"BABES-BOLYAI" UNIVERSITY

FACULTY OF MATHEMATICS
RESEARCH SEMINARIES
SEMINAR ON FIXED POINT THEORY
Preprint nr. 3, 1985, pp. 1-8

ON MULTIVALUED MAPPINGS SATISFYING THE CONDITION $T(F_T) = F_T$

Mira-Cristiana Anisiu

Let X be a nonvoid set and T : X - X a multivalued mapping. Let $F_T = \{x \in X : x \in T(x)\}$, respectively

$$(SF)_{T} = \left\{ x \in X : T(x) = \left\{ x \right\} \right\}$$

denote the fixed point set, respectively the strict fixed point set of T.

For the multivalued mapping T: X-X we consider the graph $G(T) = \{(x,y) \in X : y \in T(x)\}$

which may be regarded as a relation on X. The properties of the relations are exposed, for example, in [1].

It is obvious that any function $f: X \rightarrow X$ satisfies the equality $f(F_T) = F_T$. In the paper [2], I.A.Rus shows that there are multivalued mappings which have not this property, but any multivalued mapping having only strict fixed points ($F_T = (SF)_T$) verifies the condition $T(F_T) = F_T$ (Lemma 4.1). The Problem 4.1[2] asks what are the conditions under which the set F_T is fixed for a multivalued mapping T.

In the sequel we give sufficient conditions for the equality $T(F_T) = F_T \text{ holds and then we study some properties of a multivalued mapping \widetilde{T} induced by the given T.}$

For the set $X \neq \emptyset$ we denote

$$I_X : X \rightarrow X, I_X(x) = \{x\} \text{ for any } x \in X$$

 $\Delta_{\mathbf{X}} = G(\mathbf{I}_{\mathbf{X}}) = \{(\mathbf{x}, \mathbf{x}) \in \mathbf{X} \times \mathbf{X} : \mathbf{x} \in \mathbf{X}\},\$

and for the multivalued mapping T: X-X

 $\mathbf{dom} \ \mathbf{T} = \left\{ \mathbf{x} \in \mathbf{X} : \mathbf{T}(\mathbf{x}) \neq \emptyset \right\}$

Im $T = \{ y \in X : \text{there is } x \in X \text{ such that } y \in T(x) \}$

 $T^{-1} : X \rightarrow X, T^{-1}(y) = \{x \in X : y \in T(x)\}.$

For a multivalued mapping $T: X \longrightarrow X$ the following theorem holds.

THEOREM 1. Let the below conditions be given

- (a) $T(F_{\eta}) \subseteq F_{\eta}$
- $(a^{\dagger}) \quad T(F_{\eta \gamma}) = F_{\eta \gamma}$
- (a") $T(dom(I_X \cap T)) \subseteq dom(I_X \cap T)$
- (b) for any $x \in F_{T^*}$ $T(x) \subseteq \bigcap_{y \in T(x)} T(y)$
- (b') for any $x \in F_T$ and $z \in T(x)$, it follows $T(x) \subseteq T(z)$
- (c) G(T) is a symmetrical and transitive relation
- (d) G(T) is a reflexive relation
- (e) $\mathbf{F}_{\mathbf{T}} = (\mathbf{SF})_{\mathbf{T}}$

The following implications are true

$$(a) \Rightarrow (a) \Leftrightarrow (a') \Leftrightarrow (a'')$$

<u>Proof.</u> (a) \iff (a'). It is obvious that (a') \implies (a); if (a) is true, we obtain (a') because from $x \in F_T$ we deduce $x \in T(x)$, so $x \in T(F_T)$.

(a) \leftarrow (a"). $\operatorname{dom}(I_X \cap T) = \{x \in X : I_X(x) \cap T(x) \neq \emptyset\} = \{x \in X : x \in T(x)\} = F_{\eta} \text{ and the equivalence holds.}$

(b) \Rightarrow (b). Let $x \in \mathbb{F}_T$ and $z \in T(x)$. We prove that $T(x) \subseteq T(z)$. For any $y \in T(x)$, we obtain $y \in T(x) \subseteq T(x)$ $f(x) \subseteq T(x)$ $f(x) \subseteq T(x)$

 $\subseteq T(z)$.

