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Abstract. We prove that limp→∞ ‖f‖
p+1
p+1 / ‖f‖

p
p = ‖f‖∞ for f 6= 0 in the

Bochner space L∞E (μ), where (E, |∙|) is a Banach space and (X,A, μ) a finite
measure space. We discuss also the existence of limn→∞

∥
∥Tn+1

∥
∥ / ‖Tn‖ for

continuous linear operators T in Hilbert spaces.
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1 A limit involving Lp and L∞ norms

Let (X,A, μ) be a measure space. If μ is finite and f ∈ L∞(μ), the
L∞ norm of the real function f can be obtained as the limit

(1) ‖f‖∞ = limp→∞
‖f‖p .
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This result can be found in [9], p. 34.

It is known that for a sequence of real numbers ap > 0, the equality

lim
p→∞

(ap)
1/p = lim

p→∞

ap+1

ap

holds, provided that the second limit exists (Stolz-Cesàro) [1, p. 150].

The problem we are going to solve is:

For ap = ‖f‖
p
p , does the limit limp→∞

ap+1

ap
exist?

Remark 1.1 There are known several conditions on the sequences

an, bn insuring that
an

bn
→ L =⇒

an+1 − an
bn+1 − bn

→ L. They apply for

example for Traian Lalescu’s sequence [5]: n+1
√
(n+ 1)! − n

√
n! → 1/e.

Similar sequences were studied by T. Popoviciu [7] and recently by many
other mathematicians.

As a special case, for an := ln an and bn := n, it follows that n
√
an →

L =⇒ an+1
an
→ L.

Unfortunately, these conditions do not apply for the problem to be
studied. We prove directly the following result (in Bochner spaces).

Theorem 1.1 Let (E, |∙|) be a Banach space, (X,A, μ) a finite measure
space (μ(X) <∞) and f ∈ L∞E (μ)\{0}. Then

lim
p→∞

∫
|f |p+1 dμ
∫
|f |p dμ

= ‖f‖∞ .

Proof. Replacing f by |f | / ‖f‖∞ , one may suppose that 0 ≤ f ≤ 1

and ‖f‖∞ = 1. Let us denote

rp =

∫
|f |p+1 dμ
∫
|f |p dμ

.

Then 0 ≤ rp ≤ 1, so,
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(2) lim supp→∞ rp ≤ 1.

For 0 < a < 1 we denote Aa = {x ∈ X : f(x) ≥ a}, Ba = X\A. We
have μ(Aa) > 0 because ‖f‖∞ = 1. We show that

lim
p→∞

∫
Ba
fp dμ

∫
Aa
fp dμ

= 0.

Let us choose b so that a < b < 1. Then Ab ⊆ Aa and

0 ≤

∫
Ba
fp dμ

∫
Aa
fp dμ

≤
apμ(Ba)∫
Ab
fp dμ

≤
apμ(Ba)

bpμ(Ab)
=

(a
b

)p μ(Ba)
μ(Ab)

→ 0 (p→∞).

We obtain for lim infp→∞ rp the following estimation

lim infp→∞ rp = lim infp→∞

∫
Aa
fp+1 dμ+

∫
Ba
fp+1 dμ

∫
Aa
fp dμ+

∫
Ba
fp dμ

=

lim infp→∞

∫
Aa
fp+1 dμ

∫
Aa
fp dμ

∙
1 +

∫
Ba
fp+1 dμ

∫
Aa
fp+1dμ

1 +

∫
Ba
fp dμ

∫
Aa
fp dμ

=

lim infp→∞

∫
Aa
fp+1 dμ

∫
Aa
fp dμ

∙ 1 ≥ lim infp→∞

∫
Aa
fpa dμ

∫
Aa
fp dμ

= a.

But a ∈ (0, 1) is arbitrary, so

(3) lim infp→∞ rp ≥ 1.

From (2) and (3) it follows limp→∞ rp = 1.

