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ON MULTIVALUER MAPPINGS

SATISFYING THE CONDITION (Eg) = Fyp

Hira-Cristiana Aniaiu

Let X be a nonvoid set and T s+ X—eX a multivalued mgpping. Let

Fp = {x€X i x ¢ ()}, respectively

(8F)p = {x€X ¢ T(x) = {x}}
denote the fixed point set, respectively the strict fixed point set
of T.

For the multivalued mapping T : X-oX we consider the graph

(1) = {(xyy)e XX ¢+ yeT(x))
whieh may be mgai-ded as a relation on X. The properties of the re-
lations are exposed, for example, in [1].

It is obvious that any function f : X->Y satisfies the equali-
ty £(Fp) = Fpe In the paper [2], I.A.Rus shows that there are mul-
tivalued mappings which have né't; this property, but any multivalued
mepping having omly strict fixed points ( Fy = (8F), ) verifies
the conditlon T(F,) = ¥y ( Lemma 4.1). The Problem 4.1(2) asks
what sre the conditions under which the aset Frp 1s fixed for a multi-
valued mapping T. _

In the sequel we give sufflcient conditions for the equality
T(Fp) = Fp bolds and then we study some properties of a multivalued
mepping T induced by the given T.

For the set X # 4 we denote

Iy + X—X, I;(2) = {x} for any xeX



Ax = G(Iy) = {_(x,.‘-_x)e XxX ¢ xex},
and for the multivalued mapping T ¢ X— X
dom T = {xeX ¢ M(x) £ &) .
Im T = {ye‘x : there 1s x€X such that yeT(x)}
T § XX, T (y) = {xex 1 yeT(x)]. -
For a multivalued megpping T 3 X-—~X the following theorenm
holds.
THEOREM 1, Let the below conditions be given
(a) T(Fyp)<Fq
(a') T(Fyp) = Fy
(a™) T(dom(IyNTI) C dom(TyN T)

b) £ Bpy M) () T
(b) for eny x ¢Fpy (X)Cyemx) ()

(b') for any xeFq and z € T(x), 1t follows T(x)C.T(z)
(e) G(T) is a symmetrical and transitive relation
(4) G(T) is a reflexive relation
(e) F‘.’E_; (BF)qps

The following implications are true

(d) => (§)<==) (atd=> (a™)
-
(e) =>(b)e=(b")
'ﬁ .
(e

Proof. (a)e (a'). It is obvious that (a')=>(a); if (a) is
true, we obtain (a') bscause from x ¢ Fy we deduce xeT(x), 80 % ¢
€ T(Fqpd.

(a)e=> (a™)y dom(IzNT) = {xeX 1 I(x) NT(x) £ F) =
= {x eX 1 xeT‘(x)]} = Fy, and the equivalence holds, -

(b) = (b?). Let xcFy; and zcT(x). We prove that T(x)< T(z).
Por (%), we obtain yeT(x)e () - 2(g)C PxIdso T(z)
or any ye T(x), we obtain ye B(x) EEO VN (:);;:!ﬁl?{;!so (x)



c T(z).

(b?') =>(B). Let x€Fp and zeT(x); by (b') we have T(x)cﬂ?(ﬂ),

hence T(x)c ()  T(z).
z €T(x)

(b) =(a). Let yeT(FT). l.¢. there exists xeFm such that ye

€ T(x). The coadition (b) implies T(x) < ﬂT( )m(z)s;m(y); but ye
ZE X -

€ T(x) a_.nﬂ it follows yeT(y),_ hence ¥ €Fye
(e) =>(B). Let x€Fp and % €T(x). We prove that fow any yeX

such ;'t:ha't: ¥y I(x) wo have y& T(z)., The synmetry of G(T) implies

x €T(y)s but z€P(x) and from the transitivity of G(T) we obtain

2€%(y)e Applying agaln the symmetry, we have y eT(z) and T(x) <

) m(a).
< e ) (2) | |

*(e)‘—ﬂ? (b). Let XeFy = (EF)gs s0 T(x) = {x} = yg;}(x)T(y) and
(b) holds.

(&) =>(a). G(T) being reflexive, we have AIC_;G(T) and 1% follows
Fp = X3 1t 1a-obvious that T(Fp) CFpe

We mention now some connections between the classes of multive-
lued mappings satisfying the conditions in Theorem 1.

THEOREM 2. If the graph of the multivalued mapping T satisfying

(b) is a reflexive relation, it is also symmetrical and transitive,

Ppoof. G(T) being reflexive, the condition (b) is satisfied for
eny xeX. Let xeX be :arbi'brary and y €T(x). Using (b), xeT(x)c B
€T(y)y 80 xeT(y) and the symmetry is proved.

For the transltivity, we consider xeX, y&T(x) and 5€T(y)e It
follows by (b) that xeT(x) «T(y)c T(2), so xeT(z)., Applying the
symnetry of G(T) we obtain z e T(x) and the bmnf is over.

REMARK 1. There is only one muPthviYued mepping which has only
strict fixed points and a reflexive graph, namely Iy, whose graph
dx is alse s:ﬁnmetrical and transitive.

