 1.2 For the function f : X → Y we have f− (B) = f+ (B) =
f−1 (B).

2 Properties of the point-to-set mappings related
to set operations

We will prove in this section some results for point-to-set mappings sim-
ilar to those of Th. 1.6, Ch. I.
In the following we will consider a point-to-set mapping F : X ( Y ,

some subsets of X denoted by A, B, Ai, i ∈ I and some subsets of Y
denoted by M , N , Mj, j ∈ J .

Theorem 2.1 (1) A ⊂ B ⇒ F (A) ⊂ F (B)
(1′) M ⊂ N ⇒ F− (M) ⊂ F− (N) and F+ (M) ⊂ F+ (N).

Proof. (1) Let y ∈ F (A): it means that there is an element x ∈ A such
that y ∈ F (x). Because of A ⊂ B, we have x ∈ B and y ∈ F (x), i.e.
y ∈ F (B).

(1′) Let x ∈ F− (M): then F (x) ∩ M 6= ∅. Because of M ⊂ N
we obtain F (x) ∩ N 6= ∅ and x ∈ F− (N). If x ∈ F+ (M), we have
x ∈ D (F ) and F (x) ⊂ M ; it follows that x ∈ D (F ) and F (x) ⊂ N ,
hence x ∈ F+ (N).

Theorem 2.2 (2) F

(⋃
i∈I
Ai

)
=
⋃
i∈I
F (Ai)

(2′) F−

(⋃
j∈J

Mj

)
=
⋃
j∈J

F− (Mj) and F+
(⋃
j∈J

Mj

)
⊃
⋃
j∈J

F+ (Mj) .

Proof. (2) y ∈ F
(⋃
i∈I
Ai

)
⇔ ∃x ∈

⋃
i∈I
Ai, y ∈ F (x)⇔ ∃i0 ∈ I,

∃x ∈ Ai0 , y ∈ F (x)⇔ ∃i0 ∈ I, y ∈ F (Ai0)⇔ y ∈
⋃
i∈I
F (Ai)

(2′) x ∈ F−
(⋃
j∈J

Mj

)
⇔ F (x) ∩

(⋃
j∈J

Mj

)
6= ∅ ⇔ ∃j0 ∈ J , F (x) ∩

Mj0 6= ∅ ⇔ ∃j0 ∈ J , x ∈ F− (Mj0)⇔ x ∈
⋃
j∈J

F− (Mj).

x ∈ F+ (Mj) ⇔ ∃j0 ∈ J , x ∈ F+ (Mj0) ⇔ ∃j0 ∈ J , x ∈ D (F ),

F (x) ⊂Mj0 ⇒ x ∈ D (F ), F (x) ⊂
⋃
j∈J

Mj ⇔ x ∈ F+
(⋃
j∈J

Mj

)
.
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Remark 2.1 The inclusion for F+ in (2’) is generally strict. Indeed,
if for F from example 1.3, we denote M1 =

[
0, 1

4

]
and M2 =

[
1
2
, 3
4

]
,

we obtain F+ (M1) =
[
0, 1

4

]
and F+ (M2) = ∅. We have F+ (M1) ∪

F+ (M2) =
[
0, 1

4

]
.

But M1 ∪M2 =
[
0, 3

4

]
and F+

([
0, 3

4

])
=
[
0, 3

4

]
⊃6=

[
0, 1

4

]
.

Theorem 2.3 (3) F

(⋂
i∈I
Ai

)
⊂
⋂
i∈I
F (Ai)

(3′) F−

(⋂
j∈J

Mj

)
⊂
⋂
j∈J

F− (Mj) and F+
(⋂
j∈J

Mj

)
=
⋂
j∈J

F+ (Mj).

Proof. (3) y ∈ F
(⋂
i∈I
Ai

)
⇔ ∃x ∈

⋂
i∈I
Ai, y ∈ F (x)⇔ ∀i ∈ I, ∃x ∈ Ai,

y ∈ F (x)⇒ ∀i ∈ I, y ∈ F (Ai)⇔ y ∈
⋂
i∈I
F (Aj).

(3′) x ∈ F−
(⋂
j∈J

Mj

)
⇔ F (x) ∩

(⋂
j∈J

Mj

)
6= ∅ ⇒ ∀j ∈ J , F (x) ∩

Mj 6= ∅ ⇔ ∀j ∈ J , x ∈ F− (Mj)⇔ x ∈
⋂
j∈J

F− (Mj).

x ∈ F+
(⋂
j∈J

Mj

)
⇔ x ∈ D (F ), F (x) ⊂

⋂
j∈J

Mj ⇔ x ∈ D (F ) and

∀j ∈ J , F (x) ⊂Mj ⇔ ∀j ∈ J , x ∈ F+ (Mj)⇔ x ∈
⋂
j∈J

F+ (Mj).

Remark 2.2 a) The inclusion in (3) is generally strict.
Let F : [0, 5] ( [0, 5] given by

F (x) =

{
[0, x] , x ∈ [0, 2] ∪ [3, 5]
[0, 1] , x ∈ (2, 3)

,

whose graph is given in Fig.2.
For A1 = [0,3) and A2 = (2,5] we have F (A1) = [0, 2] and

F (A2) = [0, 5], hence F (A1) ∩ F (A2) = [0, 2]. But A1 ∩ A2 = (2, 3)
and F ((2, 3)) = [0, 1] ⊂6= [0, 2].

b) The inclusion in (3′) related to F− is also strict.
For F given in a) and M1 =

[
1
2
, 3
2

]
, M2 = (1,2] we have F− (M1) =[

1
2
, 5
]
and F− (M2) = (1,2] ∪ [3, 5]; F− (M1) ∩ F− (M2) = (1,2] ∪ [3, 5].

But M1 ∩M2 = (1, 3
2
] and F−

(
(1, 3

2
]
)

= (1, 3
2
] ∪ [3, 5] ⊂6= F− (M1) ∩

F− (M2).

Theorem 2.4 (4) F (A \B) ⊃ F− (A) \ F (B)
(4′) F− (M \N) ⊃ F− (M) \ F− (N) and F− (M \N) ⊂ F+ (M) \

F+ (N).
We obtain from (4′) that F

(
{XA

)
⊃ F (X) \ F (A), F−

(
{YM

)
⊂

D (F ) \ F− (M) and F+
(
{YM

)
⊂ D (F ) \ F+ (M).
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Proof. (4) y ∈ F (A) \ F (B) ⇔ y ∈ F (A) and y /∈ F (B) ⇒ ∃x ∈ A,
y ∈ F (x), x /∈ B ⇔ ∃x ∈ A \B, y ∈ F (x)⇒ y ∈ F (A \B).

(4′) x ∈ F− (M) \ F− (N) ⇔ F (x) ∩ M 6= ∅ and F (x) ∩ N =
∅ ⇔ F (x) ∩M 6= ∅ and F (x) ⊂ {YN ⇔ F (x) ∩M 6= ∅ and F (x) =
F (x) ∩ {YN ⇒ F (x) ∩

(
M ∩ {YN

)
6= ∅ ⇔ F (x) ∩ (M \N) 6= ∅ ⇔

x ∈ F− (M \N).
x ∈ F+ (M \N) 6= ∅ ⇔ x ∈ D (F ), F (x) ⊂ M \ N ⇔ x ∈ D (F ),

F (x) ⊂M , F (x) ⊂ {YN ⇒ x ∈ F+ (M) \ F+ (N).

Remark 2.3 All the inclusions in Th. 2.4 are strict.
a) For F defined in Remark 2.2 a), A = (2, 5] and B = [0, 3) we

have F (A) = [0, 5], F (B) = [0, 2] and F (A) \ F (B) = (2, 5]. But
A \B = [3, 5] and F (A \B) = [0, 5] ⊃6= F (A) \ F (B).

b) For F defined in Example 1.3, M =
[
0, 1

4

]
and N =

[
1
4
, 3
4

]
we have

F− (M) = [0, 1] and F− (N) =
[
1
4
, 1
]
, hence F− (M) \ F− (N) = [0,1

4
).

But M \N = [0, 1
4
) and F− (M \N) = [0, 1] ⊃ 6= F− (M) \ F− (N).

For the same F , we have F+ (M) =
[
0, 1

4

]
and F+ (N) = ∅;

F+ (M \N) = [0, 1
4
) ⊂ 6= F+ (M) \ F+ (N).

Remark 2.4 If F is surjective, then F
(
{XA

)
⊃ {Y F (A); if it is bijec-

tive, F
(
{XA

)
= {Y F (A).

Theorem 2.5 (5) A ⊂ F− (F (A)) : A ∩D (F ) ⊂ F+ (F (A))
(5′) F (F− (M)) ⊃M ∩R (F ); F (F+ (M)) ⊂M .

Proof. (5) x ∈ A⇒ F (x) ∩ F (A) 6= ∅ ⇔ x ∈ F− (F (A))
x ∈ A ∩D (F )⇔ x ∈ D (F ), x ∈ A⇒ x ∈ D (F ), F (x) ⊂ F (A)⇔

x ∈ F+ (F (A))
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(5′) y ∈ M ∩ R (Y ) ⇔ ∃x ∈ X, y ∈ M ∩ F (x) ⇒ ∃x ∈ F− (M),
y ∈ F (x)⇔ y ∈ F (F− (M)).

y ∈ F (F+ (M))⇔ ∃x ∈ F+ (M), y ∈ F (x)⇔ ∃x ∈ D (F ), F (x) ⊂
M , y ∈ F (x)⇒ y ∈M .

Remark 2.5 All the inclusions in Th. 2.5 are generally strict.
a) For F defined in Example 1.3 and A =

[
1
4
, 3
4

]
we have F (A) =[

0, 3
4

]
; F− (F (A)) = [0, 1] ⊃6= A; F+ (F (A)) =

[
0, 3

4

]
⊃ 6= A ∩D (F ) =

A.
b) For the same F and M =

[
1
4
, 3
4

]
we have F− (M) =

[
1
4
, 1
]
and

F (F− (M)) = [0, 1], M ∩R (F ) =
[
1
4
, 3
4

]
.

Now for F defined in Remark 2.2 a) and M =
[
0, 5

2

]
, we obtain

F+ (M) = [0, 3) and F (F+ (M)) = [0, 2] ⊂6= M .

Theorem 2.6 (6) F (F− (M) ∩ A) ⊃ M ∩ F (A); F (F+ (M) ∩ A) ⊂
M ∩ F (A).

Proof. y ∈ M ∩ F (A) ⇔ ∃x ∈ A, y ∈ F (x), y ∈ M ⇒ ∃x ∈ A,
y ∈ F (x), F (x) ∩M 6= ∅ ⇔ ∃x ∈ A, x ∈ F− (M), y ∈ F (x) ⇔ ∃x ∈
F− (M) ∩ A, y ∈ F (x)⇔ y ∈ F (F− (M) ∩ A).

y ∈ F (F+ (M) ∩ A) ⇔ ∃x ∈ F+ (M) ∩ A, y ∈ F (x) ⇔ ∃x ∈
A ∩D (F ).

F (x) ⊂M , y ∈ F (x)⇒ y ∈M and y ∈ F (A)⇔ y ∈M ∩F (A).

Remark 2.6 The two inclusions in Th. 2.6 are strict.
For F defined in Example 1.3, M =

[
1
4
, 3
4

]
, A =

[
0, 3

4

]
we have

F (A) =
[
0, 3

4

]
, hence M ∩ F (A) =

[
1
4
, 3
4

]
.

But F− (M) =
[
1
4
, 1
]
and F− (M) ∩ A =

[
1
4
, 3
4

]
; we obtain

F (F− (M) ∩ A) =
[
0, 3

4

]
⊃ 6= M ∩ F (A).

For F defined in Remark 2.2 a), M =
[
0, 5

2

]
, A = [2, 4] we have

F (A) = [0, 4] and M ∩ F (A) =
[
0, 5

2

]
. We obtain similarly F+ (M) =

[0, 3) and F+ (M) ∩ A = [2, 3), hence F (F+ (M) ∩ A) = [0, 2] ⊂ 6= M ∩
F (A).

Remark 2.7 The statements (1)-(6) in Th. 1.6, Ch. I are consequences
of the theorems proved here, because of Remark 1.2.

3 Operations with point-to-set mappings, proper-
ties

The images through a point-to-set mapping being sets, we can define
operations with the point-to-set mappings according to the operations
which can be done with the images through the respective mappings.
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Definition 3.1 Let F1, F2 : X ( Y point-to-set mappings.
The union of the mappings F1 and F2 is a mapping denoted by F1 ∪

F2 : X ( Y given by (F1 ∪ F2) (x) = F1 (x) ∪ F2 (x).
The intersection of F1 and F2 is a mapping denoted by F1∩F2 : X (

Y given by (F1 ∩ F2) (x) = F1 (x) ∩ F2 (x).
The cartesian product of F1 and F2 is a mapping denoted by F1×F2 :

X ( Y × Y given by (F1 × F2) (x) = F1 (x)× F2 (x).
The composed of F : X ( Y and G : Y ( Z is a mapping denoted

by G ◦ F : X ( Z given by (G ◦ F ) (x) = G (F (x)).

Theorem 3.1 For F , F1, F2 : X ( Y , G : Y ( Z and A ⊂ X we
have

(1) (F1 ∪ F2) (A) = F1 (A) ∪ F2 (A)

(2) (F1 ∩ F2) (A) ⊂ F1 (A) ∩ F2 (A)

(3) (F1 × F2) (A) ⊂ F1 (A)× F2 (A)

(4) (G ◦ F ) (A) = G (F (A))

Proof.

(1) y ∈ (F1 ∪ F2) (A) ⇔ ∃x ∈ A, y ∈ (F1 ∪ F2) (x) ⇔ ∃x ∈ A, y ∈
F1 (x) ∪F2 (x)⇔ y ∈ F1 (A) ∪ F2 (A)

(2) y ∈ (F1 ∩ F2) (A)⇔ ∃x ∈ A, y ∈ (F1 ∩ F2) (x)⇔ ∃xA, y ∈ F1 (x) ∩
F2 (x)⇒ y ∈ F1 (A) ∩ F2 (A)

(3) (y1, y2) ∈ (F1 × F2) (A)⇔ ∃x ∈ A, (y1, y2) ∈ (F1 × F2) (x)⇔
⇔ ∃x ∈ A, y1 ∈ F1 (x), y2 ∈ F2 (x)⇒ y1 ∈ F1 (A), y2 ∈ F2 (A)⇔
⇔ (y1, y2) ∈ F1 (A)× F2 (A)

(4) (G ◦ F ) (A) =
⋃
x∈A

(G ◦ F ) (x) =
⋃
x∈A

G (F (x)) = G
⋃
x∈A

(F (x)) =

G (F (A)).