- (b') \Longrightarrow (B). Let $x \in F_T$ and $z \in T(x)$; by (b') we have $T(x) \subseteq T(Z)$, hence $T(x) \subseteq \bigcap_{Z \in T(X)} T(Z)$.
- (b) =>(a). Let $y \in T(F_T)$, i.e. there exists $x \in F_T$ such that $y \in T(x)$. The condition (b) implies $T(x) \subseteq \bigcap_{z \in T(x)} T(z) \subseteq T(y)$; but $y \in T(x)$ and it follows $y \in T(y)$, hence $y \in F_T$.
- (c) =>(B). Let $x \in \mathbb{F}_T$ and $z \in T(x)$. We prove that for any $y \in X$ such that $y \in T(x)$ we have $y \in T(z)$. The symmetry of G(T) implies $x \in T(y)$; but $z \in T(x)$ and from the transitivity of G(T) we obtain $z \in T(y)$. Applying again the symmetry, we have $y \in T(z)$ and $T(x) \subseteq C(x)$.
 - (e) \Rightarrow (b). Let $x \in \mathbb{F}_T = (SF)_{T^*}$ so $T(x) = \{x\} = \bigcap_{y \in T(x)} T(y)$ and
- (b) holds.
- (d) \Rightarrow (a). G(T) being reflexive, we have $\Delta_{\mathbf{X}} \subseteq G(T)$ and it follows $\mathbf{F}_{\mathbf{T}} = \mathbf{X}$; it is obvious that $\mathbf{T}(\mathbf{F}_{\mathbf{T}}) \subseteq \mathbf{F}_{\mathbf{T}}$.

We mention now some connections between the classes of multivalued mappings satisfying the conditions in Theorem 1.

THEOREM 2. If the graph of the multivalued mapping T satisfying

(b) is a reflexive relation, it is also symmetrical and transitive. Proof. G(T) being reflexive, the condition (b) is satisfied for any $x \in X$. Let $x \in X$ be arbitrary and $y \in T(x)$. Using (b), $x \in T(x) \subseteq \mathfrak{P}(x)$, so $x \in T(y)$ and the symmetry is proved.

For the transitivity, we consider $x \in X$, $y \in T(x)$ and $z \in T(y)$. It follows by (b) that $x \in T(x) \subseteq T(y) \subseteq T(z)$, so $x \in T(z)$. Applying the symmetry of G(T) we obtain $z \in T(x)$ and the proof is over.

REMARK 1. There is only one mallimited mapping which has only strict fixed points and a reflexive graph, namely I_X , whose graph Δ_X is also symmetrical and transitive.

We are able now to present the relative position of the classes

of multivalued mappings involved in Theorem 1 using the diagram in Fig. 1; rectangles having the bases on the same line and the top vertexes marked with a letter stand for the classes denoted by that letter. All the regions marked by a number are nonvoid, as the following examples show.

a	1	þ		a, b
đ	2	c d	. c	3
		е		е
		5	7	4

Fig. 1

EXAMPLES.

1. T satisfies (a), but none of (b) and (d).

$$X = R, T(x) = \begin{cases} \{0,x\}, x \in [-1,1] \\ \{1\}, x \in R \setminus [-1,1] \end{cases}$$

2. T satisfies (d), but it does not satisfy (b).

$$X = R, T(x) = \begin{cases} \{x\}, & x \neq 0 \\ \{0,1\}, & x = 0 \end{cases}$$

3. T satisfies (b), but none of (c), (e) and (d).

$$X = R, T(x) = \begin{cases} \{2\}, x = 0 \\ \{-x, x\}, x \in [-1, 1] \setminus \{0\} \\ \{0\}, x \in R \setminus [-1, 1] \end{cases}$$

4. T satisfies (e), but none of (c) and (d).

$$X = R, T(x) = \{o, -x\}.$$

5. T satisfies (c), (d) and (e).

By Remark 1, the only multivalued mapping satisfying these conditions is I_{γ} .

6. T satisfies (c) and (d), but it does not satisfy (e).

$$X = R, T(x) = \begin{cases} \{x\}, x \in R \setminus \{1,2\} \\ \{1,2\}, x \in \{1,2\} \end{cases}$$

7. T satisfies (c) and (e), but it does not satisfy (d).
$$X = RU(\infty), T(x) = \begin{cases} \{x\}, x \in R \\ \emptyset, x = \infty \end{cases}$$

8. T satisfies (c), but none of (d) and (e).

$$X = R \cup \{\infty\}, T(x) = \begin{cases} \{-x, x\}, x \in R \\ \phi, x = \infty \end{cases}$$

REMARK 2. If we consider only multivalued mappings $T: X \rightarrow X$ such that X = dom T (all the values of T are nonvaid), the condition (c) implies (d).

Indeed, for any $x \in X$ we have $T(x) \neq \phi$ and we can choose $y \in T(x)$; from the symmetry we obtain $x \in T(y)$ and the transitivity of G(X) implies $x \in T(x)$, i.e. G(T) is reflexive.