We are able now to peesent the relative position of the classes
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of multivalued mappings involved in Theorem 1 using the dlagram i\n
Flg. 13 rectangles having the bases on the same line and the top
vertexes marked with a letter stand for the classes denoted b;} that
~letter. All the regions marked by a number are nonvoid, as the
following examples show.
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Fige 1
EXANPLES,

1. T satisfies (a),. but none of tb) and (d).
{o,x},. XE [-1,1]

1, xer\[=1,1]

2. T satisfies (d), but it does mot satisfy (b).
| {{x?h X #0

{-0'_,15 y X = D

X = R, T(x) =

X = R' T(x) =

3 T gatisfles (b),_ but none of (&), (e) and (d).
j2l, x = o '.

X = B, T(x) =4 {-x,x3, xe[~1,2]\{0]}

| {o },‘ xeR\[-1,1]
4o T ab.tis:!ies (el blﬁ: none of (¢) and (d).

X =B, x) § {og~x]e |
5. T satiafies'(o), (d) and (e).

By Remark 1, the only multivalued mepping satisfying these con-
ditlons is Iyz. |
6. T satisfies (¢) and (d), but it does not satisfy (e).

{x}, xe R 1,2} '

=B T - 11,2}, xel1,2}



7. T sa’t:isfies (c) and (e), but it does not satisfy (d).
¥ = RU'{GO}, T(JC) _’5{1}. XxXeR

y I =
8. T satisfies (e¢), but none of (d) and (é).
X = Rul=l, T(x) = { tzyd, xeR
. by X moo
REMARK 2, If we conelder only multivalued mappings T ; X—o X
such that X = dom T ( all the values of T are nonvaid ), thé condi-
- tion (e) implies (d4).

‘Indeed, for any xe X we have T(x) #95 and we can choose y < T(x);
from the symmetry we obtain x eT(y) and the transitivity of G(X) ime
plies xe T(x), i.0. G(T) is reflexive, .

If this 1s the case, the pegions demoted by 7 end 8 in Fig. 1 ar
are vold and the dlagram looks like thas

a ‘b " ayb j
s S “
-; 6 ]
2 L e
q C 5 4
Flg. 2

Tt follows that a multivalued mapping T t X —X with X = dom X
hes a symmetricsl and transitive graph ( satisfies the eondition
(@) ) if and only if T sstisfies the condition (b) end G(T) is & re
flexive rela.ti.on.

The condition (b) leeds us to the definition of & multivalued
mepping attached to T,

Let X be a nonvoid 86t and T 3§ X~ X a multivalued nzpping. We
define T ] x-ox glven by

M T(y). for xe dom T
ye’:i‘( x)

X, for zeX \dom T;

h‘J'?(x) =



e He drvy .’TP T e coudikne (8) beenues
T[,T Tl" .

If we consider a new condition
(£) T;:_.T
we obtain obviously that (f) implies (b).

I:‘."T =g 3 X—X 1s a funection, we have E(x) = (Bog)(x) for
any xe€ X3 the nondition (£) is equivaleixt to g(x) = (geg)(x) for an
any x&¢ Xy, i.0. %o In g = Fg '

REMARK 3. If EI.’ ils a multivalued ma,pping, we have only T T-T
on dom T, the inclusion being generally strict. as the following
example shows., Let T 1+ R— R be given by T(x) = {o,x}; then T-T(x)-
= {0,z }3 Bx) ={ 0}, for any x # o. _

THEOREM 3, If T ¢ X— X satis.fies the condition (f) we bave
In T = Py | 4

Progf. We have obviously FpcIn T Let yeIn T and xe X such
" that yt-.'.l?(x). Applying (£, we get ye T(x);T(x)s; T(y) and y € Ry,
it follows that In TSFT, so Im T = FT helds.

REMABK 4, The reverse impliuat_ion is not true. For the multi-
valued mapping T from Example 1 we have Im T = Fp = [-1,1], put

T(x) = {D}, xG.[fl.]J ., 80 T%E‘.
(Los1], zerN[-1,1]

The next theorem glves g cund:l.tion for a pain‘h XeX be a fixed
point for ‘.1‘. |

THROREM 4, The element xeX 1s & fixzed point for E if and only
1 et (x). |

Proof. Let xex be a fixed point fnz- Ty 1f xedom T, we have
(%) = ﬁC-T (x). In the case that xedom T, T(x) 15 a nonvoid sety
let. ye T(x), It follows that xeT(x)C-{I.‘(y), il.e. yeT ") and we
obtain again T(x) <1 x). _

Let now x€X be a point such thet H()c T (x), If T(x) = g, we
have T(x) = X and x ia obviously a fixed point for T, Bup ¥ was




arbitrary in T(x), so xe N T(y) = T(x), hence x € Fg.
- YeT(x)

COHOLLARY, ‘'he fixed point set for T is the largest subset of X
on which G(T) is symmetriedl.

2_@9_ FT_ a.{xex t MDD T ().

Rm 5« Any strict fixed point for © is aleo a strict fixed
point for 1. The reverse implication is no't: trues Iundeed, :‘.‘.’or
T + R— R given by |

{-1 1.50 X =0

'Io,-2}, X = =1
T(x) “Y1o,2}, x=1

1xl, xe R\fo,-1,1}

we have T(o) = TC=1)N T(1) = {0}, so oe(S?)“T‘.-. but oé}. (SF)pe
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