Remark 3.1 The inclusions (2) and (3) are generally strict.
Let F1, F2 : [0, 1] ( [0, 1] given by F1 (x) = [0, x] and F2 (x) =

[0, 1− x], ∀x ∈ [0, 1]. Then

(F1 ∩ F2) (x) =

{
x, x ∈

[
0, 1

2

]
1− x, x ∈ (1

2
, 1]
.

For A =
[
1
4
, 3
4

]
we have F1 (A) = F2 (A) =

[
0, 3

4

]
, so F1 (A)∩F2 (A) =[

0, 3
4

]
; on the other side, (F1 ∩ F2) (A) =

[
0, 1

2

]
⊂ 6= F1 (A) ∩ F2 (A). On

the same conditions,
(
3
4
, 3
4

)
∈ F1 (A)×F2 (A) but

(
3
4
, 3
4

)
/∈ (F1 × F2) (A),

so (F1 × F2) (A) ⊂6= F1 (A)× F2 (A).
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Remark 3.2 If we apply (4) of Th. 3.1 for functions, we obtain (7) of
Th. 6.1, Ch. I; so this theorem is entirely a consequences of the results
for point-to-set mappings applied in the special case of functions.

Definition 3.2 A mapping F : X ( Y is called constant if F (x) = C,
∀x ∈ X, where C is a fixed subset of Y .

A constant mapping F satisfies the condition (F ∩G) (A) = F (A)∩
G (A), ∀G : X ( Y a point-to-set mapping and A ⊂ X.

Definition 3.3 The point-to-set mapping idX : X ( X, idX (x) = {x}
is called the identical mapping of the set X.

The next two theorems show that the intersection and the cartesian
product of mappings preserve the properties of semi-univocal or one-to-
one mappings.

Theorem 3.2 If F1, F2 : X ( Y are semi-univocal, then F1 ∩ F2 and
F1 × F2 are also semi-univocal.

Proof.
(F1 ∩ F2) (x)∩ (F1 ∩ F2) (x′) 6= ∅ ⇒ F1 (x)∩F1 (x′) 6= ∅ and F2 (x)∩

F2 (x′) 6= ∅ ⇒ F1 (x) = F1 (x′) and F2 (x) = F2 (x′)⇒ F1 (x) ∩ F2 (x) =
F1 (x′) ∩ F2 (x′)⇒ (F1 ∩ F2) (x) = (F1 ∩ F2) (x′) .

(F1 × F2) (x) ∩ (F1 × F2) (x′) 6= ∅ ⇒ (F1 (x)× F2 (x))∩
(F1 (x′)× F2 (x′)) 6= ∅ ⇒ F1 (x)∩F1 (x′) 6= ∅ and F2 (x)∩F2 (x′) 6= ∅ ⇒
F1 (x) = F1 (x′) and F2 (x) = F2 (x′) ⇒ F1 (x) × F2 (x) = F1 (x′) ×
F2 (x′)⇒ (F1 × F2) (x) = (F1 × F2) (x′).

Theorem 3.3 If one of the mappings F1, F2 : X ( Y is one-to-one,
the mappings F1 ∩ F2 and F1 × F2 are also one-to-one.

Proof. Let F1 be one-to-one and x 6= x′ two points of X. F1 being one-
to-one, F1 (x) ∩ F1 (x′) = ∅, so F1 (x) ∩ F1 (x′) ∩ F2 (x) ∩ F2 (x′) = ∅, i.e.
(F1 ∩ F2) (x) ∩ (F1 ∩ F2) (x′) = ∅. It follows that F1 ∩ F2 is one-to-one.
Similarly, we obtain from F1 (x)∩F1 (x′) = ∅ that (F1 (x) ∩ F1 (x′))×

(F2 (x) ∩ F2 (x′)) = ∅, and then (F1 (x)× F2 (x)) ∩ (F1 (x′)× F2 (x′)) =
∅. It follows that (F1 × F2) (x) ∩ (F1 × F2) (x′) = ∅, and F1 × F2 is a
one-to-one mapping.
The two inverses of a mapping have the properties mentioned in the

following theorems, where F : X ( Y is a mapping having D (F ) = X.

Theorem 3.4 For M ⊂ Y we have
(5) {XF− (M) = F+

(
{YM

)
; {XF+ (M) = F−

(
{YM

)
.
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Proof.
x ∈ {XF− (M) ⇔ x ∈ X, F (x) ∩ M = ∅ ⇔ x ∈ D (F ) = X,

F (x) ⊂ {YM ⇔ x ∈ F+
(
{YM

)
x ∈ {XF+ (M) ⇔ x ∈ X, x /∈ F+ (M) ⇔ x ∈ X, ∃y ∈ F (x),

y /∈ M ⇔ x ∈ X, ∃y ∈ F (x), y ∈ {YM ⇔ x ∈ X, F (x) ∩ {YM 6= ∅ ⇔
x ∈ F−

(
{YM

)
.

Theorem 3.5 The sets M ⊂ Y for which F+ (M) = F− (M) are called
pure sets and form a complemented latticeM.

Proof.
If M ∈ M we have also {YM ∈ M because applying Th. 3.4 we

obtain F+
(
{YM

)
= {XF− (M) = {XF+ (M) = F−

(
{YM

)
.

For M1, M2 ∈ M, we have F− (M1 ∪M2) = F− (M1) ∪ F− (M2) =
F+ (M1)∪F+ (M2) ⊂ F+ (M1 ∪M2) (by Th. 2.2) and F+ (M1 ∪M2) ⊂
F− (M1 ∪M2), hence F− (M1 ∪M2) = F+ (M1 ∪M2). It follows that
M1 ∪M2 ∈M.
We have alsoM1∩M2 ∈M, because {Y (M1 ∩M2) = {YM1∪{YM2.

We have proved in Th. 2.5 that generally A ⊂ F− (F (A)). The next
theorem establishes the properties of the sets for which the relation takes
place with equality.

Theorem 3.6 The subsets A ⊂ X for which F− (F (A)) = A are called
stable and form a complemented lattice A.

Proof. We first prove that {XA ∈ A, if A ∈ A. We have obvi-
ously {XA ⊂ F−

(
F
(
{XA

))
. Let now x ∈ F−

(
F
(
{XA

))
, so F (x) ∩

F
(
{XA

)
6= ∅. It follows that there is x′ ∈ {XA with F (x) ∩ F (x′) 6= ∅.

It we had x ∈ A, then F (x′) ∩ F (A) 6= ∅ and x′ ∈ F− (F (A)) = A,
which is a contradiction. We obtain that x /∈ A, hence x ∈ {XA and the
inverse inclusion is also proved.
Let now A1, A2 ∈ A; F− (F (A1 ∪ A2)) = F− (F (A1) ∪ F (A2)) =

F− (F (A1))∪F− (F (A2)) = A1∪A2, so A1∪A2 ∈ A (we used Th. 2.2).
It follows easily that for A1, A2 ∈ A we have also A1 ∩ A2 ∈ A.

Theorem 3.7 The function f : P (X)→ P (X), f (A) = F+ (F (A)) is
a closure function, in the sense that the following conditions are fulfilled

(6) A ⊂ f (A)

(7) A ⊂ B ⇒ f (A) ⊂ f (B)

(8) f (f (A)) = f (A).
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Proof.
(6) follows from Th. 2.5, because X = D(F ).
(7) follows from Th. 2.1.
To prove (8), we apply (6) and (7), so A ⊂ f (A) ⇒ f (A) ⊂

f (f (A)). For the inverse inclusion, let x ∈ f (f (A)), but x /∈ f (A).
Because x /∈ f (A), there is y ∈ F (x), y /∈ F (A). From x ∈ f (f (A))
we obtain F (x) ⊂ F (f (A)) ; but y ∈ F (x) and y ∈ F (f (A)). There
is then t ∈ f (A) with y ∈ F (t), so F (t) ⊂ F (A) and y ∈ F (t), hence
y ∈ F (A), which is a contradiction. It remains that our assumption was
false and x ∈ f (A), hence f (f (A)) ⊂ f (A). From the two inclusions
we obtain f (f (A)) = f (A).
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CHAPTER III

SEMICONTINUITY OF THE POINT-TO-SET
MAPPINGS

If F : X(Y is a point-to-set mapping and X, Y have a topolog-
ical structure, it is natural to try to find some continuity notions for
F . Continuity ideas for point-to-set mappings appeared since 1926, in
the papers of W. A. Wilson [35], L. S. Hill [12] and W. Hurewicz [14],
for some special cases. In the years 1932-33, K. Kuratowski [16] and
G. Bouligand [5] gave more general definitions. There followed other
definitions given by many authors to be most adequate to the problems
they studied. A historical exposition of the development of the theory
of point-to-set mappings in the first half of our century was done by B.
Mc. Allister [19].
It is not yet established a unitary terminology for the notions of

continuity and semi-continuity. In recent times, some papers as [30]
study the relation between the various definitions given already and they
propose new names and new types of continuity. In the following we will
take into account the trials made in time by the mathematicians for
elaborating more adequate definitions and discovering the connections
with the earlier ones [1, 6, 28, 29, 32].
The definitions admitted here are those assumed by Berge [1] which

pretend very few conditions on the mapping F . For example, it is per-
mitted to exist points where the image through F is the void set. The
notion of upper semicompactness is that given by W. Sobieszek and P.
Kowalski [30].

1 Lower semicontinuity

Let X and Y be topological spaces and F : X(Y a point-to-set map-
ping.

Definition 1.1 The mapping F is called lower semicontinuous (l.s.c.)
at x0 ∈ X if for any open set U ⊂ Y with U ∩ F (x0) 6= ∅ there is a
neighbourhood V of x0 such that F (x) ∩ U 6= ∅ for any x ∈ V .

With the notations given in Ch. II, the condition in the definition of
l.s.c. at x0 is equivalent to the fact that for any open set U ⊂ Y with
x0 ∈ F− (U) there is a neighbourhood V of x0 such that V ⊂ F− (U).
If F (x0) = ∅, then F is l.s.c. at x0.
K. Kuratowski gave the next definition using sequences.

Definition 1.1’ The mapping F with D (F ) = X is lower semi-
continuous at x0 ∈ X if for any sequence (xn)n∈N convergent to the
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limit x0, and for any y ∈ F (x0) there is a sequence (yn)n∈N convergent
to y and satisfying the condition yn ∈ F (xn), ∀n ∈ N .
The two definitions are not generally equivalent. The next theorems

study the relation between these definitions. In Th. 1.1 - Th. 1.4 F is
supposed to satisfy the condition D (F ) = X.

Theorem 1.1 If Y satisfies the first countability axiom a mapping l.s.c.
at x0 in the sense of D.1.1 is also l.s.c in the sense of D.1.1’.

Proof. Let (xn)n∈N be convergent to x0 ∈ X and y ∈ F (x0). We will
obtain the sequence (yn)n∈N required in D.1.1’. By the first countability
axiom, there is a countable fundamental system of neighbourhoods of y,
with Uk+1 ⊂ Uk (Remark 2.3, Ch. I). We have obviously Uk∩F (x0) 6= ∅,
∀k ∈ N. Using D 1.1 we obtain for every Uk a Vk ∈ V (x0) such that
Uk ∩ F (x) 6= ∅, ∀x ∈ Vk.
Because xn → x0 (n→∞), there is {Nk}k∈N with Nk+1 > Nk such

that for any k we have xn ∈ Vk for n > Nk.
Let now k = 1. For n ∈ {1, 2, ..., N1} we choose arbitrarily yn ∈

F (xn), and for n ∈ {N1+1, N1+2, ..., N2} we choose yN1+i ∈ F (xN1+i)∩
U1,i, i ∈ {1, 2, ..., N2 − N1}. An analogous procedure applied for any k
leads us to the sequence (yn)n∈N with yn ∈ F (xn). We prove now that
yn → y (n→∞).
Let W be a neighbourhood of y; there is then k ∈ N such that

Uk ⊂ W . From the way of obtaining (yn)n∈N we have yn ∈ Uk ⊂ W,
∀n > Nk, and the convergence of (yn)n∈N is proved.

Theorem 1.2 If X satisfies the first countability axiom, then a mapping
l.s.c. at x0 in the sense of D.1.1’is also l.s.c. in the sense of D.1.1.

Proof. We suppose that F is l.s.c. at x0 in the sense of D.1.1’but not in
the sense of D.1.1. There is then an open set U ⊂ Y , U∩F (x0) 6= ∅ such
that for any neighbourhood V of x0 there is x ∈ V with F (x) ∩ U = ∅.
Let Vn a countable fundamental system of neighbourhoods of x0, with
Vn+1 ⊂ Vn, ∀n ∈ N . By the assumption we made, for any n ∈ N there is
xn ∈ Vn such that F (xn)∩U = ∅. We have of course xn → x0 (n→∞).
Let y ∈ F (x0) ∩ U . By D.1.1’there is yn ∈ F (xn), yn → y (n→∞),
which contradicts the fact that F (xn) ∩ U = ∅, ∀n ∈ N. It follows
that our assumption was false, and the l.s.c. at x0 in the sense of D.1.1’
implies the l.s.c. in the sense of D.1.1.

Corollary 1.1 If X and Y satisfy the first countability axiom, the two
definitions of l.s.c. at. x0 are equivalent.
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Remark 1.1 If F is a single-valued mapping, D.1.1 represents the con-
tinuity in the sense of Cauchy, and D.1.1’that in the sense of Heine.

Theorem 1.3 [32] A point-to-set mapping F is l.s.c. at x0 in the sense
of D.1.1 iff the following condition is satisfied:
(1) for any net x : (D,≥)→ X convergent to x0 and any y ∈ F (x0) and
U ∈ V (y), there is dU ∈ D such that for d ≥ dU , F (xd) ∩ U 6= ∅.

Proof. 1. Let F be l.s.c. at x0 in the sense of D.1.1 and x a net
convergent to x0. Let y ∈ F (x0) and U an open neighbourhood of y.
Because F is l.s.c. at x0, there is V ∈ V (x0) such that F (x) ∩ U 6= ∅,
∀x ∈ V . x being convergent to x0, there is dU ∈ D such that xd ∈ V ,
∀d ≥ dU . Therefore, we have F (xd) ∩ U 6= ∅, ∀d ≥ dU .
2. We suppose now that F is not l.s.c. at x0. It follows that there are

y ∈ F (x0) and U ∈ V (y) such that for any V ∈ V (x0) there is xV ∈ V
with F (xV ) ∩ U = ∅. We consider the net x : (V (x0) ,⊃) → X, where
we choose xV ∈ V with F (xV ) ∩ U = ∅; it is obvious that x converges
to x0. For the net x, the point y ∈ F (x0) and U ∈ V (y), the condition
(1) is not fulfilled. Then the condition (1) implies the l.s.c. at x0.

Remark 1.2 If F : X ( fulfils the condition
(2) for any net x : (D,≥) → X convergent to x0 and y0 ∈ F (x0) there
is a net y : (D,≥)→ Y convergent to y0, yd ∈ F (xd), ∀d ∈ D,
then the condition (1) is also true.
Indeed, for any U ∈ V (y0), from the convergence of the net y to

y0, we obtain that there is a dU ∈ D such that yd ∈ U , ∀d > dU . But
yd ∈ F (xd), hence F (xd) ∩ U 6= ∅.

