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BXISTENCE AND UNJGUENESS OF SOLULIONS OF THE DARBOUX PROBLIM
FOR PARTIAL DIFFERENTIAL-FUNCTIONAL EQUATIONS

by
Mira~Crigstiana Anisiu

The subject of Lhis paper is the Darboux problem’for functionsl
equations of hyperbolic type. Such problems were first studied Uy
D.V.Ionescu [4] and many contributions are to be found in some re-
cent papers fl] ’ [2] ' [5] - ]:8‘];,

We conslder equations of the following type
&9 u,q,(x.y) = £(x,¥y,u(x,7),u(g(x,5)))
(2w lxy) = £x,7, u(x, 3050, (5,30, uy (%70 yulsy (20720, u, (5, (720,
uy(sz,(x,y))).

For T;, Tp2 0 and o(,{ﬁ v O we denote o
(3) D= [0,a] R[O,/s] and D, = ( [-15,0] = [.mz,(.,‘}w( {0, «Jx
x[-‘l‘z,o] ) '
() B=[0,9)2ana 5, = ([-1;,0] 2 [~T,, %))V ([0, =) a[-1,,0] )e

Ae Wé stﬁdy at first the case when the equation is considered on
the compact D with boundary conditions on D, ( mot only on ( [o,&]x
{0} ruU(lo} « [O,P] ), which corresponds to Ty = T, = 0 ) in or-
der to admit also retarded arguments. The boundary condition is
(5)  ulxy) = px3), (%,7)€ Dy

A solution of the problem (1) (or (2)) with tkhe condit..ion (5) 1is

a function U € C(DU D,) (or U & CI(DUDO)) such that ny exists on D

and U satisfies the e_q&ation (L) Cor (2)) vfoxf any (x,y)& D 3nd the
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“Uhdigion (5) on Dye
All the functions whose range is no't mentioned hav? real values.
THIORES 1o LE ' |

(4) rec(px R?) satisfies a Lipschits condition with respect o

18 lﬂst two_variables .

l‘"(.\,y,zl, ) - f(lylﬂtl’tg)( Iy [ Zl-‘tlf + I12 ] Zg-tal )

Le) sec(m), d.D-—#DUDo, g = (h,k) with h(x,y) + kix,y) & x+y+a

2L
28 5 <ol } 1n-L—--1 e >y )

then the problem (1) with the condition (5) has in O(DUD ) s unique

\1‘~1tion.
Proof. We consider the Banach space C(DUD ) with the Bislecki

Vype norm .
(s> Pal = max §{uCey)l exp(-t(x+y)) & (x,3) € DUD‘;’]
8R4 the operator T : C(D UD&) —>G(.DUDO) gi(re_n by

{

2 ’ N
(73 { TGy = SE £(r,8,u(z,9),u(g(r,8)))drds + Y (x,7:, 1f (x:7)€
. 3 .
€D
Tu(x,y) = qf(x,y), for (x,7) € Dos
‘L’hebe .
8 ' ‘ -
B 4 m) = 50 + $O,7) = ¢(0,0), (e Ds

The problem is equivalent to the equaticn Tu = u., We prove that
T is a contraction and then the Banach fixed point theorem guaran=-
PSS the existence and u.niquenéss of a fixed point for T.

Xet u, v € ¢(DUD). If (x,¥) € Dgs» Wwe have Tu(x,y) - Tv(x,y)

# O¢ For (x,y) € D,

I‘Tu(x.:r) - Iv(x,7) | < ﬁ: (T | u(e,s) - v(r,s) | +

oo -
f (1 u-v ] exp(t(xes)) +

Pt B

+L21°~(s(r,§)) - v(g(r,s))[}d.rds <



*

+ Iy la-v | exp(t(alz,o) + k(x,s)))deds s’»ﬁ"’(Ll itu~v § exp(t(rea)) +
¢ Dy Lu=v | emp(t(mbw)))d“d.- A -~< Iy + Lpexp(ta)) Hu-vil exp(t{ziy))

and therefore

| Pu-Tv | £ %:é(Ll + Loexp(ta) [ u-v .

The bypothesis on a makes l‘i'(Ll + Logxp(ta)) < 1.
. t “
REMAEK” Lo The maximum of the expression that denotes a majorant
for a is attained in the case when t.is the unique colution greater

than ';’afi of the eguation

If the right member of the equation (1) coptains only the func.
tis‘an( baving modified argument, i.e. the equation becomes '
(9 ug(xy) = (x,y,u(e(x,3)) ),
then we have

COROLLARY 1. If
(3) £ € C(DxR) is Lipschitz with respect to the last variable

| £(x,7,2) = £(x,7, 0| < L)zt
B ye oty '

(¢) g€ C(D), g § D= DUD

oo 6 = () with h(x,7) + k(x,7) <

£ ZHy+a, ac t.%, then the problem (9) with the conditien (5) has in
eyL
C(DUD ) a unique solution.

