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Abstract. We initiate a comparative study of the properties of total palin-

drome complexity for binary words and arrays. From this point of view, the

HV-palindrome complexity for arrays seems to be more appropriate than the

C-palindrome one. We prove also a theorem for the average number of HV-

palindromes in arrays.
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1 Introduction

Several authors have studied the palindrome complexity of infinite
words (see [1], [5], [13] and the references therein). Similar problems
related to the number of palindromes are important for finite words too.
One of the reasons is that palindromes occur in DNA sequences (over 4
letters) as well as in protein description (over 20 letters), and their role
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is under research ([9]). The values of the total palindrome complexity
and the properties of the average number of palindromes have been
investigated in [2], [3].

In section 2 we remind some facts related to the palindrome complex-
ity of finite words. Section 3 contains some numerical results concerning
the palindrome complexity of two-rows binary arrays, which show that
these arrays have similar properties to words; a theorem for the average
number of palindromes in arrays is proved.

2 Palindromes in words

Let a positive integer q ≥ 1 and an alphabet A = {0, 1, . . . , q− 1} be
given. For the word w = a1...an with ai ∈ A, 1 ≤ i ≤ n, the integer n
is the length of w and is denoted by |w|. The length of the empty word
ε is 0. The set of the words of length n over A will be denoted by An.
The word u = ai...aj , 1 ≤ i ≤ j ≤ n is a factor (or subword) of w; if
i = 1 it is called a prefix, and if j = n a suffix of w. The reversal (or the
mirror image) of w is denoted by w̃ = an...a1. A word which is equal to
its mirror image is called a palindrome. The empty word is considered
a palindrome. We denote by ak the word a...a (k times).

Let PALw be the set of all factors in the word w which are nonempty
palindromes, and PALw(n) = PALw ∩ An the set of the palindromes of
length n contained in w. The (infinite) set of all palindromes over the
alphabet A is denoted by PALA, while PALA(n) = PALA∩An is the set
of all palindromes of length n over the alphabet A. It is known that the
number of all palindromes of length k is qdk/2e, where d∙e denotes the
ceil function (which returns the smallest integer that is greater than or
equal to a specified number).

2.1 The total palindrome complexity

The palindrome complexity function palw of a finite or infinite word
w attaches to each n ∈ N the number of palindrome factors of length n
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in w, hence

(2.1) palw(n) = #PALw(n).

The total palindrome complexity of a finite word w is equal to the number
of all nonempty palindrome factors of w, namely

(2.2) P (w) =

|w|∑

n=1

palw(n).

This is similar to the total complexity of words, which was extensively
studied in [10], [12] for finite words and in [8] for infinite ones.

An upper bound for P (w) was given in [7].

Theorem 2.1 The total palindrome complexity P (w) of any finite word
w satisfies P (w) ≤ |w|.

This result shows that the total number of palindromes in a word
cannot be larger than the length of that word. There are words of length
n with P (w) = n, e. g. 0n, but also some which have few palindromes.

Beside the upper delimitation from Theorem 2.1, lower bounds for
the number of palindromes contained in finite binary words were found.
(In the trivial case of a 1-letter alphabet it is obvious that, for any word
w, P (w) = |w|.)

Theorem 2.2 [2] If w is a finite word of length n on a binary alphabet
then P (w) = n for 1 ≤ n ≤ 7; 7 ≤ P (w) ≤ 8 for n = 8; 8 ≤ P (w) ≤ n
for n ≥ 9.

Remark 2.1 For all the short binary words (up to |w| = 7), the palin-
drome complexity takes the maximal possible value given in Theorem
2.1; from the words with |w| = 8, only four (out of 28) have P (w) = 7,
namely 00110100, 00101100 and their complemented words, and 252
have P (w) = 8. There are 24 words of length 9 and 16 of length 10 with
P (w) = 8; based on several numerical results, we conjecture that there
are precisely 12 words of length n ≥ 11 with P (w) = 8.



6 Two-dimensional Total Palindrome Complexity

It can be proved that for each n ≥ 8, the restriction of the total
palindrome complexity function to An takes all the values between 8
and n.

Theorem 2.3 [2] For each n and i so that 8 ≤ i ≤ n, there exists
always a binary word wn,i of length n for which the total palindrome
complexity is P (wn,i) = i.

2.2 The average number of palindromes

We consider an alphabet A with q ≥ 2 letters. The average number
of palindromes contained in all the words of length n over A is defined
by

(2.3) Eq(n) =

∑

w∈An
P (w)

qn
,

where P (w) is the total palindrome complexity of the word w.
The following theorems proved in [2] show that, in fact, the palin-

drome subwords are rather rare in long words, whatever q ≥ 2 is.

Theorem 2.4 For an alphabet A with q ≥ 2 letters, the average number
of palindromes Eq(n) satisfies

(2.4) lim
n→∞

Eq(n)

n
= 0.