We have then

Theorem 1.4 If the mapping F : X ( Y satisfies the condition (2),
then F is l.s.c. at x0 in the sense of D.1.1.

We will consider in the following l.s.c. mappings in the sense of the
definition with neighbourhoods.

Definition 1.2 The mapping F : X ( Y is called lower semicontinu-
ous (l.s.c.) if it is l.s.c. at any point x0 ∈ X.

The next two theorems gives characterizations for the global l.s.c.

Theorem 1.5 The mapping F : X(Y is l.s.c. iff for any open set
G ⊂ Y , the set {x ∈ X|F (x) ∩G 6= ∅} = F− (G) is open in X.
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Proof. 1. Let F be l.s.c. and G ⊂ Y an open set. If F− (G) = ∅,
it is obviously open; let now F− (G) 6= ∅ and x0 ∈ F− (G). We have
F (x0) ∩ G 6= ∅ and by the definition of l.s.c. at x0, there is V ∈ V (x0)
with F (x) ∩ G 6= 0, ∀x ∈ V . It follows that V ⊂ F− (G), so F− (G) is
a neighbourhood of every point of it, so it is an open set.
2. Let now F− (G) be an open set for any open set G ⊂ X. If

x0 ∈ X is a point for which F (x0) = ∅, F is l.s.c. at x0. If F (x0) 6= ∅,
we consider an open set U ⊂ Y such that U∩F (x0) 6= ∅, so x0 ∈ F− (U).
The set F− (U) is open and F (x) ∩ U 6= ∅, ∀x ∈ F− (U) and it follows
that F is l.s.c. at x0. Because x0 was chosen arbitrary in X, F is l.s.c.

Theorem 1.6 The mapping F : X ( Y is l.s.c. iff for any closed set
H ⊂ Y , the set {x ∈ X|F (x) ⊂ H} is closed in X.

Proof. The proof is obvious using Th. 1.4 and the fact that
{X (F− (G)) = {x ∈ X|F (x) ∩G = ∅} = {x ∈ X|F (x) ⊂ {YG}.
The property of l.s.c of mappings is related to the selection theorems.

Definition 1.3 Let F : X(Y be a mapping with D (F ) = X. A selec-
tion of the mapping F on the set X is a continuous function f : X → Y
satisfying f (x) ∈ F (x), ∀x ∈ X.

E. Michael gives in [10] the following result.

Theorem 1.7 If F : X ( Y is a point-to-set mapping for which for
any x0 ∈ X and y0 ∈ F (x0) there are a neighbourhood V ∈ V (x0) and
a selection f for F |V with f (x0) = y0, then F is l.s.c.

Proof. Let x0 ∈ X and U ⊂ Y an open set with U ∩ F (x0) 6= ∅;
hence there is y0 ∈ U ∩ F (x0). For x0 and y0 we find a neighbourhood
V ∈ V (x0) and a selection for F |V , with f (x0) = y0. Because of the
continuity of f , the set f− (U) = {x ∈ X| f (x) ∈ U} is open. Let
V ′ = V ∩ f− (U); V ′ is non-void (x ∈ V ′) and it is a neighbourhood of
x0. Let now x ∈ V ′ be an arbitrary chosen element; we have x ∈ V and
f (x) ∈ U . Because x ∈ V we obtain f (x) ∈ F (x), and it follows that
U ∩ F (x) 6= ∅, ∀x ∈ V ′ and the definition of the l.s.c. is satisfied.

2 Upper semicontinuity and upper semicompact-
ness

Let X and Y be topological spaces and F : X(Y a point-to-set map-
ping.
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Definition 2.1 The point-to-set mapping F is called upper semicontin-
uous (u.s.c.) at x0 ∈ X if for any open set U ⊂ Y with F (x0) ⊂ U there
is a neighbourhood V of x0 such that F (x) ⊂ U for any x ∈ V .

Remark 2.1 If F (x0) = ∅, F is u.s.c. at x0 iff there is V ∈ V (x0)
such that F (V ) = ∅.

Definition 2.2 The mapping F is called upper semicompact (u.s.co.)
at x0 ∈ X if F is u.s.c. at x0 and F (x0) is compact.

Definition 2.2’ [29] The mapping F : X ( Y with D (F ) = X is
u.s.co. at x0 ∈ X if for the sequence (xn)n∈N convergent to x0 and yn ∈
F (xn) there is a subsequence (ynk)k∈N convergent to a point y0 ∈ F (x0).
In Th. 2.1 - Th. 2.4, which establish the relation between the differ-

ent definitions, we will consider F : X ( Y with D (F ) = X.

Theorem 2.1 If F is u.s.co. at x0 in the sense of D.2.2, then it is also
u.s.co. at x0 in the sense of D.2.2’.

Proof. We suppose that F is u.s.co. in the sense of D.2.2 but not in the
sense of D.2.2’. Then there is a sequence (xn)n∈N convergent to x0 and
there are the elements yn ∈ F (xn) such that for any y ∈ F (x0) there is
an open neighbourhood U (y) of y containing at most a finite number of
members of the sequence (yn)n∈N. We have F (x0) ⊂

⋃
y∈F (x0)

U (y).

Because F (x0) is compact, we obtain a finite covering such that

F (x0) ⊂
p⋃
i=1

U (yi), yi ∈ F (x0), i = 1, p.

It follows that only a finite number of the members of the sequence

(yn)n∈N can be in U =
p⋃
i=1

U (yi). F being u.s.co. in the sense of D.2.2,

there is V ∈ V (x0) such that F (x) ⊂ U for any x ∈ V (x0). Because
xn → x0 (n→∞) there is nV ∈ N such that xn ∈ V , ∀n > nV , hence
F (xn) ⊂ U , ∀n > nV . It follows that yn ∈ U , ∀n > nV , which is in
contradiction with the fact that only a finite number of the members of
(yn)n∈N are in U . It follows that the assumption we made was false and
the theorem is proved.

Theorem 2.2 If X satisfies the first countability axiom and Y the sec-
ond countability axiom, then F is u.s.co. at x0 in the sense of D.2.2 iff
it is u.s.co. at x0 in the sense of D.2.2’.

Proof. Using the result given in Th. 2.1 we have to show that the
u.s.co. at x0 in the sense of D.2.2’implies that in the sense of D.2.2.
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By Th. 7.2, Ch. I, it is suffi cient to show that F (x0) is sequential
compact and its compactness will then follow. Let (yn)n∈N, yn ∈ F (x0),
n ∈ N; for xn = x0, ∀n ∈ N, we have yn ∈ F (xn) and xn → x0 (n→∞).
Applying D.2.2’we obtain that there is a subsequence (ynk)k∈N conver-
gent to a point x0 ∈ F (x0), hence F (x0) is sequential compact.
We suppose now that F is not u.s.co. at x0 in the sense of D.2.2,

so it is not u.s.c. at x0. Then there is an open set U with F (x0) ⊂ U
such that for any V ∈ V (x0) there is x ∈ V with F (x) * U . We
obtain the existence of y ∈ F (x), y /∈ U . If {Bn}n∈N is a fundamental
system of neighbourhoods for x0 with Bn+1 ⊂ Bn, ∀n ∈ N then we can
choose (yn)n∈N and (xn)n∈N such that xn ∈ Bn, yn ∈ F (xn), yn /∈ U .
By Definition 2.2’from xn → x0 (n→∞) it follows that there is (ynk)
subsequence of (yn)n∈N convergent to y0 ∈ F (x0). But from yn /∈ U we
obtain y0 /∈ U, contradiction with F (x0) ⊂ U .
We can give a characterization of u.s.co. at x0 using nets.

Theorem 2.3 The mapping F is u.s.co. at x0 in the sense of the D.2.2
iff the following condition is satisfied:
(1) for any net x : (D,≥)→ X convergent to x0 and for any yd ∈ F (xd),
there is y0 ∈ F (x0) cluster point for the net y : (D,≥)→ Y .

Proof. 1. We suppose that there is x : (D,≥) → X convergent to x0
and y : (D,≥)→ Y with yd ∈ F (xd), ∀d ∈ D such that any y0 ∈ F (x0)
is not a cluster point for y. Then there is U (y0) ∈ V (y0) open set such
that y is not frequently in U (y0), i.e. there is d0 ∈ D with yd /∈ U (y0)
for d ≥ d0. We have then F (x0) ⊂

⋃
y0∈F (x0)

U (y0) and let U1, ..., Up a

finite covering. There is d′ such that for any d ≥ d′, yd /∈ U =
p⋃
l=1

Ui.

Because F is u.s.co. at x0, there is a neighbourhood V ∈ V (x0) such
that F (x) ⊂ U , ∀x ∈ V . The net x being convergent to x0, there is
d′ ∈ D such that for any d ≥ d′, xd ∈ V , hence F (xd) ⊂ U . It follows
that yd ∈ U , ∀d ≥ d′, which is a contradiction. So the condition (1)
most be fulfilled.
2. Let now suppose that condition (1) is satisfied. We prove first

that F (x0) is a compact set. Let yd ∈ F (x0) and xd = x0, ∀d ∈ D,
where (D,≥) is a directed set. There is then y0 ∈ F (x0) cluster point
for y and by Th. 7.4, Ch. I, F (x0) is compact.
We suppose now that F is not u.s.c. at x0. There is an open set U

with F (x0) ⊂ U such that for any V ∈ V (x0) there is x ∈ V with
F (x) * U . We construct a net x : (V (x0) ,⊃) → X, xV being the
element of V whose existence was just proved. Because F (xV ) * U ,
there is yV ∈ F (xV ) ∩ {YU . Therefore, for any V ∈ V (x0), yV /∈ U .
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y0 ∈ F (x0) being a cluster point for y : (V(x0),⊃) → Y , it follows
that for any V ∈ V (x0) there is W ⊂ V , with yW ∈ U , which is a
contradiction. So F is u.s.c. at x0.
Using the result of T.5.6, Ch. I, the above theorem may be reformu-

lated like this.

Theorem 2.4 The mapping F is u.s.co. at x0 in the sense of D.2.2
iff for any net x : (D,≥) → X and for any net y : (D,≥) → Y, yd ∈
F (xd),∀d ∈ D, there is a subnet of y convergent to an element of F (x0).

From now on we will consider the notions in the sense of D.2.1 and
2.2.

Definition 2.3 The mapping F : X ( Y is called upper semicontinu-
ous (upper semicompact) and is denoted by u.s.c. (u.s.co.) if it is upper
semicontinuous (semicompact) at any point x0 ∈ X.

Theorem 2.5 The mapping F : X ( Y is u.s.c. iff for any open set
G ⊂ Y , the set {x ∈ X|F (x) ⊂ G} = M is open in X.

Proof. 1. Let F : X ( Y an u.s.c. mapping and G ⊂ Y an open set. If
M = ∅ it is obviously open. We suppose now that M 6= ∅ and take x0 ∈
M arbitrarily. Because F is u.s.c. at x0, there is V ∈ V (x0) such that
F (x) ⊂ G, ∀x ∈ V . Therefore V ⊂M andM contains a neighbourhood
of any of its points, being an open set.
2. Let us suppose that for any open set G ⊂ Y , the set M is open in

X and prove that F is u.s.c.
Let x0 ∈ X and G ⊂ Y an open set, F (x0) ⊂ G; we have then

x0 ∈ M . Because M is open, it is a neighbourhood for x0. For any
x ∈M , we have F (x) ⊂ G, and the condition of u.s.c. at x0 is satisfied.

Using Th. 2.5 we obtain obviously.

Theorem 2.6 The mapping F : X ( Y is u.s.co. iff it is pointwise
compact (F (x0) is a compact set for any x0 ∈ X) and for any open set
G ⊂ Y , the set {x ∈ X|F (x) ⊂ G} is open in X.

The next two theorem are consequences of Th. 2.5 and Th. 2.6.

Theorem 2.7 The mapping F : X ( Y is u.s.c. iff for any closed set
H ⊂ Y , the set {x ∈ X|F (x) ∩H 6= ∅} = F− (H) is closed in X.

Theorem 2.8 The mapping F : X ( Y u.s.co. iff it is pointwise
compact and it satisfies the condition of Th. 2.7.
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The last theorem of this section contains an important property of a
u.s.co. mapping.

Theorem 2.9 If F : X ( Y is u.s.co., the image F (K) of a compact
set K ⊂ X is also a compact set.

Proof. Let {Gi| i ∈ I} an open covering of the set F (K). For any x ∈ K
the set F (x) is compact and can be covered by the union of a finite num-
ber of Gi’s, let this finite union be Gx. Then ({z ∈ X|F (z) ⊂ Gx})x∈K
is an open covering forK. IfMx denotes the set {z ∈ X|F (z) ⊂ Gx} we
obtain that there is a finite covering of K, Mx1 , ...,Mxp. It follows that
Gx1 , ..., Gxp will form a finite covering of F (K); but every Gxj ,j = 1, p
is a finite union of Gi, i ∈ I, hence F (K) has a finite covering obtained
of {Gi| i ∈ I}. Therefore F (K) is a compact set.

3 Closure

The closed mappings were studied in detail, by Berge [1]; some authors,
like K. Kuratowski, named these mappings upper semicontinuous.

Definition 3.1 The mapping F : X ( Y is called closed at x0 ∈ X
if for any y0 /∈ F (x0) there are two neighbourhoods V ∈ V (x0) and
U ∈ V (y0) such that for any x ∈ Y , F (x) ∩ U = ∅.

Remark 3.1 If F (x0) = ∅, then F is closed at x0 iff there is V ∈ V (x0)
such that F (x) = ∅, ∀x ∈ V .

Another definition of closure is given in [29].
Definition 3.1’The mapping F : X ( Y with D (F ) = X is closed
at x0 ∈ X if for any sequence (xn)n∈N converging to x0 and (yn)n∈N
converging to y0, where yn ∈ F (xn), ∀n ∈ N , we have y0 ∈ F (x0).

Remark 3.2 The definition 3.1’is that given by Kuratowski for u.s.c.

Theorem 3.1 If F is closed at x0 in the sense of D.3.1, the set F (x0)
is closed.

Proof. We prove that {Y F (x0) is open in Y . If {Y F (x0) = ∅, it is ob-
viously open. Let now y ∈ {Y F (x0). The condition of D.3.1 guarantees
the existence of V ∈ V (x0) and U ∈ V (y0) such that F (x) ∩ U = ∅,
∀x ∈ V . It follows that U ⊂ {Y F (x0), hence {Y F (x0) is open in Y . It
follows that F (x0) is closed in Y .
In the Theorems 3.2 - 3.4 we suppose that D (F ) = X.
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Theorem 3.2 If the mapping F : X ( Y is closed at x0 in the sense
of D.3.1, then it is also closed in the sense of D.3.1’.