Equality (1) can be obtained as a consequence of Theorem 1.1, using
the Stolz-Cesàro result.
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2 On a limit concerning operators with spectral radius
r(T ) 6= 0

Let E be a Hilbert space and T a linear continuous operator. Then
the spectral radius r(T ) of the operator T is given by

r(T ) = lim
n→∞

‖Tn‖1/n .

The result in section 1 suggest the following problem: If r(T ) 6= 0,
is it true that limn→∞

∥
∥Tn+1

∥
∥ / ‖Tn‖ does exist?

We mention the following interesting related result due to Kellogg
[3], [8, p. 240], which provides an algorithm for finding an eigenvalue
for a compact self-adjoint operator.

Theorem 2.1 Let E be a Hilbert space, T a compact self-adjoint oper-
ator, x0 ∈ E such that Tx0 6= 0. Then, for xn = Tnx0, one has that
xn 6= 0, the sequence ‖xn+1‖ / ‖xn‖ is increasing and convergent to r > 0
such that either r or −r is an eigenvalue for T.

In [2, p. 222], the definition of operators of class K was given.

Definition 2.1 The linear continuous operator T is of class K if for
each x ∈ E, m ∈ N, m ≥ 2 and k ∈ {1, 2, ...,m− 1}

(4)
∥
∥
∥T kx

∥
∥
∥ ≤ Cm,k ‖x‖

1− k
m ‖Tmx‖

k
m ,

where Cm,k are constants.

Remark 2.1 1. If T is invertible, the minimal constants Cm,k in (4)
must satisfy (see [2, p. 223])

(5) Cm,k ≤
∥
∥
∥T k

∥
∥
∥
1− k

m
∥
∥
∥T−(m−k)

∥
∥
∥
k
m
;

if T is normal, Cm,k = 1 for each m and k.



Mira-Cristiana Anisiu and Valeriu Anisiu 7

2. For Ti, i = 1, ..., 4 linear continuous operators on E, the following
two inequalities regarding the spectral radius

r

([
T1 T2
T3 T4

])

≤ r

([
‖T1‖ ‖T2‖
‖T3‖ ‖T4‖

])

,

r(T1T2 + T3T4) ≤ 1
2 (‖T2T1‖+ ‖T4T3‖)

+
√
(‖T2T1‖ − ‖T4T3‖)

2 + 4 ‖T2T3‖ ∙ ‖T4T1‖

have been proved in [4].

We state the following

Conjecture 2.1 If T is of class K and r(T ) 6= 0, then
limn→∞

∥
∥Tn+1

∥
∥ / ‖Tn‖ do exist.

We prove the next result mentioned in [2, p. 216].

Proposition 2.1 r(T ) = ‖T‖ ⇔ ‖Tn‖ = ‖T‖n , for all n ∈ N.

Proof. The spectral mapping theorem implies that r(Tn) = r(T )n, so
if r(T ) = ‖T‖ then ‖T‖n = r(T )n = r(Tn) ≤ ‖Tn‖ ≤ ‖T‖n, hence
‖Tn‖ = ‖T‖n .
Conversely, if ‖Tn‖ = ‖T‖n , for all n ∈ N then

r(T ) = limn→∞ ‖Tn‖
1/n = limn→∞ ‖T‖

n∙1/n = ‖T‖ .
If r(T ) = ‖T‖ , obviously

∥
∥Tn+1

∥
∥ / ‖Tn‖ = ‖T‖ and conjecture 2.1

holds. Note also that if T is normal, then r(T ) = ‖T‖; but T may not
be normal and yet limn→∞

∥
∥Tn+1

∥
∥ / ‖Tn‖ exists (= r(T )); see ex 2.3.

Remark 2.2 Let T be the Volterra operator in L2([0, 1]),

(Tx)(t) =

∫ t

0
xdλ.