Proof. We may consider that £ satisties (a) from Theorem 1 with
I‘l = 0 &nd La' = L., The equation in Remaxk 1 becomes

2-=1n I:— 0 wi'i'.h the positive solution t = er_, fer which

2
%:m ig—- -&- and all the conditions in Theorem 1 ars savigfled. It

ell

follows that the problem (9) with the condition (5) has a unique



solution in G(DUD ).

Tor she probles (2) with the condition (5) we obtain

THEORZM 2. If
(a) 1 €C(Dr3%) satisrios a Lipsehitz condition with respect to
the lass six variables

® e
[ £0xy705q0000s85) = L(XyFobppeeartg)) € Iy ;Z:‘(zi -t |+ Lﬂ_z‘zﬁlzi -til

(b)  ¢gechny) and ¥ g 2ELSES, £(0,3,5140000Zg) = ¢ 1 (047,
1§<’¢;017—1:“'925) =¥ :Cy(x,O), (X,Y)GD, (211'0'126)6: RG
(€) 83 € C(D,)y 5y + D>DUDy, g = (hy,ks) with by (x,¥) + ky(x,5)<

&¥X 4y + a, i =1,3 and

22T £-Ly \/-5———‘ }
a 4*;uﬁi¥lnm't>lal+ Ll-l-Ll 3

then the p-otlen §22 with the condition 552 has in GISDQD ) a unigue

s0lutions.

Proof. In the Banach space Cl(DUDO) endowed with the norm
fufly = lulle Bu U+ 1 ug h, with -1 given by (6) we consider the

opevator 1 3 Cl(DUDO) - C(DV Do) given by

(Iu(:r:,y), = H‘ f(r,s,u(r,'s),ux(r,s)vuy(r.s‘),u(gl(r,a)),

s

(10) ‘ ux(g;z(r,s)).uy(s5(r.s)))d.rds + ¢ (x,3), for (x,7)€D

Tualx,7) = cf(x,y), for (x,y) €& Do
where lfo is defined by (&).
We have to show that the range of T is contained in Gl(D UDO). We
obtain ‘
CT\I)Z(X,D’) = gf(x)s|u(X|5).-acpuy(SBCX,S)))dﬂ + ‘fx(x,O), for

(x,y) &€ (Cy«] x (O, P] and
('l‘u.)x(x,y) = ?Z(x,y) for (x,y) € Do\ {(x,y) & Ut x=0 or y*-:O}.
The limits in the pointe of the form (x,,0) c» (0,7,) are the same
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for both expressions,in view of the condition (b). e have proved
that (Tu) e.C(DL)D ) and a similar argument shows that (Tu) €
€G(DUD,), so Tu & cl(DuD ).

Let u,v e€c (DU Do). For (x,y)tf-.‘Do we have Tu(x,y) - Tv(x,7) =
For (X,y)eD we obtain l’l‘u(x,y) - Tv(x,y)] s‘

y)
g exp(t(r+s))drds and it follows that

®

& (Ly + Laexp(ta)) “U‘-V “1

L™ 73

N ga - 2vll & -t-z ’Ll + exp(ta)‘.&z) {]u-vﬂl.

We obtain s:.mi] arly

| ('.I‘u)x - (Tv)xﬂ re % ( + exp(ta')La) | u=v l

) 1
/l (Tv.)y - (I'v)y il £ g (Ll + exp(t“)LZ) l u=v | 1°
The last three inequalities leed us to
"Tu"TV "1 £ ("‘? f) (Ll"l'z('xP(ta))““‘an.

Thé hypothesis on a 1mplies that ( 1 ) (L + Loexp(tal)<l
hence T is a contraction and the consmered problem has a unique
solution.

REMARK 2, The méximum of the majorant of a is attained then this
the unique solution greater than Ly + VLgl + Ly of the equatien

2
222(41) - 1ln e e =0,
(2X+l)(x2--9L1x—L1) olex+ :

In the case of th; equation
(1) g (xy) = f(-».y.u(gl(»c.y)).u},(sg(x,a)) u, (g5(x,y)))
with the condition (5) we obtain
COROLLARY 2, If
(a) T e C(DxR5} satisfies a Lipschitz condition with r‘es'rec”&t to the
last three variables
L2035, 20055) = £t 71 b4 8080 ] £ Lilz._t.|
() Y € Cl(D ) such that faﬂulgtf and i(O,/, 1122123 ) = 'fxy@)‘j)

f(op—uzl-?‘?!“}) = ‘f’ ~.(%,0), for any &,y)e D, (?l’?” 730 & R‘g
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(e) g5 €C(D)y g3 : D>DUD, & = (hi'ki) with hi(x,;y-) + ¥y (x,7) ¢
£x+y+a. 1= 1 3 and