Proof. Let F be closed at x0 in the sense of D.3.1, (x0)n∈N a sequence
converging to x0 and (yn)n∈N a sequence converging to y0, where yn ∈
F (xn), ∀n ∈ N. We have to prove that y0 ∈ F (x0). We suppose
that y0 /∈ F (x0). Then there are two neighbourhoods V ∈ V (x0) and
U ∈ V (y0) such that F (x) ∩ Y = ∅, ∀x ∈ V . Using the convergence
of (xn)n∈N we obtain that there is n0 ∈ N such that xn ∈ V , ∀n > n0.
Then F (xn) ∩ U = ∅, ∀n > n0 and it follows that yn ∈ U , ∀n > n0,
contradiction with yn → y0 (n→∞). It follows that F is also closed at
x0 in the sense of D.3.1’.

Theorem 3.3 If X and Y satisfy the first countability axiom, F is
closed at x0 in the sense of D.3.1 iff it is closed in the sense of D.3.1’.

Proof. Using the above theorem, we have to prove only that the closure
in the sense of D.3.1’implies that in the sense of D.3.1.
Let F be closed in the sense of D.3.1’but not in the sense of D.3.1.

There will be y0 /∈ F (x0) such that for any neighbourhood V ∈ V (x0)
and U ∈ V (y0) there is x ∈ V such that F (x) ∩ U 6= ∅. Let {Bn}n∈N
and {Un}n∈N fundamental systems of open neighbourhoods of x0 and
y0, with Bn+1 ⊂ Bn and Un+1 ⊂ Un, ∀n ∈ N. For any n ∈ N there
is xn ∈ Bn such that F (xn) ∩ Un 6= ∅, hence we can find a sequence
(yn)n∈N such that yn ∈ F (xn) ∩ Un. It is obvious that xn → x0 and
yn → y0 (n→∞). The definition 3.1 leads us to y0 ∈ F (x0) which is a
contradiction with our assumption.
The next theorem gives a characterization of closure in the terms of

nets.

Theorem 3.4 The mapping F : X → Y is closed at x0 in the sense of
D.3.1 iff the following condition is satisfied:
(1) for any nets x : (D,≥) → X and y : (D,≥) → Y converging to x0,
respectively y0, with yd ∈ F (xd), ∀d ∈ D, it follows that y0 ∈ F (x0).

Proof. 1. Let F be closed at x0, x : (D,≥) → X converging to x0,
y : (D,≥) → Y converging to y0 such that yd ∈ F (xd), ∀d ∈ D, but
y0 /∈ F (x0). Because F is closed at x0, there are two neighbourhoods
V ∈ V (x0) and U ∈ V (y0) such that for any x ∈ V , F (x) ∩ U = ∅.
But the net x is convergent to x0, so there is d0 ∈ D such that for
d ≥ d0, xd ∈ V . Then, for d ≥ d0, we have yd /∈ U (since yd ∈ F (xd)),
contradiction with the convergence of y to y0. It follows that (1) is
satisfied.
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2. We prove now that (1) implies that F is closed at x0. We suppose
that F is not closed at x0, so there is y0 /∈ F (x0) such that for any V ∈
V (x0) and U ∈ V (y0) there is x ∈ V with F (x) ∩ U 6= ∅. Let V (x0)×
V (y0) be directed by the inclusion. We choose xV,U ∈ V and yV,U ∈
F (xV,U) ∩ U . The existence of yV,U is guaranteed by the assumption
that F is not closed at x0.
The net x is convergent to x0. Indeed, for W ∈ V (x0), there is

d0 = (W,Y ) such that for any (V, U) ≥ (W,Y ) (i.e., V ⊂ W and U ⊂ Y )
we have xV,U ∈ V ⊂ W .
Similarly, y is convergent to y0; let U ′ ∈ V (y0). Then there is d0 =

(X,U ′) such that for any (V, U) ≥ (X,U ′) (i.e. V ⊂ X and U ⊂ U ′) we
have yV,U ∈ F (xV,U) ∩ U ⊂ U ⊂ U ′.
The nets x and y satisfy the hypothesis of (1), so we obtain y0 ∈

F (x0) which is a contradiction. It follows that F is a closed mapping.

Definition 3.2 The mapping F : X ( Y is called closed if it is closed
at any point x0 ∈ X.

Theorem 3.5 The mapping F : X ( Y is closed (in the sense of
Definition 3.1) iff the graph Γ (F ) of F is a closed set in X × Y .

Proof. The condition from Definition 3.1 is equivalent to the fact that
for any (x0, y0) there are two neighbourhoods V ∈ V (x0), U ∈ V (y0)
such that V × U ⊂ {Γ (F ) and the theorem follows immediately.
In the following we consider closed mappings in the sense of D.3.1.

Theorem 3.6 If {Fi| i ∈ I} is a family of closed mappings Fi : X ( Y
then F : X ( Y given by F =

⋂
i∈I
Fi is also a closed mapping.

Proof. Let x0 ∈ X, y0 ∈ Y \ F (x0); from the definition of F (x0) it
follows that there is an index i ∈ I such that y0 /∈ Fi (x0). We obtain then
two neighbourhoods V ∈ V (x0) and U ∈ V (y0) such that Fi (V )∩U = ∅.
It follows that F (V ) ∩ U = ∅ and F is a closed mapping.
The next theorems study the relation between closed mappings and

u.s.co. ones.

Theorem 3.7 If Y is a Hausdorff space, any u.s.co. mapping F : X (
Y is closed.

Proof. Let F : X ( Y be u.s.co. and y0 /∈ F (x0); because F (x0) is
compact and Y is a Hausdorff space, there is in Y an open set G with
F (x0) ⊂ G and a neighbourhood U ∈ V (x0) such that G ∩ U = ∅.
Because F is u.s.c. there is V ∈ V (x0) such that for any x ∈ V we have
F (x) ⊂ G, hence F (x) ∩ U = ∅. So F is a closed mapping.
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Theorem 3.8 Let Y be a Hausdorff space. If F1 : X ( Y is a closed
mapping and F2 : X ( Y is a u.s.co. mapping, then F = F1 ∩ F2 is
u.s.co.

Proof. F (x) = F1 (x)∩F2 (x) ⊂ F2 (x) is a compact set. We prove that
F is u.s.c.
Let x0 ∈ X and G open set with F (x0) ⊂ G; we prove that there

is V ∈ V (x0) such that F (V ) ⊂ G. If F2 (x0) ⊂ G, this will be surely
true, because F2 in u.s.c. If F2 (x0) * G, let K = F2 (x0) ∩ {YG 6= ∅.
For any y ∈ K we consider U (y) ∈ V (y) and Vy ∈ V (x0) such that
F (Vy)∩U (y) = ∅. The setK being compact, there will be y1, ..., yn ∈ K
such that U (y1) , ..., U (yn) cover K. Let U (K) =

n⋃
i=1

U (yi); there will

be a neighbourhood V ′ ∈ V (x0) such that for x ∈ V ′, we have F2 (V ) ⊂
U (K)∪G. Let now V = Vy1 (x0)∩...∩Vyn (x0)∩V ′. We have F1 (V (x0))∩
U (K) = ∅ and F2 (V (x0)) ⊂ U (K)∪G, hence (F1 ∩ F2) (V ) ⊂ G. This
proves that F is u.s.c.

Corollary 3.1 If Y is a compact Hausdorff space, a u.s.c. mapping is
closed iff it is u.s.co.

Proof. 1. Let F : X ( Y be closed. We consider F0 : X ( Y given
by F0 (x) = Y , ∀x ∈ X, which is obviously u.s.co. By Th. 3.8 above,
F = F ∩ F0 is u.s.co.
2. Let F : X ( Y be u.s.co. By Th. 3.7 we obtain that F is closed.

Theorem 3.9 If X is a compact Hausdorff space and F : X ( X is a
u.s.co. mapping with D (F ) = X, then there is a compact set K 6= ∅ in
X such that F (K) = K.

Proof. We consider the sequence X, F (X), F 2 (X),... of compact sets
(by Th. 2.8) which are also non-void. If a member of the sequence is
equal to its successor, the theorem is proved. We suppose that any two
consecutive members are different.
Because X ⊃ F (X), it follows that F (X) ⊃ F 2 (X) etc. so the

sequence is decreasing; by Cor. 7.1, Ch. I we have K =
∞⋂
n=1

F n (X) 6= ∅.

Obviously K is a compact set an K ⊂ F n−1 (X) for any n ∈ N, hence
F (K) ⊂ F n (X) ⊂ K and F (K) ⊂ K.
To prove inverse inclusion, let x ∈ K; then there is xn ∈ F n (X)

with x ∈ F (xn), ∀n ∈ N. The sequence (xn)n∈N regarded as a net in
X will have a subnet convergent to x0 by Cor. 7.3, Ch. I. Because
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only a finite number of the members of the subnet are not in F n (X), it
follows that x0 ∈ F n (X), ∀n ∈ N, so x0 ∈ K. By Th. 3.4 we obtain
x ∈ F (x0) ⊂ F (K). So, the inclusion K ⊂ F (K) is also proved and
F (K) = K.

4 Examples

The first examples of this section are concrete and prove that the no-
tions of semicontinuity and closure are independent. We give then some
generic examples.

Example 4.1 A u.s.co. closed mapping which is not l.s.c.[32].
Let X = Y = [0, 1] and F : X ( Y given by

F (x) =

{
{1
2
x}, x ∈

[
0, 1

2

]
{1− 1

2
(1− x)}, x ∈

[
1
2
, 1
]

and having the graph of Fig.1.

Figure 1:

F is obvious u.s.co. and closed; it is not l.s.c., because for G =
(
1
2
, 1
)

we have F− (G) = [1
2
, 1); it is not open in X.

Example 4.2 A l.s.c. closed mapping which is not u.s.c.[32].
Let X = Y = R2 and F : X ( Y given by F (x, y) =

{(z, t) ∈ R2| t = y} which acts like in Fig.2.
F is not u.s.c.; we consider U = {(x, y) ∈ R2| − 1 < xy < 1}, i.e.

the set of points situated between the graphs of the equilateral hyperbolae
xy = 1 and xy = −1. We have F ((0, 0)) ⊂ U , but any open set which
contains (0, 0) contains also points (x, y) for which F (x, y) * U .
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Figure 2:

Example 4.3 A u.s.c and l.s.c. mapping which is not closed.
Let X = Y = {(x, y) ∈ R2| − 1 ≤ x ≤ 1,−1 ≤ y ≤ 1} and F : X (

Y given by

F (x, y) = {(z, t) ∈ R2
∣∣ z2 + t2 <

1

4
}

The way of acting of F is illustrated in Fig.3.

Figure 3:

F is not closed, because Γ (F ) = X×{(z, t) ∈ R2| z2+ t2 < 1
4
} is not

closed in X ×X.

The next examples are general and contain in fact families of point-
to-set mappings which have some of the studied properties.

Example 4.4 Let X,Y be topological spaces and F : X → Y a continu-
ous function. Then F : X ( Y given by F (x) = {f (x)} is u.s.co. and
l.s.c.

F is obviously pointwise compact and F− (A) = {x ∈ X|F (x)∩A 6=
∅} = {x ∈ X| f (x) ∈ A} = f−1 (A). Then f−1 (A) is closed (open) if A
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is closed (open) (by Th. 6.3, Ch. I). Applying Th. 2.7 and Th. 1.4 it
follows that F is u.s.co. and l.s.c.
If Y is a Hausdorff space, F is also closed. Let y0 6= f (x0) and

U ∈ V (y0), V ∈ V (f (x0)) such that U ∩ V = ∅. For V ∈ V (f (x0)),
there is V ′ ∈ V (x0) with f (x) ∈ V for any x ∈ V ′. We have then, for
any x ∈ V ′, F (x) ∩ U = ∅.

Example 4.5 [26] Let X be a compact space and Y a Hausdorff one,
f : X → Y a continuous function. Then the mapping F : Y ( X given
by F (y) = {x ∈ X| f (x) = y} is u.s.co.

Y being a Hausdorff space, the sets having one element are closed; f
is continuous, so F (y) = f−1 (y) is a closed set in the compact space X.
It follows by Th. 7.8, Ch. I that f−1 (y) is compact, so F is pointwise
compact.
We prove that F is u.s.c. using Th. 2.6. Let H ⊂ X a closed set;

then F− (H) = {y ∈ Y |F (x) ∩H 6= ∅} = {y ∈ Y | f−1 (y) ∩H 6= ∅} =
{y ∈ Y | ∃x ∈ H, f (x) = y} = f (H).
By Th. 7.13, Ch. I, f (H) is closed and then F is u.s.c.

Example 4.6 [1] Let f : X × Y → R a continuous function and F :
X ( Y given by F (x) = {y ∈ Y | f (x, y) ≤ 0}. Then F is a closed
mapping.
If y0 /∈ F (x0), we have f (x0, y0) > 0. f being continuous, there are

V ∈ V (x0) and U ∈ V (y0) with f (x, y) > 0 for any x ∈ V and y ∈ U ,
so F (V ) ∩ U = ∅.
If (X, d) is a metric space and λ : X → R a continuous function

the map F : X ( X given by F (x) = {y ∈ X| d (x, y) − λ (x) ≤ 1} is
closed.

Example 4.7 [26] Let X be a metric space and F : X ( X a mapping
whose values are non-void bounded closed sets. If F is Lipschitz in the
sense that D (f (x) , f (y)) ≤ αd (x, y), ∀x, y ∈ X, then F is closed.

X being a metric space, the first axiom of countability is satisfied and
by Th.3.4 the two definitions of closed maps are equivalent. Let xn → x
and yn → y, yn ∈ F (xn). We have

d (y, F (x)) ≤ d (y, yn) + d (yn, F (x)) ≤ d (y, yn) +D (F (xn) , F (x)) ≤
d (y, yn) + αd (xn, x)

n→∞→ 0

and it follows that y ∈ F (x) = F (x), hence F is closed map.

Example 4.8 [8] Let (X, d) be a compact metric space having the fixed
point property and C (X) = {f : X → X| f continuous} endowed with

50



the Tchebycheff metric. Let F : C (X) ( X given by F (f) = Ff , where
Ff denotes the set of the fixed points of f . The values of F are non-void
and compact, and F is u.s.co.

Ff is a closed subset of a compact space, so it is also compact. We
prove that F is u.s.c. Let U ⊂ X an open set with F (f) ⊂ U and
δ = inf{d (x, f (x))|x ∈ {XU}. We have δ > 0, excepting the case
U = X, when obviously F (g) ⊂ U , ∀g ∈ C (X). Let Bδ (f) be the
open ball of center f and radius δ in C (X). If g ∈ Bδ (f), we have
||f − g|| < δ. We show that F (g) ⊂ U .
Let x∗ ∈ F (g); we suppose that x∗ /∈ U . Then

δ ≤ d (x∗, f (x∗)) = d (g (x∗) , f (x∗)) ≤ ||f − g|| < δ,

contradiction. It follows that x∗ ∈ U and F is u.s.c.