Then r(T ) = 0, ‖T‖ = 2/π = 0.6366197722... ,
∥
∥T 2

∥
∥ = 1/α2 =

.2844128717... where α is the smallest positive root of the equation
(ea + e−a) cos(a) = −2, see [6, p. 259]. The norms ‖Tn‖ are more
difficult to find for n > 2.
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The next example shows that conjecture 2.1 does not hold for all
linear continuous operators.

Example 2.1 An operator with r(T ) = 1 for which
limn→∞

∥
∥Tn+1

∥
∥ / ‖Tn‖ does not exist.

Let T =

[
1 1
0 −1

]

.

Then r(T ) = 1, ‖Tn‖ =

{
1, for n even(√
5 + 1

)
/2, for n odd

. In this case,

‖Tn‖1/n → r(T ) but
∥
∥Tn+1

∥
∥ / ‖Tn‖ diverges.

Actually, this behaviour is almost generic. We give below the Maple
code computing r(T ) and the sequence

∥
∥Tn+1

∥
∥ / ‖Tn‖ for a linear oper-

ator in Rd (d = 2) with randomly selected entries from {−5,−4, ..., 4, 5}.
Note that for d > 4 this can be done only approximately.
We display the values of the sequences

∥
∥Tn+1

∥
∥ / ‖Tn‖ and ‖Tn‖1/n.

Example 2.2 The operator T =

[
4 5
−4 4

]

has r(T ) = 2 and
∥
∥Tn+1

∥
∥ / ‖Tn‖ diverges.

> T:=randmatrix(2,2,entries=rand(-5..5));

T :=

[
4 5
−4 4

]

> Digits:=15:

> interface(displayprecision=3):

> m:=30:

> max(op(map(abs,[eigenvalues(T)]))); #r(T)

2
> nT:=norm(T,2);

nT := 9/2 + 1/2 ∗ 651/2

> S:=evalf(evalm(T/nT));

p:=evalf(seq( norm(S&^n,2),n=1..m)):

S :=

[
0.4689 0.5861
−0.4689 −0.4689

]

> evalf([seq(nT*p[n+1]/p[n],n=1..m-1)]);



Mira-Cristiana Anisiu and Valeriu Anisiu 9

[.4689, 8.531, .4689, 8.531, .4689, 8.531, .4689, 8.531,
.4689, 8.531, .4689, 8.531, .4689, 8.531, .4689, 8.531,
.4689, 8.531, .4689, 8.531, .4689, 8.531, .4689, 8.531,
.4689, 8.531, .4689, 8.531, .4689]

> evalf([seq(nT*p[n]^(1/n),n=1..m)]);

[8.531, 2.000, 3.244, 2.000, 2.673, 2.000, 2.461, 2.000,
2.350, 2.000, 2.282, 2.000, 2.236, 2.000, 2.203, 2.000,
2.178, 2.000, 2.159, 2.000, 2.143, 2.000, 2.130, 2.000,
2.119, 2.000, 2.110, 2.000, 2.103, 2.000]

Example 2.3 However, for T :=

[
−2 2
5 −3

]

one obtains: r(T ) =

5+
√
41
2 ' 5.702 and the sequence

∥
∥Tn+1

∥
∥ / ‖Tn‖ converges (to r(A)).

Note that the numerical results show that this sequence coverges faster
than ‖Tn‖1/n.

> evalf([seq(nT*p[n+1]/p[n],n=1..m-1)]);

[5.550, 5.719, 5.699, 5.702, 5.702, 5.702, 5.702, 5.702,
5.702, 5.702, 5.702, 5.702, 5.702, 5.702, 5.702, 5.702,
5.702, 5.702, 5.702, 5.702, 5.702, 5.702, 5.702, 5.702]

> evalf([seq(nT*p[n]^(1/n),n=1..m)]);

[6.451, 5.983, 5.894, 5.845, 5.816, 5.797, 5.783, 5.773,
5.765, 5.758, 5.753, 5.749, 5.745, 5.742, 5.739, 5.737,
5.735, 5.733, 5.731, 5.730, 5.729, 5.727, 5.726, 5.725,
5.724]
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