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Abstract

Strong forces in celestial mechanics have the property that the
particle moving under their action can describe periodic orbits, whose
existence follows in a natural way from variational principles. The
Newtonian potential does not give rise to strong forces; we prove that
potentials of the form �1=r� produce strong forces if and only if � � 2.
Perturbations of the Newtonian potential with this property are also
examined.
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1 Introduction

Strong forces were considered in 1975 by Gordon [2], when he tried to obtain
existence results of periodic solutions in the two-body problem by means of
variational methods. As it is well-known, the planar motion of a body (e. g.
the Earth) around a much bigger one (e. g. the Sun) is classically modelled
by the system

�x1 = �
x1
r3

�x2 = �
x2
r3

(1)
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with r =
p
x21 + x

2
2, or, alternatively

�x = �rV; (2)

with the Newtonian potential

V = �1
r

(3)

and x = (x1; x2) 2 R2n f(0; 0)g. The potential V has a singularity at the
origin of the plane. Even if one works in a class of `noncollisional' loops
(x(t) 6= (0; 0); 8t 2 R), the extremal o�ered by a variational principle will be
the limit of a sequence of such loops, hence we have no guarantee that it will
avoid the origin. Gordon remarked that for other type of conservative forces,
called by him strong forces, the extremals are not collisional trajectories.

2 Main results

We shall consider systems of the type

�x = rW; (4)

where x = (x1; :::; xN) 2 RN ; and W 2 C2(RNnf0g) is the force function
(W = �V ). We shall denote by j � j the Euclidean norm in RN . The cases
physically meaningful are those with N 2 f1; 2; 3g.

De�nition 1 (Gordon [2]) The system (4) satis�es the strong force (SF)
condition if and only if there exists a neighbourhood N of the origin 0 of RN
and a function U 2 C2(RNnf0g) such that
(i) U(x)! �1 as x! 0;
(ii) W (x) � jrU(x)j2 for all x in Nnf0g.

Remark 2 As a matter of fact, one can choose another di�erentiable norm
instead of the Euclidean one, hence in De�nition 1 N may be supposed to be
the unit ball fx 2 RN : jxj < 1g:

Remark 3 If the force function W gives rise to a strong force, the function
aW (with a > 0) has the same property; this happens also for each function
W1 2 C2(RNnf0g) with W1(x) � W (x), x 2 Nnf0g:
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The example given by Gordon to illustrate the de�nition is W (x) =
1= jxj2; he remarks also that W (x) = 1= jxj, corresponding to the Newto-
nian potential, is not strong, fact which determines him to say that `it is
disappointing that the gravitational case is excluded by the SF condition'.
Nevertheless he obtained existence results for periodic orbits in strong force
�elds, and this was the starting point for applying systematically the vari-
ational methods in celestial mechanics. It is interesting to mention that, in
1896, Poincar�e [5] had the same idea of using the least action principle to
�nd periodic orbits in the planar three-body problem, for a force of the type
1=rn with n � 2 (excluding again the Newtonian potential). By that time
the variational methods were not formulated in a rigourous way, and there
was a strong belief that Newtonian potential governs the motion of celestial
bodies, so Poincar�e's result remained for years purely theoretical.
Our �rst concern is to �nd out which functions W� 2 C2(RNnf0g),

W�(x) =
1

jxj� ; � > 0; (5)

satisfy the SF condition.

Theorem 4 For � > 0, W� from (5) satis�es the SF condition if and only
if � � 2.

Proof. Let � � 2, N =
�
x 2 RN : jxj < 1

	
and U = ln jxj. It follows

that jrU(x)j2 = 1= jxj2 � W�(x) whatever x in Nnf0g, hence W� satis�es
the SF condition.
Let us consider now 0 < � < 2. We suppose that there exists a function

U as in De�nition 1. We �x x0 2 RNnf0g; for �; � > 0; � < � < 1= jx0j we
evaluate

jU(�x0)� U(�x0)j =
����Z �

�

dU(tx0; x0)dt

���� � jx0jZ �

�

jrU(tx0)j dt:

Using (ii) we obtain

jx0j
Z �

�

jrU(tx0)j dt � jx0j
Z �

�

1

jtx0j�=2
dt =

jx0j1��=2
Z �

�

1

t�=2
dt = jx0j1��=2

1

1� �=2
�
�1��=2 � �1��=2

�
;

3



hence jU(�x0)� U(�x0)j � jx0j1��=2 (1� �=2)�1
�
�1��=2 � �1��=2

�
: In this

last relation we make � ! 0+ and we obtain the contradiction jx0j1��=2 �
(1� �=2)�1 �1��=2 � 1. It follows that, for any 0 < � < 2; W� does not
satisfy the SF condition.
In view of Remark 3, we have

Corollary 5 Each function W 2 C2(RNnf0g) with W (x) � a= jxj� (a > 0;
� � 2) satis�es the SF condition.