Example 4.9 [27] Let (X, d) be a metric space and F : X ( X a
mapping with non-void compact values. If F is contractive in the sense
that D (F (x) , F (y)) < d (x, y),∀x, y ∈ X, x 6= y, then F is u.s.co.

F being pointwise compact, we have to show that it is also u.s.c.
Let x ∈ F− (H)\F− (H) and (xn)n∈N with lim

n→∞
xn = x, xn ∈ F− (H),

xn 6= x for any n ∈ N. Because xn ∈ F− (H), it follows F (xn)∩H 6= ∅;
let yn ∈ F (xn) ∩H.
We have d(yn, F (x)) ≤ D (F (xn) , F (x)) < d (xn, x) and

lim
n→∞

d (yn, F (x)) = 0.

But d (yn, F (x)) = inf
y∈F (x)

d (yn, y) = d (yn, x
′
n), with x′n ∈ F (x) (the

infimum is taken at x′n).
The sequence (x′n)n∈N is entirely in the compact F (x), so it has a

subsequence
(
x′nk
)
k∈N convergent at x0 ∈ F (x).

We have d (ynk , x0) ≤ d
(
ynk , x

′
nk

)
+d
(
x′nk , x0

) k→∞→ 0. It follows that
lim
k→∞

ynk = x0 ∈ F (x).

Because ynk ∈ H and H is closed, x0 ∈ H, hence F (x)∩H 6= ∅. We
have then x ∈ F (H), contradiction with our hypothesis. It follows that
F− (H) = F− (H) and F− (H) is a closed set.

Remark 4.1 If F is not pointwise compact it is possible that F is not
u.s.c., even if it is contractive.
Indeed, let F : R2 → R2 given by F (x, y) = {(z, t) ∈ R2| t = 1

2
y}. A

similar proof as at Ex. 4.2 shows that F is not u.s.c., but

D (F (x, y) , F (z, t)) =
1

2
|y − t| <

√
(x− z)2 + (y − t)2 for (x, y) 6= (z, t) .
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5 Properties of semicontinuous and closed point-
to-set mappings

The first properties of this section are related to the operations with
mappings. For a family Fi : X ( Y , i ∈ I of mappings, let

⋃
i∈I
Fi : F (

Y be the mapping given by
(⋃
i∈I
Fi

)
(x) =

⋃
i∈I
Fi (x). Similarly,

⋂
i∈I
Fi :

X ( Y will be given by
(⋂
i∈I
Fi

)
(x) =

⋂
i∈I
Fi (x). These mappings are

called the union (respectively the intersection) of the family Fi, i ∈ I.

Theorem 5.1 The union F =
⋃
i∈I
Fi of a family of l.s.c. mappings is a

l.s.c. mapping.

Proof. Let G ⊂ Y be an open set. We have F−(G) =
{x ∈ X|

⋃
i∈I
Fi (x) ∩ G 6= ∅} =

⋃
i∈I
F−i (G), so F− (G) is an open set and

F is l.s.c.

Theorem 5.2 The intersection F =
⋂
i∈I
Fi of a family of u.s.co. map-

pings is a u.s.co. mapping.

Proof. Let i0 ∈ I; using Th. 3.6 we obtain that F0 =
⋂
{Fi| i ∈ I \{i0}}

is a closed mapping. By Th. 3.8 it follows that F = F0 ∩ Fi0 is u.s.co.
as the intersection of a closed mapping with a u.s.co. one.

Remark 5.1 In Th. 3.6 we proved that the intersection of a family of
closed mappings is closed.

Theorem 5.3 The intersection F =
n⋂
i=1

Fi of a finite family of l.s.c.

mappings Fi : X ( Y , i = 1, n is generally not a l.s.c. mapping.

Proof. Let G ⊂ Y be an open set. We have F− (G) =

{x ∈ X|
n⋂
i=1

Fi (x) ∩ G 6= ∅} ⊆
n⋂
i=1

F−i (G), so it is not necessarily an

open set and F may be not l.s.c.

Theorem 5.4 The union F =
n⋃
i=1

Fi of a finite family of u.s.co. map-

pings Fi : X ( Y , i = 1, n is also a u.s.co. mapping.
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Proof. For any x ∈ X, the set F (x) =
n⋃
i=1

Fi (x) is compact as

a finite union of compact sets. For the open set G ⊂ Y , we have

{x ∈ X|
n⋃
i=1

Fi (x) ⊂ G} =
n⋂
i=1

{x ∈ X|Fi (x) ⊂ G}, so it is an open
set and F is u.s.co.

Theorem 5.5 The union F =
n⋃
i=1

Fi of a finite family of closed map-

pings Fi : X ( Y , i = 1, n is also a closed mapping.

Proof. Let x0 ∈ X and y0 ∈ Y \ F (x0). We have y0 /∈ F (x0), hence
y0 /∈ Fi (x0), i = 1, n. The mapping Fi, i = 1, n being closed, there are

Ui ∈ V (y0) and Vi ∈ V (x0) with Fi (Vi)∩Ui = ∅, i = 1, n. Let U =
n⋂
i=1

Ui

and V =
n⋂
i=1

Vi.

Because V ⊂ Vi, i = 1, n we obtain by Th. 2.1, Ch. II that

Fi (V ) ⊂ Fi (Vi); we have then F (V ) ⊂
n⋃
i=1

Fi (Vi). It follows F (V )∩U ⊂
n⋃
i=1

(Fi (Vi)) =
n⋃
i=1

(Fi (Vi) ∩ U) = ∅, and F is closed.

Remark 5.2 The proofs of Th. 5.3, 5.4 and 5.5 show that the properties
of these theorems are not generally true for infinite families of mappings.

Theorem 5.6 The cartesian product F =
n∏
i=1

Fi of a finite family of

l.s.c. mappings Fi : X ( Yi is a l.s.c. mapping F : X (
n∏
i=1

Yi given by

F (x) = (F1 (x) , ..., Fn (x)) for any x ∈ X.

Proof. Let G ⊂ Y an open set; G will be a union of elementary open

sets Ek =
n∏
i=1

Gk
i , G

k
i being open sets in Yi, i = 1, n.

We have F−
(
Ek
)

= {x ∈ X|
n∏
i=1

Fi (x) ∩
n∏
i=1

Gk
i 6= ∅} =

n⋂
i=1

F−i
(
Gk
i

)
.

We obtain that F−
(
Ek
)
is an open set, so F− (G) =

⋃
k∈K

F−
(
Ek
)
is

open; it follows that F is l.s.c.

Theorem 5.7 The cartesian product F =
n∏
i=1

Fi of a family of u.s.co.

mappings Fi : X ( Yi is a u.s.co. mapping F : X (
n∏
i=1

Yi.
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Proof. We give the proof for n = 2, so F : X ( Y1 × Y2. By Th. 7.13,
Ch. I., Fi (x) and F2 (x) being compact sets, it follows that F (x) =
F1 (x)× F2 (x) is a compact set for any x ∈ X.
Let G ⊂ Y1× Y2 and a ∈ {x ∈ X|F (x) ⊂ G} (if this set is void, it is

obviously open). The set F (a), being compact and closed in G, can be
covered with a finite number of elementary open sets included in G, let
then be E1, E2, ..., Ep.
For (y1, y2) ∈ F (a), let E (yi) = ∪{Ek

∣∣Ek ∩ ({y1} × F2 (a)) 6= ∅}
and E (y2) = ∪{| Ek

∣∣Ek ∩ (F1 (a)× {y2}) 6= ∅}. By the projection of
E (y1) on Y2 we obtain the open set π2E (y1); when y1 varies we obtain
a finite number of such sets. The situation is similarly for π1E (y2). Let
G1 =

⋂
y2∈F2(a)

π1E (y2) and G2 =
⋂

y1∈F1(a)
π2E (y1).

The set E = G1 × G2 is an elementary open set in Y and {x ∈ X|
F1 (x) × F2 (x) ⊂ E} = {x ∈ X|F1 (x) ⊂ G1} ∩ {x ∈ X|F2 (x) ⊂ G2},
so it is an open set in X.
From F (a) ⊂ E ⊂ G, we have a ∈ {x ∈ X|F1 (x) × F2 (x) ⊂ E} ⊂

{x ∈ X|F (x) ⊂ G}, and the set {x ∈ X|F (x) ⊂ G} being a neigh-
bourhood for any of its points is open. It follows that F is u.s.co.

Theorem 5.8 The cartesian product F =
n∏
i=1

Fi of a family of closed

mappings Fi : X ( Yi is a closed mapping F : X (
n∏
i=1

Yi.

Proof. Let x0 ∈ Y and y0 /∈ F (x0), y0 = (y1, ..., yn); there is then an
index i ∈ {1, ..., n} such that yi /∈ Fi (x0), let i = 1. Because F1 is a
closed set, there is V ∈ V (x0) and U1 ∈ V (y1) with F1 (V ) ∩ U1 = ∅.
The set U = U1 × Y × ... × Y ∈ V (y0) and F (V ) ∩ U = ∅ (because of
F1 (V ) ∩ U = ∅), hence F is closed.
The next theorems show that the composed mapping has the same

properties as the initial ones.

Theorem 5.9 Let F1 : X(Y and F2 : Y ( Z l.s.c mappings. Then
the composed mapping F = F2 ◦ F1 : X ( Z is a l.s.c. mapping.

Proof. Let G ⊂ Z be an open set and F− (G) = {x ∈ X|F2 ◦ F1 (X) ∩
G 6= ∅} = {x ∈ X|F2 (F1 (x)) ∩ G 6= ∅} = {x ∈ X|F1 (x) ∩ F−2 (G) 6=
∅} = F−1

(
F−2 (G)

)
. Because F1 and F2 are l.s.c. mappings, F− (G) is

an open set and F is l.s.c.

Theorem 5.10 Let F1 : X ( Y and F2 : Y ( Z u.s.co. mappings.
Then the composed mapping F = F2 ◦F1 : X ( Z is a u.s.co. mapping.
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Proof. For x ∈ X, F (x) = F2 (F1 (x)) is a compact set, because F1 (x)
is compact and for the u.s.co. mapping F2 one can apply Th. 2.9.
For G ⊂ Z open set, we have {x ∈ X|F2 ◦ F1 (x) ⊂ G} =

{x ∈ X|F1 (x) ⊂ M} = N , where M = {x ∈ X|F2 (x) ⊂ G} is an
open set, so N is also open. It follows that F is a u.s.co. mapping.
The Theorem 2.9 shows that u.s.co. mappings preserve the com-

pactness; this is not generally true for the l.s.c. and u.s.c. mapping (Ex.
4.3). The next theorem is related to a class of mappings preserving the
connectedness.

Theorem 5.11 Let F : X ( Y be a l.s.c. (u.s.c.) mapping. If F is
pointwise connected, then F (C) is connected for any connected set C.

Proof. Let F be l.s.c. Suppose that F (C) is disconnected, so there
are two non-void connected sets A1 and A2 with F (C) = A1 ∪ A2,
A1 ∩ A2 = ∅, A1 ∩ A2 = ∅. Let Bi = {x ∈ C|F (x) ⊂ Ai}, i = 1, 2.
We have obviously B1 ∪ B2 ⊂ C. For x ∈ C, we have F (x) ⊂ A1 or

F (x) ⊂ A2, because F (x) is connected. It follows that C = B1 ∪ B2.
We have Bi 6= ∅, i = 1, 2, for Ai 6= ∅, i = 1, 2.
Let x ∈ B1 and y ∈ F (x). Suppose that F (x) ⊂ A1; then y ∈ A1

and form A1 ∩A2 = ∅ we obtain an open neighbourhood U ∈ V (y) with
U ∩ A2 = ∅. F being a l.s.c. mapping, there is V ∈ V (x) an open
neighbourhood with F (z) ∩ A1 6= 0, ∀z ∈ V . For any z ∈ C ∩ V we
have F (z) ∩ A1 6= ∅ and F (z) ⊂ A1. It follows that V ∩ B2 = ∅, so
B1 ∩ B2 = ∅ . Similarly one shows B1 ∩ B2 = ∅, contradiction with the
connectedness of C. It follows that F (C) must be connected.
Let now F be u.s.c and F (C) disconnected. For A1 and A2 defined

above we put Bi = {x ∈ C|F (x) ⊂ Ai}, i = 1, 2. We have obviously
B1 ∪ B2 ⊂ C. For x ∈ C, we have F (x) ⊂ A1, or F (x) ⊂ A2, so
C = B1 ∪B2; Ai 6= ∅ implies Bi 6= ∅, i = 1, 2.
Let x ∈ B1; then F (x) ⊂ A1 ⊂ {YA2. Because {YA2 is open and

F (x) ⊂ {YA2 we have that there is V ∈ V (x) with F (z) ⊂ {YA2 for
any z ∈ V . Let z ∈ V ∩ B2; then F (z) ⊂ {YA2 and F (z) ⊂ A2 ⊂ A2,
which is a contradiction. It follows that V ∩ B2 = ∅, and B1 ∩ B2 = ∅.
Similarly, B1 ∩ B2 = ∅, contradiction with the connectedness of C. It
follows that F (C) is a connected set.
At the end of this section we give the maximum theorem whose

preliminary results shows the connection between the semicontinuity of
functions and of certain mappings.

Definition 5.1 Let (X, T ) be a topological space and R endowed with
the usual topology. A function f : X → R is called lower (upper)
semicontinuous at x0 if for any ε > 0 there is a neighbourhood V ∈ V (x0)
such that f (x0)− ε < f (x) (f (x) < f (x0) + ε) for any x ∈ V .
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These notions for functions were given in 1899 by R. Baire.

Theorem 5.12 If f : X × Y ( R is a lower semicontinuous function
and F : X ( Y is a l.s.c. mapping with F (x) 6= ∅, ∀x ∈ X, then the
real valued function M : X → R, M (x) = sup{f (x, y)| y ∈ F (x)} is
l.s.c.

Proof. Let x0 ∈ X and ε > 0; the definition of M (x0) implies the
existence of y0 ∈ F (x0) such that f (x0, y0) > M (x0)− ε

2
. The function

f being l.s.c. there is V ∈ V (x0) and U ∈ V (y0) such that for any
(x, y) ∈ V × U , f (x, y) > f (x0, y0)− ε

2
> M (x0)− ε.

Because F is a l.s.c. mapping, there is V ′ ∈ V (x0) with F (x)∩U 6= ∅,
∀x ∈ V ′ . For x ∈ V ∩ V ′ we have M (x) > M (x0)− ε, and M is lower
semicontinuous.

Theorem 5.13 If f : X × Y → R is an upper semicontinuous func-
tion and F : X ( Y is a u.s.co. mapping with F (x) 6= ∅, ∀x ∈ X,
then the real valued function M (x) = sup{f (x, y)| y ∈ F (x)} is upper
semicontinuous.