If this is the case, the regions denoted by 7 and 8 in Fig. 1 ar are void and the diagram looks like this

a	ĭ	þ		-	a, b
đ.		C	c,d	3	
1.	2		6		
-	2	•	5	4	е

Fig. 2

It follows that a multivalued mapping $T: X \rightarrow X$ with X = dom X has a symmetrical and transitive graph (satisfies the condition (c)) if and only if T satisfies the condition (b) and G(T) is a reflexive relation.

The condition (b) leeds us to the definition of a multivalued mapping attached to T.

Let X be a nonvoid set and T : $X \longrightarrow X$ a multivalued mapping. We define \widetilde{T} : $X \longrightarrow X$ given by

$$T(x) = \begin{cases} \bigcap_{y \in T(x)} T(y), & \text{for } x \in \text{dom } T \\ x, & \text{for } x \in X \setminus \text{dom } T \end{cases}$$

In the terms of \tilde{T} , the condition (6) becomes $T|_{\mathbf{F_T}} \subseteq T|_{\mathbf{F_T}}$.

If we consider a new condition (f) $T \subseteq \widetilde{T}$

we obtain obviously that (f) implies (b).

If $T = g : X \rightarrow X$ is a function, we have $g(x) = (g \circ g)(x)$ for any $x \in X$; the condition (f) is equivalent to $g(x) = (g \circ g)(x)$ for an any $x \in X$, i.e. to Im $g = F_g$.

REMARK 3. If T is a multivalued mapping, we have only $T \subseteq T \circ T$ on dom T, the inclusion being generally strict, as the following example shows. Let $T: R \to R$ be given by $T(x) = \{0,x\}$; then $T \cdot T(x) = \{0,x\} \supseteq T(x) = \{0\}$, for any $x \neq 0$.

THEOREM 3. If T: X - X satisfies the condition (f) we have In T = $\mathbf{F}_{\mathbf{T}^*}$

<u>Proof.</u> We have obviously $F_T \subseteq Im \ T$. Let $y \in Im \ T$ and $x \in X$ such that $y \in T(x)$. Applying (f), we get $y \in T(x) \subseteq T(x) \subseteq T(y)$ and $y \in F_T$. It follows that $Im \ T \subseteq F_T$, so $Im \ T = F_T$ holds.

REMARK 4. The reverse implication is not true. For the multivalued mapping T from Example 1 we have Im $T = F_T = [-1,1]$, but $T(x) = \begin{cases} \{0\}, x \in [-1,1] \end{cases}$, so $T \not = T$.

The next theorem gives a condition for a point $x \in X$ be a fixed point for T.

THEOREM 4. The element $x \in X$ is a fixed point for \tilde{T} if and only if $T(x) \subseteq T^{-1}(x)$.

<u>Proof.</u> Let $x \in X$ be a fixed point for T; if $x \in \text{dom } T$, we have $T(x) = \phi \subseteq T'(x)$. In the case that $x \in \text{dom } T$, T(x) is a nonvoid set; let $y \in T(x)$. It follows that $x \in T(x) \subseteq T(y)$, i.e. $y \in T'(x)$ and we obtain again $T(x) \subseteq T'(x)$.

Let now $x \in X$ be a point such that $T(x) \subseteq T'(x)$. If $T(x) = \emptyset$, we have T(x) = X and x is obviously a fixed point for T. But y was

arbitrary in T(x), so $x \in \bigcap_{y \in T(x)} T(y) = T(x)$, hence $x \in F_{\widetilde{T}}$.

COROLLARY. The fixed point set for T is the largest subset of X on which G(T) is symmetrical.

Proof. $F_T = \{x \in X : T(x) \subseteq T^{-1}(x)\}.$

REMARK 5. Any strict fixed point for T is also a strict fixed point for \tilde{T} . The reverse implication is not true. Indeed, for $T: R \to R$ given by

$$T(x) = \begin{cases} \{-1,1\}, & x = 0 \\ \{0,-2\}, & x = -1 \\ \{0,2\}, & x \in \mathbb{R} \setminus \{0,-1,1\} \end{cases}$$

we have $T(0) = T(-1) \wedge T(1) = \{0\}$, so $0 \in (SF)_{\widetilde{T}}$, but $0 \notin (SF)_{\widetilde{T}}$.

REFERENCES

- 1. Purdea, I., Pic, Gh., <u>Treatise of modern algebra</u>, Vol. 1, ED. Acad R.S.R. 1977 (in Romanian)
- 2. Rus, I.A., Fixed and strict fixed points for multivalued mappings, this Preprint