) a(sup{% hm H ‘t>03
then the problem (11) with the condition (5) has in C1(DUD,) a
umque ‘solution. The maximum of the expresainn which denotes a ma:jo—

rant for a is attained in the case when % is the unique posit:l.ve 80-

lution of the equatmn 2

R

Proof. One applies Theorem and Remeikx 2 comsidering £ Lipschits
with %y = 0 and Ly = L. o

REMARK 2. In the given theorens, theA csmdijtion impoged To the
functions thatl modif;ﬁn “the variables is less ré’striccfive than in [ 27)
and determines a larger class of functions ’which‘satisf;;r the intégral
condition from [8]. It is saild in [17 that one bas the result in
Theorem 2 even if ope rencunces to the last part of tb.s cond:.‘tiona
(b) aud (c), but it is not true. .I‘he following examplese which satisty
all the conditions in Theorem 2 but the last part of the conditiona
(b) snd (¢), show that the uniqueness or even the existence of the
solution is ._no"r. ,z,sua.r:anteer;i any wore. '

EXAMPLE 1. Tet D = [0,1)2 ,2 = 0, = 0, 5 : D=>D, g(z,3) = (1,5
The eguation ‘ L ' |
2)  u (xy) = u(l,3), (%,3)€D
with the _houndax%)r conditions

u(x,0) = u(0,3) = 0, (x,5)€D
has infinitely many solutions of the form u(xyy) = xB(y), ¥ : [0,1]~»%
_ being differentiable with F(0) = |

EZAMPLE 2, If in Example 1 we consider instead of (12) the equae
tion uxy(z,y) = %(l,y) + 2y, we obtain a problem whichb has no solu=
‘tions in CX(D).

Inceed, if the problem bas a solution U, this will verify
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U(x,y) = §§ (U (L,8) + 2s)drds,

therefore Uy(x,y) = x(2y + Uy(l.'y)). For x = 1 we get a contradiction,
. B. We analyse now the existence of the global solutions of the

equations (1) and (2) on E, the boundary condition being

13)  wx,y) = 'f(x,y). (x,7) € E,,

where ® and E, are given by (4).

We extend some results of [ 3] to the case .of functional equativons,
admitting also delays, using the methods given by Bielecki. We need
the following estimations. '

LEMA 1. Let £>0, LG C(E). L(x,y) 0 on E and K(x,y) =

.y )
= S L(p,q)dpdq, (x,y)€ E. Then the followins inequality holds

* , .
§{ L(r,8)exp(K(x,8))ards ¢ § ex0(tR(x,3)), (%) € E.

PJ.‘OQZ‘-

. L]
Let U(x,y) = % exp (t&(x,y)) - S HL(r.s)exp(xK(r.s))drds. It

follows that U, (x,7) = X’L(x.'q)dq.exp(m(x,y)) - S’L(x',s)e@(tli(x,s))és
Because U: (x,y) >0 fo;- eny (x,y)€ E, we have U .(x,y) > Ux(x,o) =0
and U(x,y) ® U(0,y) 2 O, hence the inequality is proved. -

The proof is similar for )

LEMMA 2, Let t > 0, L € CX(E), L(x3)2 0, Ly(x,y) 2 0 and
) kb
I-y(x,y) 2 0 on E; K(x,;r) = H L(p,q)dpdq + SL(p,y)dp + S L(x,q)dq,

(x,y) € E. We have then for any (x,y) € E

. ,
Ss I-(r,s)exp(tK(r,s))drds.é% exp (tE(x,y))
§L(x,s)exp(t1{(x,s))ds £ -.g exp(tK(x.y))

L(r,y)exp(tk(z,y))ar ¢ ‘E exp(tE(x,5))e
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We prove now
THEOREM 3, If
(a) £ € C(E~R?) ig Iipschitz with respect to the last two varia-
bles such that , . .
lf(x,y.zl,za) - f(x,y,t]l,ta), £ L(x,y)(lzlutll + Izzut‘?]) and

lf(x,y,o.d) P L(xsy), whelre L € C(E) is nonnegatiye
(v) ife CICEO) and sup“&f(x,y)l : (x,3) € Eo.!] =8 £ o
(¢) g€C(B), g s EEUE), g = (bk) with h(x,y)ex, k(x,7)sy
‘for any (x,7)&E, :
then th oblem ( with the co tio has in the ace X de~

fined below a unigue golution.
Proof. Let u € C(EVE ). We define K : BUE,~ R by

K(x,3) = S il-(p‘.q)dpdq for (x,y) € E and K(x,y) = 0 for (x,y)€ B,

and consider
(%) \ul, = swp | [uxp)lexo(<tR(x,3)) + (x,7)€ EUE,]
with t 2. We denote X = { u&C(EVE) : fu llzzoe} and observe
that (L, ]l 1 é) is a Banach space., '
For u € X, wd define Tu as in (7) respectively on E and E, and
prove that the range of T is contained in X, ‘
Let (x,7) € E,. Then | Tu(e,y) | = I'f.(x,‘.Y)l £ 5. Por (x,7)€ E,