Proof. Let x0 ∈ X and ε > 0; f being upper semicontinuous, for any
y ∈ F (x0) there is Vy ∈ V (x0) and Uy ∈ V (y) such that for (x, z) ∈
Vy × Uy we have f (x, z) < f (x0, y) + ε.

F (x0) being a compact set, it can be covered by a finite number of

neighbourhoods Uy1 , ..., Uyn . For V =
n⋂
i=1

Vyi and U =
n⋃
i=1

Uyi we have

x ∈ V , y ∈ U ⇒ f (x, y) ≤ max
i=1,n

f (x0, yi) + ε ≤M (x0) + ε.

For U we obtain V ′ ∈ V (x0) such that x ∈ V ′ implies F (x) ⊂ U , so
x ∈ V ′ ∩ V and M (x) = max

y∈F (x)
f (x, y) ≤M (x0) + ε.

Theorem 5.14 (the maximum theorem) Let f : Y → R a continuous
function and F : X ( Y a l.s.c. and u.s.co. mapping with F (x) 6= ∅,
∀x ∈ X. Then the function M : X → R, M (x) = max{f (y)| y ∈
F (x)} is continuous and Φ(x) = {y ∈ F (x)| f(y) = M(x)} is a u.s.co.
mapping Φ : X ( Y .

Proof. By Th. 5.12 and Th. 5.13 above it follows thatM is a continuous
function. The mapping G : X ( Y , G (x) = {y ∈ Y |M (x)−f (y) ≤ 0}
is closed (Ex.4.6). It follows that Φ = F ∩G is u.s.co., by Th. 3.8.
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CHAPTER IV

CONTINUITY OF THE POINT-TO-SET MAPPINGS

Definition 1 The mapping F : X ( Y is called continuous at x0 ∈ X
if it is l.s.c. and u.s.c. at x0.
Definition 2 The mapping F : X ( Y is called continuous if it is
continuous at any point x ∈ X.
The values of F being sets, the point-to-set mapping F may be con-

sidered as a function having the values in a family of subsets of Y . It
is then possible to define a topology on families of subsets of a given
set and to study the point-to-set mappings as functions. It was in 1905
when D. Pompeiu [25] defined a metric on the set of non-void bounded
closed subsets of the complex plane. The one who introduced a similar
metric for arbitrary metric spaces was F. Hausdorff; because his book
[11] published in 1914 was well-known, the metric is usually called the
Hausdorff metric.
Later, in 1921, L. Vietoris defined the topology which has now his

name, demanding no more than the initial space be a metric one [33].
There are also other topologies necessary to characterize the semi-conti-
nuity of point-to-set mappings [10, 23].

1 The Hausdorffmetric

Definition 1.1 Let (X, d) a metric space and 2X the family of the non-
void bounded closed subsets of X. For A,B ∈ 2X we take, according to
the definitions given by Pompeiu and Hausdorff

ρ (x,B) = inf{d (x, y)| y ∈ B}
ρ(y, A) = inf{d (x, y)|x ∈ A}.

We denote ρ (A,B) = sup{ρ (x,B)|x ∈ A} and ρ (B,A) =
sup{(y, A)| y ∈ B}.
It is called the Hausdorff distance of the sets A and B the number

D (A,B) = max{ρ (A,B) , ρ (B,A)}.

Remark 1.1 Defining D (A,B) = inf{d (x, y)|x ∈ A, y ∈ B} we do
not obtain a metric, because D does not satisfy the triangular inequality.
Indeed, for the subsets of R A = {0}, B = [1, 2] and C = {3} we have
D (A,B) = 1, D (B,C) = 1 and D (A,C) = 3.

Theorem 1.1 The function D : 2X × 2X → R is a metric.
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Proof. We have D (A,B) ≥ 0 for any A,B ∈ 2X because the infimum
and supremum are taken for non-negative numbers.

10 Let D (A,B, ) = 0. Then sup
x∈A

ρ (x,B) = 0 and sup
y∈B

ρ (y, A) = 0 so

A ⊂ B = B and B ⊂ A = A. It follows then A = B.
20 D (A,B) = D (B,A) follows immediately from the definition.
30 D (A,C) ≤ D (A,B) +D (B,C).
d being a metric, we have d (x, z) ≤ d (x, y) + d (y, z) , ∀x, y, z ∈ X.

Using the properties of the infimum and supremum, we obtain

inf{d (x, z)| z ∈ C} ≤ d (x, y) + infz∈C d (y, z)
ρ (x,C) ≤ d (x, y) + ρ (y, C) ≤ d (x, y) +D (B,C)
ρ (x,C) ≤ inf{d (x, y)| y ∈ B}+D (B,C) = ρ (x,B) +D (B,C) ≤
D (A,B) +D (B,C)
sup{ρ (x,C)|x ∈ A} ≤ D (A,B) +D (B,C)
ρ (A,C) ≤ D (A,B) +D (B,C) .

We obtain similarly ρ (z, A) ≤ D (C,B)+D (B,A) and sup{ρ (z, A)| z ∈
C} ≤ D (A,B) +D (B,C).
It follows ρ (C,A) ≤ D (A,B) +D (B,C) , so D (A,C) ≤ D (A,B) +

D (B,C).
We have proved that

(
2X , D

)
is a metric space.

Theorem 1.2 For A,B ∈ 2X we have the equivalence

D (A,B) ≤ ε⇔
{
A ⊂ Vε (B)
B ⊂ Vε (A)

where Vε (A) = {x ∈ X| ρ (x,A) ≤ ε}.

Proof. D (A,B) ≤ ε⇔ ρ (A,B) ≤ ε and ρ (B,A) ≤ ε⇔
⇔ ∀x ∈ A, ∀y ∈ B : ρ (x,B) ≤ ε and ρ (y, A) ≤ ε⇐= ∀y ∈ B, ∀x ∈

A,
x ∈ Vε (B) and y ∈ Vε (A)⇔ A ⊂ Vε (B) and B ⊂ Vε (A).

Theorem 1.3 If B is a compact set, then A ⊂ Vε (B) iff V (x)∩B 6= ∅
for any x ∈ A.

Proof. A ⊂ Vε (B)⇔ ∀x ∈ A, ρ (x,B) ≤ ε ⇔ ∀x ∈ A,
inf{d (x, y)| y ∈ B} ≤ ε ⇔ ∀x ∈ A, ∃y0 ∈ B : d (x, y0) ≤ ε (B being

a compact set) ⇔ ∀x ∈ A, ∃y0 ∈ Vε (x) ∩ B ⇔ ∀x ∈ A, Vε (x) ∩ B 6= ∅.

Because a point-to-set mapping may be considered as a function with
values in 2Y , it is important to study the properties inherited by

(
2X , D

)
from (X, d). To prove the inheritance of the compactness we give at first
two lemmas.
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Lemma 1.1 If (X, d) is totally bounded,
(
2X , D

)
is totally bounded too.

Proof. Let ε > 0. We prove that there is an ε-net in 2X . Putting
ε′ = ε

2
, we obtain in X an ε′-net A = {a1, ..., an}. It follows that for any

x ∈ X there is ai ∈ A with d (x, ai) < ε′. Let H1, ..., Hk be the system
of all the non-void subsets of A. This system forms an ε-net in 2X .
Indeed, let M ∈ 2X ; let i be the index of the subset Hi = {x ∈ A|

d (x,M) < ε′}. Because d (x,M) < ε′, for any x ∈ Hi, we have that
ρ (Hi,M) ≤ ε′. For y ∈ M arbitrarily chosen, there is aj ∈ A with
d (y, aj) < ε′; from the construction of Hi, we have aj ∈ Hi. It follows
that d (y,Hi) ≤ ε′ for any y ∈ M , hence ρ (M,Hi) ≤ ε′. The fact
that ρ (Hi,M) ≤ ε′ and ρ (M,Hi) ≤ ε′ implies D (Hi,M) ≤ ε′ < ε, so
{Hi}i=1,k is an ε-net in 2X ; the space 2X is then totally bounded.

Lemma 1.2 If the space (X, d) is complete,
(
2X , D

)
is also complete.

Proof. Let (An)n∈N be a fundamental sequence in 2X and A = {x ∈ X|
∀V ∈ V (x) ,∀n0 ∈ N, ∃n > n0 such that V ∩An 6= ∅} (A is the superior
limit of the sequence of sets in the sense of Kuratowski).
We shall prove that A is the limit of the sequence (An)n∈N in the

space
(
2X , D

)
.

Let ε > 0 and ε′ = ε/3. The sequence (An)n∈N being fundamental,
there is nε ∈ N such that D (An, Anε) < ε′,∀n > nε. We prove at first
that D (A,An) ≤ 2ε′.

a) Let x ∈ A; for n defined above, there is a number n > nε such that
B (x, ε′)∩An 6= ∅; hence we obtain an ∈ An with d (x, an) < ε′. It follows
that ρ (x,Anε) = d (x,Anε) ≤ d (x, an) +d (an, Anε) < ε′+D (An, Anε) <
2ε′, so ρ (x,Anε) < 2ε′ for any x ∈ A.

b) Let x ∈ Anε . We denote nk = nε′/2k , considering nk > nk−1.
We obtain xn0 , xn1 ,... in the following way:

xn0 = x ∈ An0 = An.

For xnk ∈ Ank , we take xnk+1 ∈ Ank+1, d
(
xnk+1 , xnk

)
< ε′

2k
(this is possi-

ble, (An)n∈N being a fundamental sequence).
We have d (xnm , xnk) <

ε′

2k−1 , ∀m > k, k ≥ 0. It follows that (xnk)k∈N
is a fundamental sequence in the complete space (X, d), so there is y =
lim
k→∞

xnk ∈ A.
For k = 0, we have d (xnm , x) < 2ε′, ∀m ∈ N. When m → ∞, we

obtain d (y, x) ≤ 2ε′. It follows that ρ (x,A) = d (x,A) ≤ 2ε′, ∀x ∈ Anε.
The results from a) and b) imply that D (A,Anε) ≤ 2ε′.
For n > nε we haveD (A,An) ≤ D (A,Anε)+D (Anε , An) < 2ε′+ε′ =

ε so D (A,An) < ε and the sequence (An)n∈N converges to A in
(
2X , D

)
.
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Using Lemma 1.1, Lemma 1.2 and Th. 8.17, Ch. I we obtain.

Theorem 1.4 If the metric space (X, d) is compact, then
(
2X , D

)
is

also compact.

2 The Vietoris finite topology

In this section are exposed some topologies on systems of subsets of a
topological space (X, T ). The chosen system is the family of the non-
void closed sets, which will be denoted by 2X . One could topologize
similarly the system A (X) of the non-void subsets of X, but the ob-
tained topological space would not have suitable separation properties.
So, in this section 2X denotes the non-void closed subsets of X.
An important topology on 2X is the Vietoris finite topoligy. To

introduce this topology, we give the following definition.

Definition 2.1 Given the system (Ai)i=1,n of non-void subsets of X, we

define the set 〈A1, ..., An〉 = {M ∈ 2X
∣∣M ⊂

n⋃
i=1

Ai, M ∩ Ai 6= ∅, i =

1, n}.

Theorem 2.1 The sets 〈A1, ..., An〉, with Ai, i = 1, n non-void open
subsets of the topological space X form a basis for a topology on 2X .

Proof. We prove the theorem using Th. 2.2, Ch. I.
Let M ∈ 2X , we have M ∈ 〈X〉, so 2X ⊂ 〈X〉. It follows that

2X = 〈X〉.
Let now U = 〈A1, ..., An〉 and V = 〈B1, ..., Bm〉. We denote A =

n⋃
i=1

Ai and B =
m⋃
j=1

Bj. We have U ∩ V = {M ∈ 2X
∣∣M ⊂ A ∩ B,

M ∩ Ai 6= ∅, i = 1, n, M ∩Bj 6= ∅, j = 1,m} =

{M ∈ 2X
∣∣M ⊂

n⋃
i=1

m⋃
j=1

[(Ai ∩B) ∪ (A ∩Bj)] , M ∩ (A ∩Bj 6= ∅) , j =

1,m, M ∩ (Ai ∩B) 6= ∅, i = 1, n} =
〈A1 ∩B, ..., An ∩B,A ∩B1, ..., A ∩Bm〉.

Definition 2.2 The topology generated by (〈A1, ..., An〉) is called the Vi-
etoris finite topology.

Before studying the properties of this topology, we introduce two
other topologies on 2X , which will serve to characterize the semiconti-
nuity of mappings.
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Theorem 2.2 The sets {A ∈ 2X
∣∣A ⊂ U}, where U is an open set in

X form a basis for a topology on 2X .

The proof is analogous to that of Th. 2.1.

Definition 2.3 The topology generated by the basis considered in Th.
2.2 is called the upper semi-finite topology.

Theorem 2.3 The sets {A ∈ 2X
∣∣A ∩ U 6= ∅}, where U is an open set

in X form a subbasis for a topology on 2X .

The theorem is proved showing that the system of the finite inter-
sections of the considered sets determines a basis, following the method
from Th. 2.1.

Definition 2.4 The topology generated by the subbasis considered in Th.
2.3 is called the lower semi-finite topology.

In the following we consider some important properties of 2X en-
dowed with the Vietoris finite topology.
The next two theorems give a method to construct closed sets in 2X .

Theorem 2.4 If A ∈ 2X , the set {E ∈ 2X
∣∣E ⊂ A} is closed in 2X .

Proof. If A ∈ 2X , it is a closed set and {XA is open; but
{2X{E ∈ 2X

∣∣E ⊂ A} = {E ′ ∈ 2X
∣∣E ′ ∩ {XA 6= ∅} =

〈
X, {XA

〉
, so

it is open. It follows that the set mentioned in the theorem is closed.

Theorem 2.5 If A ∈ 2X , the set {E ∈ 2X
∣∣E ∩A 6= ∅} is closed in 2X .

Proof. If A is closed, {XA is open; {2X{E ∈ 2X
∣∣E ∩ A 6= ∅} =

{E ′ ∈ 2X
∣∣E ′ ⊂ {XA} =

〈
{XA

〉
, hence the given set is closed.

We give in the following some separation properties for 2X .

Theorem 2.6 The space 2X is T0.

Proof. Let A,B ∈ 2X , A 6= B; there is then x ∈ B \ A (or x ∈ A \ B).
We have B ∈

〈
X, {XA

〉
and A /∈

〈
X, {XA

〉
; because

〈
X, {XA

〉
is open

in 2X , it follows that 2X is T0.

Theorem 2.7 If X is a T1-space, 2X is T1 too.

Proof. Let A, B ∈ 2X , A 6= B and x ∈ B \ A. X being T1, {x} is a
closed set (Th. 3.1, Ch. I), so {X{x} is open in X. The next sets, which
are open in 2X ,

〈
X, {XA

〉
and

〈
{X{x}

〉
fulfil the conditions:

B ∈
〈
X, {XA

〉
, A /∈

〈
X, {XA

〉
and A ∈

〈
{X{x}

〉
, B /∈

〈
{X{x}

〉
.