Example 6 Corollary 5 includes among the functions which satisfy the SF
condition those related to various perturbations of the Newtonian force. One
of them, with great physical signi�cance, corresponds to the Manev potential
[4] and is given by

WM = m

�
1

r
+
3m

2c2
1

r2

�
; (6)

m being the gravitational parameter of the two-body system and c the speed
of light. This potential is a good substitute for relativity theory at the solar
system's level. It was mentioned as a strong force by Anisiu [1]. The ad-
vances in the qualitative understanding of the motion in a Manev-type �eld
are exposed in [3]. A potential of Manev-type was studied by Newton him-
self, and he showed that the force generated by such a potential produces a
precessionally elliptic orbit.
Schwarzschild [6] solved the relativistic analog of the classical Kepler prob-

lem and derived the force function

WS = GM

�
1

r
+
b

r3

�
; (7)

where G is the gravitational constant, M is the mass of the �eld-generating
body and b a positive constant. The motion in a Schwarzschild �eld, with
implications in astrophysics, is studied by Stoica and Mioc [7].

We can establish precisely what perturbations of the Newtonian potential
are strong or not.

Theorem 7 For � > 0, the perturbation of the Newtonian force fW� 2
C2(RNnf0g) given by

fW�(x) =
1

jxj +
b

jxj� ; b > 0;

satis�es the SF condition if and only if � � 2.
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Proof. The fact that fW� satis�es the SF condition for � � 2 follows
directly from Corollary 5.
For 0 < � � 1 and x 2 Nnf0g (as mentioned in Remark 2, we take N

the unit ball), we have fW�(x) � (1 + b) = jxj, so fW� cannot satisfy the SF
condition, because from Theorem 4 it follows that W1(x) = 1= jxj does not
satisfy it. For 1 < � < 2, we suppose that there exists a function U as in
De�nition 1. We �x x0 2 RNnf0g; for �; � > 0; � < � < 1= jx0j we evaluate
as in the proof of Theorem 4

jU(�x0)� U(�x0)j � jx0j
Z �

�

jrU(tx0)j dt � jx0j
Z �

�

s
1

jtx0j
+

b

jtx0j�
dt

� jx0j1��=2
p
1 + b

Z �

�

1

t�=2
dt = jx0j1��=2

p
1 + b

1� �=2
�
�1��=2 � �1��=2

�
:

It follows that

jU(�x0)� U(�x0)j � jx0j1��=2
p
1 + b

1� �=2
�
�1��=2 � �1��=2

�
and, making � ! 0+; we obtain a contradiction. It follows that, for any

0 < � < 2; fW� does not satisfy the SF condition.
By Corollary 5 we have that each force function with W (x) � a= jxj2 ;

a > 0, satis�es the SF condition; due to the simplicity of this description,
it is sometimes considered as SF de�nition. The next example shows that
there are SF potentials which do not satisfy the mentioned inequality.

Example 8 De�ne ' : (0; 1=2] ! R, '(t) = ln (� ln t). The function
' can be extended to a C3 function de�ned on (0;1) by taking '(t) a
polynomial of third degree for t > 1=2. Then W (x) := '0 (jxj)2 satis�es
the SF condition. Indeed, we can choose U(x) = �' (jxj) and we have
limx!0 U(x) = � limt!0+ '(t) = �1 and

jrU(x)j2 =
����'0 (jxj) xjxj

����2 = '0 (jxj)2 = W (x); x 2 RNnf0g:
On the other side, let us suppose that for jxj � 1=2; W (x) � a= jxj2, where
a > 0. This would imply '0 (t)2 � a=t2; that is a � 1= ln2 t for each t 2
(0; 1=2], hence a � 0; contradiction.
Note that, in this example, condition (ii) from De�nition 1 is in fact an

equality over RNnf0g.
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