{rulx,7) | ¢ HnL(r.S)(Iu(r.s)l + |u(glz,8))] + 1ards &
AP
4 (2 |ul o * 1) g L(r,s)exp(tk(r,s))drds. Applying Lemma 1 we obtaiw

lTu(x,y)[e;qa(»tK(x,y))._é % C Jul 5 + 1), hence Jou o €

(LN

W{S, %( lal, + 1)<,

We prove that T is Lipschitz with a constent which is less than 1.

Let u,v € X, For (x,7) € E,, we have fTu(x,y) - Tv{x,3)}| = 0. For



(x,y) € B, we obtain
£
‘ Tu(X:.‘,’) - J.v('c,Y)[ «2full o SS L(r»,s)e:clg(t}((r’s))drds <

¢ % lal Lexp(tE(x,7)).
- It follows that ITu - 1vl, 4 §lu-vll , and for t > 2 we have
& unique solution in X,
THROREM 4, If

(a) £ €C(EaR®) is Lipschits with respect %o the last six varia-
bles such EQQ "

(f(x,y,zl,....zs) - f(x,y,tl,...,ts)[ L(x,y)z ] 23~t,| and
[ £(x,5,0,0..,0) | ¢ Lix,3) for any (x,y) € E, with 1. 1. and L in
C(E) and nonnegative on B
®) e ch(r,) with lel, lgds 19yl 6 8<oe, wnere ¢/ =
= sup UT G| = () € E, Y, and ¥ exists such that
f(O,y,zl,...,zs) = Txy(o’y)’ f(x,o zl....,zb) = 'rxy(x,o), for any
{x,y) ¢ E, (zl,...,zs) e ®®
(e) gy € C(B), g; ¢t E—E UEO, gy = (hi’ki) with hi(x,y)g X, ki(x,y)s
€y fop any (x,y) € B, i = 1,3,

hen th obl ) with the conditig s dn the space Y defi-

ned bellow a unigue solutionm. '

Proof, Let u € CH(EUE, ). We define K : EUE, ~ R by
« x 9]
H L(p,q)dpdq + I Llpyyldp + SL(x,q)dq, (x,y) € E and

K(x,¥)

K(x,y) = 0, (x,7) € E . We consider also

luil3 'uﬂz-r"uxllai-luyﬂa.wherel( {Iaisgivenby
(14) with t > 6,

Let Y = | u € 6XEUE,): Jul 5 £%) which is a Banach space

with respect to the norm i '5. For u ¢ ¥, we define Tu by (10),

respectively on B and E

Ws prove that the ranc,e of T is contained in Y.
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We have Tu e Cl(EL)Eo) because of the condition (b). TLet (x,y)e

RN then lTu(x,y)( = ]&F(x,y)l £ S. For (x,7)€ E we havée

Hpe ]
| TuCe, 7| ¢ (2 lul 3 F 1) S L(r,s)exp(tK(xr,s))drds.

‘z‘oliowing Lemma 2 we obtain lTu(x,y)l exp(-tK(x,y)) & .—15(2 1 u(|3+ 1),
l(:c,y) € E and

b null; & maxis, 32 lull 5+ 1Y,

Similarly

I (oW, b5 & max {s, §2uly+ D]

K(Tu)y iy & max {S, %(2 fald 5 + 1)}, hence
You ) 5% 3rdax{s, %(2 fuf 3+ 1)5""’ and Tu € Y,
Using again Lemma 2 we prove that T is a Lipschitz operator., Let
u, v e ¥; for (x,y) € E,,we‘have | Tu(x,y) - Tv(x,y)| = 0. For (x,7)& E

k]

: s . )
lTu(x,'y), - v(x,y)| £ 2fu-vl 3 H L(r, s)exp(tk(r,s))drds. <

-

.
< % lu-vil sexp(tE(x,3)).
It follows that
Tz - ovl 2 % fuvl 4
and similarly -
I (o), = (2wl & §luvl 5
Il (Tw)y - (T 1l ¢ % |u=v] 3
From the last three inequalities we obtain
e - vl §luvi 5,
and for t>6 the problem has in Y a unigue solution.
REMARK 4, The results of Theorem 3 and 4 remaln true imposing
suitable conditions on f in the case of the equations (9) and (1),
REMARK 5, Because all the theoremé were proved using t}_}e Banach-
fixed poin% theorem, the solutions may-b‘e 'é,pproximated by\ the method

of szuccegive approximations.
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