It follows that 2X is a T1-space.
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Remark 2.1 The fact that 2X is T1 does not imply that X is T1. Indeed,
for X = {x, y} endowed with the indiscrete topology (which is not T1),
2X = 〈X〉 is a T1-space.

The next theorem gives a fundamental system of neighbourhoods of
{x} ∈ 2X , X being a T1-space.

Theorem 2.8 If (Uα)α∈A is a fundamental system of neighbourhoods of
x ∈ X, then (〈Uα〉)α∈A is a fundamental system of neighbourhoods of
{x} in 2X , X being considered T1.

Proof. Let V ∈ V ({x}) in 2X ; there is then an open set U such that
{x} ∈ U ⊂ V . The set U is a union of elements of the basis

〈
A1, ..., Anj

〉
,

j ∈ J , so there is an index j ∈ J such that x ∈ Ai, i = 1, nj. We obtain

x ∈
nj⋂
i=1

Ai, so
nj⋂
i=1

Ai ∈ V (x). Because (Uα)α∈A is a fundamental system

of neighbourhoods of x, there is α ∈ A such that x ∈ Uα ⊂
nj⋂
i=1

Ai.

We prove that 〈Uα〉 ⊂ V ; indeed, for M ∈ 〈Uα〉 we have M ⊂

Uα ⊂
nj⋂
i=1

Ai, so M ∩ Ai 6= ∅, i = 1, nj and M ⊂
nj⋃
i=1

Ai. It follows that

M ∈
〈
A1, ..., Anj

〉
⊂ U ⊂ V and the system (〈Uα〉)α∈A is a fundamental

system of neighbourhoods for {x}.
Until the end of this section we consider that the topological space

X is T1.

Theorem 2.9 The topological space X is T3 iff 2X is a Hausdorff space.

Proof. 1. Let X be a T3 space and A,B ∈ 2X , A 6= B, x ∈ B \ A (or
x ∈ A \ B). For x and A there are two open sets U and V such that
A ⊂ U , x ∈ V and U ∩ V = ∅. We have then A ∈ 〈U〉, B ∈ 〈X, V 〉 and
〈U〉 ∩ 〈X, V 〉 = ∅, so 2X is a Hausdorff space.
2. We suppose that X is not T3, so there is M ∈ 2X and x /∈

M such that x and M cannot be separated with open sets in X. We
consider the sets M and M ∪ {x}, which are elements in 2X . Let G
and G′ arbitrary open sets in 2X with M ∈ G and M ∪ {x} ∈ G′.
We have G = ∪ 〈A1, ..., An〉 and G′ = ∪ 〈B1, ..., Bm〉. It follows that
M ⊂

n⋃
i=1

Ai = A and x ∈ Bj, j = 1,m. X being not T3, we have

A∩Bj 6= ∅, j = 1,m. We have G∩G′ = ∪ (〈A1, ..., An〉 ∩ 〈B1, ..., Bm〉) =
∪ 〈A1 ∩B, ..., An ∩B,A ∩B1, ..., A ∩Bm〉 6= ∅, so 2X is not Hausdorff.
It follows that X is T3.
The next theorem concerns the compactness of the spaces X and 2X ,

generalizing Th. 1.4 where X and 2X are metric spaces.
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Theorem 2.10 The topological space X is compact iff 2X is compact.

Proof. 1. Let X be a compact space. For the open sets A and B,
with B ⊂ A we consider K (A,B) = {C ∈ 2X

∣∣C ⊂ A or C ∩ B 6=
∅}. The system (K (A,B))A,B∈T is a subbasis of the topology on 2X ,

because 〈A1, ..., An〉 = K

(
n⋃
i=1

Ai, ∅
)
∩
(

n⋂
i=1

K (X,Ai)

)
. We prove the

compactness of 2X using Th. 7.5, Ch. I.
Let (K (Aα, Bα))α∈A a covering of 2X . For x ∈ X, we have {x} ∈ 2X

(X is supposed to be T1) and there is α ∈ A such that x ∈ K (Aα, Bα) ;
it follows that x ∈ Aα or x ∈ Bα and, because of Bα ⊂ Aα, x ∈ Aα.
We have then X =

⋃
α∈A

Aα; X being a compact space, there is a finite

subcovering (Ai)i=1,n. We show that (K (Ai, Bi)) , i = 1, n is a finite
covering of 2X .
Let M ∈ 2X ; if M * Ai, i = 1, n, we have M ∩ {XAi 6= ∅, i = 1, n,

hence
n⋂
i=1

{XAi 6= ∅, contradiction with X =
n⋃
i=1

Ai. It follows that

there is i ∈ {1, ..., n} with M ⊂ Ai, so M ∈ K (Ai, Bi). We have

2X =
n⋃
i=1

K (Ai, Bi) and so 2X is compact.

2. Let 2X be compact and (Uα)α∈A an open covering of X. Then
(〈X,Uα〉)α∈A is an open covering of 2X , so it will have a finite subcovering
(〈X,Ui〉)i=1,n. Then (Ui)i=1,n is a finite covering of X, hence X is a
compact space.

Corollary 2.1 The space X is compact Hausdorff iff 2X is compact
Hausdorff.

Proof. 1. Let X be a compact Hausdorff space; by Th. 7.10, Ch. I,
X is T3. Th. 2.9 and 2.10 imply then that 2X is a compact Hausdorff
space.
2. We consider now that 2X is a compact Hausdorff space. Using

Th. 2.9 and 2.10, it follows that X is compact and T3; X being also T1,
it follows that X is also Hausdorff.
If X satisfies one of the axioms of countability, it does not follow

generally that 2X has the same property. However, the space K (X) =
{E ∈ 2X

∣∣E compact set} with the finite Vietoris topology preserves
these properties, as the next theorems show.

Theorem 2.11 The space X satisfies the first countability axiom iff
K (X) has the same property.
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Proof. 1. Let X satisfy the first countability axiom; by Remark 2.3,
Ch. I any x ∈ X has a fundamental system of open neighbourhoods
(Bi (x))i∈N with Bi (x) ⊂ Bj (x), i > j. Let M ∈ K (X) ; for any i ∈ N,
the family (Bi (x))x∈M is an open covering for M , and we can obtain
a finite covering (Bi (xik))k=1,mi

. We prove that the countable system
(Bi (xik))k=1,mi,i∈N produces a fundamental system of neighbourhoods
for M .
Let 〈A1, ..., An〉 be a neighbourhood for M ∈ K (X), so

M ⊂
n⋃
j=1

Aj; there will be than an index i ∈ N such that

M ⊂ 〈Bi (xi1) , ..., Bi (ximi
)〉 ⊂ 〈A1, ..., An〉, hence the system

(〈Bi (xi1) , ..., Bi (ximi
)〉)i∈N is a countable fundamental system of neigh-

bourhoods.
2. LetK (X) satisfy the first countability axiom; then for any x ∈M ,

{x} has a countable fundamental system of neighbourhoods, let this
be (〈Bi1, ..., Bimi

〉)i∈N. We show that (Bik)k=1,mi,i∈N is a fundamental
system of neighbourhoods for x, which is also countable.
Let V ∈ V (x); we have {x} ⊂ V , so there is 〈Bi1, ..., Bimi

〉 ⊂ 〈V 〉
and containing {x}. This inclusion shows that there is a set Bij ⊂ V , so
(Bik)k=1,mi

has the required property.

Theorem 2.12 The space X satisfies the second countability axiom iff
K (X) has the same property.

Proof. 1. Let X satisfy the second countability axiom and (Bi)i∈N a
countable basis. We show that the system B = (〈Bi1, ..., Bimi

〉) , which
is countable, generates a basis in 2X .
It suffi ces to prove that the sets 〈A1, ..., An〉 are unions of some

elements in B. Indeed, 〈A1, ..., An〉 can be written as a union by
M ∈ K (X), M ∈ 〈A1, ..., An〉 of elements like 〈Bi1, ..., Bimi

〉 chosen
such that M ⊂

⋃mi

j=1Bij,M ∩ Bij 6= ∅, j = 1,mi (it is possible since M
is compact).
2. Let (〈Bi1, ..., Bimi

〉)i∈N a countable basis in K (X) . We show that
(Bij)j=1,mi

is a basis in X. By Th. 2.3, Ch. I, (Bij)j=1,mi
is a basis iff the

class of the sets Bij which contain any x ∈ X is a fundamental system
of neighbourhoods for x.
Let x ∈ X and V ∈ V (x) ; we have {x} ⊂ V , so {x} ∈ 〈Bi1, ..., Bimi

〉 ,
⊂ 〈V 〉, for i ∈ N. It follows that there is Bij such that x ∈ Bij ⊂ V and
X satisfies the second countability axiom.
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3 Characterizations of the continuity for point-to-
set mappings

The first statement of this section refers to the continuity of point-to-set
mappings which are defined between metric spaces.

Theorem 3.1 Let X and Y be metric spaces and K (Y ) the family of
the non-void compact sets in Y ; F : X ( Y a point-to-set mapping
with compact values, such that F (x) 6= ∅ for any x ∈ X. Then F is
continuous iff the function f : X → K (Y ) given by f (x) = F (x),
for any x ∈ X is continuous, K (Y ) being endowed with the Hausdorff
metric.

Proof. 1. Let the point-to-set mapping F be continuous. For an arbi-
trary x0 ∈ X and ε > 0, we have obviously F (x0) ⊂ IntVε (F (x0));
F being u.s.co. at x0, there is η > 0 such that d (x, x0) < η im-
plies F (x) ⊂ IntVε (F (x0)) ⊂ Vε (F (x0)). We have for x satisfying
d (x, x0) < η that F (x) ⊂ Vε (F (x0)).

F (x0) is a compact set, so we can choose y1, ..., yn ∈ F (x0) such that
F (x0) ⊂

⋃n
i=1 IntVε/2 (yi). F being l.s.c. at x0, we obtain η′ such that

for x ∈ X with d (x, x0) < η′ we have IntVε/2 (yi) ∩ F (x) 6= ∅, i = 1, n.
Then Vε (y) ∩ F (x) 6= ∅, ∀y ∈ F (x0). Applying Th. 1.3 it follows that
F (x0) ⊂ Vε (F (x)), for x with d (x, x0) < η′.
For any x ∈ X with d (x, x0) ≤ min{η, η′} we have

D (F (x) , F (x0)) = D (f (x) , f (x0)) ≤ ε, hence f is a continuous func-
tion.
2. Let now f be a continuous function. We consider x0 ∈ X and G

an open set in Y with F (x0) ⊂ G. Let ε′ = inf{d (F (x0) , x)|x ∈ {YG}
and ε < ε′; then Vε(F (x0)) ⊂ G. f being continuous, there is η > 0
such that d (x, x0) < η implies F (x) ⊂ Vε (F (x0)) ⊂ G, so F is u.s.co.
If G is an open set with G∩F (x0) 6= ∅, there is then y0 ∈ F (x0)∩G.

We obtain ε > 0 such that Vε (y0) ⊂ G; f being continuous, it follows
that there is η > 0 such that d (x, x0) < η implies F (x) ∩ Vε (y0) 6= ∅,
hence F (x) ∩G 6= ∅. It follows that F is l.s.c.
This theorem and Th. 8.17, Ch. I give

Corollary 3.1 If X and Y are metric spaces and X is compact, any
continuous point-to-set mapping F : X ( Y is uniformly continuous, in
the sense that for any ε > 0 there is η > 0 such that d (x, x′) < η implies
D (F (x) , F (x′)) < ε.

The next theorems refer to point-to-set mappings defined between
arbitrary topological spaces.
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Theorem 3.2 The mapping F : X ( Y which is pointwise closed with
F (x) 6= ∅ for any x ∈ X is continuous iff the function f : X → 2Y given
by f (x) = F (x) is continuous, 2Y being endowed with the finite Vietoris
topology.

Proof. 1. Let F be continuous and G ⊂ 2Y an open set, hence G =⋃
i∈I
Bi, where Bi = 〈Ai1, ..., Aini〉. Because f−1 (G) = f−1

(⋃
i∈I
Bi

)
=⋃

i∈I
f−1 (Bi), it is suffi cient to prove that f− (Bi) is open in X.

We have f−1 (Bi) = {x ∈ X| f (x) ∈ Bi} =
⋃

A∈Bi
{x ∈ X| f (x) =

A,A ⊂
ni⋃
j=1

Aij, A ∩ Aij 6= ∅, j = 1, ni}.

If all the sets in the union are void, f−1 (B) is open. Let now x
be an element of the set corresponding to the index i. We have then

F (x) = f (x) ⊂
ni⋃
j=1

Aij; F being u.s.c., there is V0 ∈ V (x) such that

f (V0) = F (V0) ⊂
ni⋃
j=1

Aij.

For j = 1, ni we have F (x) ∩ Aij = f (x) ∩ Aij 6= ∅; F being l.s.c.
there will be Vj ∈ V (x) such that f (x′) ∩ Aj 6= ∅ for any x′ ∈ Vj.
Let V =

ni⋂
j=1

Vj; we have obviously V ∈ V (x) and for any x′ ∈ V

we have f (x′) ⊂
ni⋃
j=1

Aj, f (x′) ∩ Vj 6= ∅, j = 1, ni. It follows that

V ⊂ f−1 (Bi) so f−1 (Bi) is an open set. We obtain by Th. 6.3, Ch. I,
that f is continuous.
2. Let f be continuous. We show that F is u.s.c. and l.s.c. Let

x0 ∈ X and U ⊂ Y an open set with F (x0) ⊂ U . Then F (x0) ∈ 〈U〉; f
being continuous, V = f−1 (〈U〉) is an open set with x0 ∈ V . Let x ∈ V ,
so f (x) ∈ 〈U〉; it follows that F (x) = f (x) ⊂ U , hence F is u.s.c.
Let now x0 ∈ X and U ⊂ Y an open set with F (x0) ∩ U 6= ∅, so

F (x0) ∈ 〈U, Y 〉. Because f is continuous, V = f−1 (〈U, Y 〉) is open in
X and obviously x0 ∈ V . Let now x ∈ V ; we have f (x) ∈ 〈U, Y 〉, hence
f (x) ∩ U 6= ∅. Because f (x) = F (x) we obtain that F is l.s.c.
The next two theorems have analogous proofs.

Theorem 3.3 The mapping F : X ( Y which is pointwise closed with
F (x) 6= ∅ for any x ∈ X is u.s.c. iff the function f : X → 2Y is
continuous, 2Y being endowed with the upper semifinite topology.
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Theorem 3.4 The mapping F : X ( Y which is pointwise closed with
F (x) 6= ∅ for any x ∈ X is l.s.c. iff the function f : X → 2Y is
continuous, 2Y being endowed with the lower semifinite topology.

If F is pointwise compact and we denote by K (X) (respectively
K (Y )) the family of the non-void compact subsets of X (respectively
Y ) endowed with the finite Vietoris topology, we obtain

Theorem 3.5 If F : X ( Y is continuous and pointwise compact, then
the function F̂ : K (X)→ K (Y ) given by F̂ (A) = F (A) is continuous.

Proof. The fact that F̂ (A) ∈ K (Y ) is a consequence of Th. 2.9, Ch.
III.
We show that F̂−1 (B) is an open set, B being an element of the

basis. Let B = 〈A1, ..., An〉. We have

F−1 (B) = {M ∈ K (X)|F (M) ⊂
n⋃
i=1

Ai, F̂ (M) ∩ Ai 6= ∅, i = 1, n} =

{M ∈ K (X)|F (M) ⊂
n⋃
i=1

Ai, F (M) ∩ Ai 6= ∅, i = 1, n}.

Let L = {x ∈ X|F (x) ⊂
n⋃
i=1

Ai} and Li = {x ∈ X|F (x) ∩ Ai 6= ∅},

i = 1, n; these sets are open in X, by Th. 2.5, Ch. III and Th. 1.5,
Ch. III. We obtain F̂−1 (B) = {M ∈ K (X)|M ⊂ L,M ∩ Li 6= ∅, i =
1, n} = 〈L〉 ∩ 〈X,L1, ..., Ln〉, which is an open set in K (X). It follows
that the function F is continuous.

4 Point-to-set mappings in mathematical program-
ming and optimal control

The mathematical programming is a domain where point-to-set mapping
appear frequently. W.I. Zangwill [7, 36] looks to be the first who ap-
plied constantly the idea of the point-to-set mappings in mathematical
programming.
One finds point-to-set mappings even in the algorithms for linear

problems. For example, let us consider the Simplex method and suppose
that the point x was generated, so it is a basic feasible solution of the
linear system of inequalities. We have now to generate the next point y,
which is also a basic solution. This successor is not well-defined, because
the variable which enters the basis can be chosen in different ways. The
same ambiguity concerning the successor of a point appears in other
algorithms too. So we are obliged to consider methods which generate a
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point y from a certain set. The set of all possible successors for a point
x will be well determined.
Point-to-set mappings are of greater importance in the problems of

nonlinear programming. We analyze first a general problem of nonlinear
programming and we insist then on an example.
The general problem of the nonlinear programming is this: let the

continuous function f : Rn → R be minimized on the set of the points
x ∈ Rn which satisfy the system of inequalities gi (x) ≤ 0, i = 1,m.
The set F = {x ∈ Rn| gi (x) ≤ 0, i = 1,m} is called the feasible set (we
suppose F 6= ∅). A point x ∈ F which minimizes f is called an optimal
point for the considered problem.
The problems of this type are usually solved by algorithmic methods.

An algorithm is an iterative procedure, which determines a successor
xk+1 for a point xk already obtained. Sometimes it is possible to define
a function h : Rn → Rn such that xk+1 = h (xk). This function defines
then the iterative procedure. In lots of cases such a function cannot
be defined, because for a given x there is not a unique value h (x). In
these cases it is necessary to introduce point-to-set mappings. Sometimes
the procedure depends on the number k of the iterations already made.
There is a large class of algorithms where this dependence does not
appear; the procedures are then called antonomous.
We can describe now an iterative autonomous method generated by a

point-to-set mapping H : Rn ( Rn. For a given x0 ∈ Rn, let us suppose
that x1, ..., xk have been generated. If H (xk) = ∅, the procedure stops.
If H (xk) 6= ∅, any y ∈ H (xk) is a possible value for xk+1 and we obtain
the successor xk+1 ∈ H (xk).
Some of the simplest algorithms refer to the finding of the uncon-

strained minimum for a function f : Rn → R. An important class of
such algorithms, named the unconstrained feasible directions algorithms,
is a class of convergent algorithms. Any algorithm in this class has a con-
tinuous function b : Rn → Rn which serves as a direction. For a point
xk, the successor xk+1 is generated by maximizing f in the direction
b (xk).
If 5f (x) denotes the gradient of f at x, a point x is called a so-

lution if 5f (x) · b(x) = 0. We define a point-to-set mapping H :
Rn ( Rn taking y ∈ H (x) iff y is an optimal solution for the prob-
lem min{f (x+ tb (x))| t > 0}.
The unconstrained feasible directions algorithm is then described as

follows. If xk is a solution, the procedure stops. If not, we consider a
successor xk+1 ∈ H (xk) and we test if it is a solution.
The convergence is assured if the following conditions are fulfilled:
10. either the problem has no solutions, or the set {x ∈ Rn| f (x) ≤
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f (x0)} is compact for any x0 ∈ Rn.
20. if x is not a solution, then y ∈ H (x) implies f (x) < f (x).
An example of unconstrained feasible directions algorithm is the

Cauchy method for the case when f is a convex and differentiable func-
tion, and b = 5f . We consider that the set {x| f (x) ≤ f (x0)} is
compact for any x0 ∈ Rn.
We consider the point-to-set mappings G : Rn → Rn, G (x) =

{y ∈ Rn| y = x + t 5 f (x) , t ∈ (0,+∞)} and H : Rn → Rn,
H (x) = {y ∈ G (x)| f (y) = min

z∈G(x)
f (z)}. The point-to-set mapping H

is the one that describes the algorithms, in the sense that xk+1 ∈ H (xk).

Theorem 4.1 The point-to-set mapping G : Rn ( Rn, G (x) =
{y ∈ Rn| y = x + t 5 f (x) , t ∈ (0,+∞)} is l.s.c. and closed on
Rn \ {x ∈ Rn| 5 f (x) = 0}.

Proof. We prove first that G is l.s.c.
Let xk → x0 (k →∞) and y0 ∈ G (x0); we prove that there is

a sequence (yk)k∈N, yk ∈ G (xk), yk → y0. Because y0 ∈ G (x0),
we have y0 = x0 + t0 5 f (x0). For any xk we obtain G (xk) =
{y| y = xk + t 5 f (xk)}. We choose a sequence (tk)k∈N, tk → t0,
tk > 0 and consider yk = xk + tk 5 f (xk) ∈ G (xk). It follows that
lim
k→∞

yk = lim
k→∞

(xk + tk 5 f (xk)) = x0 + t0 5 f (x0) = y0. The sequence

(yk)k∈N has the required properties.
We prove that G is a closed mapping.
Let xk → x0 (k →∞) and yk ∈ G (xk), yk → y0. We prove that

y0 ∈ G (x0). The fact that xk → x0, yk → y0 and yk = xk + tk 5 f (xk)
implies tk 5 f (xk) → y0 − x0. We obtain than tk 5 f (x0) → y0 − x0,
hence there is a t0 such that t05 h (x0) = y0− x0 and tk → t0 (k →∞).
It follows that y0 = x0 + t05 h (x0) ∈ G (x0) and the proof is over.

Theorem 4.2 The point-to-set mappingH : Rn ( Rn given byH (x) =
{y ∈ G (x)| f (y) = min

z∈G(x)
f (z)} is a closed mapping on R \ { x ∈ Rn|

5f (x) = 0}.

Proof. We prove that xk → x0, yk → y0 and yk ∈ H (xk) imply y0 ∈
H (x0), which is equivalent with y0 ∈ G (x0) and f (y0) = min

y∈G(x0)
f (y).

Because G is a closed mapping, it follows immediately that y0 ∈
G (x0). We suppose now that f (x0) 6= min

y∈G(x0)
f (y), so there is z0 ∈

G (x0) such that f (y0) > f (z0). We have now xk → x0, z0 ∈ G (x0) ; G
being l.s.c., there is a sequence (zk)k∈N, zk ∈ G (xk), zk → z0. f (z0) =
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lim
k→∞

f (zk) ≥ lim
k→∞

f (yk) = f (y0), contradiction with f (y0) > f (z0). It

follows that H is a closed mapping.
Point-to-set mappings appear also in the problems concerning the

optimal control. We give an example of optimal control [18] and we
indicate a continuous point-to-set mapping related to it.
An optimal control problem includes:
1. the process. The process connects the state x (t) and the controller

u (t) by means of a differential equations system
(1) ẋ = A (t)x+B (t)u+ v (t) ,

where A (t) is a n×nmatrix, B (t) a n×mmatrix and v (t) a column vec-
tor in Rn, all of them being measurable on R; their norms |A (t)| , |B (t)|
and |v (t)| are integrable on any compact interval of R.
2. the initial and target states. The initial state x0 is given and the

target state is a fixed set G. Sometimes the target state is a compact
set G (t) which varies when t ∈ [τ0, τ1].
3. the class of the admissible controllers 4. This is com-

posed of bounded measurable functions defined on an interval
[t0, t1] (t0 < t1 < +∞) with values in a non-void set Ω ⊂ Rm. An answer
or a solution x (t) is an absolutely continuous function x (t) defined on
[t0, t1] with values in Rn which satisfies the system (1), with x (t0) = x0
and x (t1) ∈ G (t1).
4. the cost (objective) functional. It is an accepted criterion for the

effi ciency of the control u from 4. If 4 is the class of the controllers
that take x0 in the final state, the cost is often defined by
(2) C (u) =

∫ t1
t0
f (t, x (t) , u (t)) dt,

where f is a continuous function.

Definition 4.1 A controller u∗ ∈ 4 is called optimal related to the cost
functional C if C (u∗) ≤ C (u) for any u ∈ 4.

In this problem we find a point-to-set mapping whose continuity will
be proved.

Definition 4.2 Let a control linear system (1) be given having as initial
state x0 and as controllers the functions u : [t0, t1] → Ω, x being the
corresponding answer which satisfies x (t0) = x0. The attainability set
K ((1) ,Ω, x0, t0, t1) = K (t1) is the set of the final points x (t1) in Rn.
We denote also K (t0) = {x0}.

We can prove now the next theorem

Theorem 4.3 Let a linear process governed by (1), with Ω compact
convex set, initial state x0 and controllers u : [t0, t1] → Ω. Then the
attainability set K (t1) is compact, convex and varies continuously with
t1, for t1 ≥ t0.
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Proof. a) K (t1) is a compact set for any t1 ≥ t0. Let (xr (t1))r∈N a
sequence in K (t1) ⊂ Rn; let ur be the corresponding controller for xr,
r ∈ N. The parameters variation formula gives

xr (t) = φ (t)x0 + φ (t)

t∫
t0

φ (s)−1 [B (s)ur (s) + v (s)] ds,

where φ is the matrix of the fundamental solutions of the homogenous
system ẋ = A (t)x, with φ (t0) = E, E denoting the identical matrix
n× n.
The set of the controllers 4 is weakly compact, so we can obtain a

subsequence uri weakly convergent to a controller u ∈ 4, i.e.

lim
is1∞

t∫
t0

φ (s)−1B (s)uri (s) ds =

t∫
t0

φ (s)−1B (s)u (s) ds.

Let x be the answer to the controller u; we have for any t ∈ [t0, t1]

x (t) = φ (t)x0 + φ (t)

t∫
t0

φ (s)−1 [B (s)u (s) + v (s)] ds = lim
i→∞

xri (t) .

We proved the existence of a convergent subsequence of (xr (t1))r∈N
to x (t1) ∈ K (t1), so K (t1) is a compact set.
b) K (t1) is a convex set.
Let x0 (t1) and x1 (t1) ∈ K (t1) and u0, u1 the corresponding con-

trollers. We define for λ ∈ [0, 1] the controllers uλ (t) = (1− λ)u0 (t) +
λu1 (t), t ∈ [t0, t1] which are also in 4. The answer xλ to uλ is given by

xλ (t) = φ (t)x0 + φ (t)

t∫
t0

φ (s)−1 [B (s)uλ (s) + v (s)] ds.

It follows easily that xλ (t1) = (1− λ)x0 (t1) + λx1 (t1) ∈ K (t1), so
K (t) is a convex set.
c) K (t1) varies continuously with t1 ≥ t0.
We prove that for any ε > 0, there is δ > 0 such that

D (K (t1) , K (t2)) < ε for |t1 − t2| < δ, where D is the Hausdorffmetric.
Let t1 ≥ t0 and û ∈ 4 a controller with the answer x̂ on t0 ≤ t ≤
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t1 + 1. We have then for t1, t2 ∈ (t0, t1 + 1)

x̂ (t2)− x̂ (t1) = φ (t2)

t2∫
t0

φ (s)−1 [B (s) û (s) + v (s)] ds

− φ (t2)

t1∫
t0

φ−1 (s) [B (s) û (s) + v (s)] dt

+ [φ (t2)− φ (t1)]

 t1∫
t0

φ (s)−1 [B (a) û (s) + v (s)] ds+ x0

 .

On [t0, t1 + 1] the continuous functions φ and φ−1 are bounded; let C1 >
0 such that |φ (t)| < C1,

∣∣φ (t)−1
∣∣ < C1. Because of the integrability of

|B (t)| and |v (t)|, and the boundedness of |û (t)| we have

|x0|+
t1+1∫
t0

∣∣φ (s)−1
∣∣ · |B (s)u (s) + v (s)| ds < C2.

We have also, for an arbitrary ε, that there is δ > 0 such that∣∣∣∣∣ t∫t1 φ (s)−1 [B (s)u (s) + v (s)] ds

∣∣∣∣∣ < ε
2C1

and

|φ (t)− φ (t1)| ≤
∣∣∣∣∣ t∫t1 A (s)φ (s) ds

∣∣∣∣∣ < ε
2C2

for |t− t1| < δ.

For |t2 − t1| < δ we obtain

|x̂ (t2)− x̂ (t1)| ≤ |φ (t2)| ·
∣∣∣∣∣ t2∫t1 φ (s)−1 [B (s) û (s) + v (s)] ds

∣∣∣∣∣+
+ |φ (t2)− φ (t1)|

[
t1+1∫
t0

∣∣φ (s)−1
∣∣ · |B (s) û (s) + v (s)| ds+ |x0|

]
,

hence |x̂ (t2)− x̂ (t1)| < C1
ε
2C1

+ C2
ε
2C2

= ε.
Let now x̂ (t1) ∈ K (t1) corresponding to the controller û on [t0, t1].

We define û on [t0, t1 + 1] taking û (t) = û (t1) for t ∈ [t1, t1 + 1] ; let x̂
be the answer. We have then x̂ (t2) ∈ K (t2) and |x̂ (t2)− x̂ (t1)| < ε.
Similarly, if x̃ (t2) ∈ K (t2) corresponds to the controller ũ on [t0, t2],

we extend ũ at [t0, t1 + 1] and we obtain |x̃ (t1)− x̃ (t2)| < ε. We obtain
D (K (t1) , K (t2)) < ε for |t1 − t2| < δ, where 0 < δ < 1 depends on ε
and t.
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We prove analogously that D (K (t0) , K (t1)) < ε for |t1 − t0| < δ.
The point-to-set mapping K : [t0,+∞] ( Rn, having non-void com-

pact values and appearing in a natural way in the problem of optimal
control, is a continuous mapping.
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