The order of convergence for the sequence Eq(n)/n can be obtained
with the aid of a more elaborate estimation of the upper bound of Eq(n).

Theorem 2.5 The following inequality holds

Eq(n) ≤
q + 1

q1/2 − 1
q1/4n1/2.

Remark 2.2 From Theorem 2.5 it follows that Eq(n) = O(n
1/2). For

a binary alphabet (q = 2) we have Eq(n) < 9n
1/2. More generally,

Eq(n) < 6q
3/4n1/2.
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3 Palindromes in arrays

For a positive integer q ≥ 1 and an alphabet A = {0, 1, . . . , q − 1},
let AM×N denote the set of the M ×N arrays with entries from A (M ,
N ≥ 1 positive integers).
Let m and n be positive integers with 1 ≤ m ≤ M and 1 ≤ n ≤ N .

An array V = [vij ] ∈ Am×n is a subarray of the array W = [wk`] ∈
AM×N if there exist indices r, s such that r+m−1 ≤M , s+n−1 ≤ N
and vij = wr+i−1,s+j−1.

For arrays there are two definitions for palindromes, depending on
the considered symmetry.

Let W = [wk`] with 1 ≤ k ≤ M and 1 ≤ ` ≤ N . The centrosym-
metric image of W is W̃ = [w̃k`], where w̃k` = wM−k+1,N−`+1. A C-

palindrome is an array for which W = W̃ ([4], [6]).

We define also the horizontal and vertical reverse of W as W
H
=

[wHk`], where w
H
k` = wM−k+1,`, respectively W

V
= [wVk`], where w

V
k` =

wk,N−`+1. An HV-palindrome is an array for which W = W
H
= W

V

(i. e. all its columns and rows are palindromes [11]). The number of
C-palindromes is qbMN/2c, where b∙c denotes the floor function (which
returns the greatest integer that is smaller than or equal to a specified
number). The number of HV-palindromes is qdM/2e∙dN/2e.

For each type of two-dimensional palindromes, let PALW be the set
of all factors in the array W which are nonempty palindromes, and
PALW (m,n) be the set of the palindromes which are m× n arrays con-
tained in the array W . We shall also use the notation PALA(m,n) for
the set of all palindromes which are m× n arrays over the alphabet A.
Let us define the functions (M,N ≥ 2) c, h, v:AM×N → AM×N ,

c(W ) = W̃ , h(W ) =W
H
and v(W ) =W

V
.

Proposition 3.1 We have c2 = h2 = v2 = id, h ◦ v = c, v ◦ c = h,
h ◦ c = v and ◦ is commutative, hence the group G = {id, c, h, v} is
isomorphic with Klein’s one. An array is a C-palindrome iff it is a fixed
point of c, and is a HV-palindrome iff it is a common fixed point of h
and v.
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3.1 The total palindrome complexity

For each type of palindromes, we consider for W ∈ AM×N the palin-
drome complexity function pW : {1, 2, . . . ,M}×{1, 2, . . . , N} → N of W
given by

(3.1) pW (m,n) = #PALW (m,n), m = 1, 2, . . . ,M, n = 1, 2, . . . , N,

and the total palindrome complexity function P (W ) of W as

(3.2) P (W ) =
M∑

m=1

N∑

n=1

pW (m,n).

We denote by W ∙ V the concatenation of two arrays with the same
number of rows. For a two-rows array V ∈ A2×N , let |V | = N denote
the length of V .

Remark 3.1 We list some maximal values of the two types of total
palindrome complexity, obtained by using a computer program:

M N maxHV-P maxC-P
2 4 8 9
2 5 10 11
2 6 12 14
2 7 14 16
2 8 16 19
2 9 18 21
3 4 13 15
3 5 17 19

A result similar to that in Theorem 2.1 seems to hold only for arrays
with two lines (or columns) and for HV-palindrome complexity (which
will be denoted from now on by P (W )).

Based on the numerical results, we state the following

Conjecture 3.1 The total HV-palindrome complexity P (W ) of any fi-
nite word W ∈ A2×N satisfies P (W ) ≤ 2 |W |, where |W | = N .
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We prove a result on the palindrome complexity of the concatenation
of two-rows arrays.

Theorem 3.1 The following inequality holds

(3.3) P (W ∙ V ) ≤ P (W ) + 3 |V | ,

the constant 3 being the best possible.

Proof. When a column is added to the array W , there appear at most
three new palindromes: at most one on each row, and at most one two-

dimensional, hence inequality (3.3) holds. For W =

[
0 0 0 1 0
0 1 0 0 0

]

and V =

[
0 0 1
0 0 1

]

, the number of palindromes in W ∙V which do not

appear in W is equal to 9. These palindromes are: 04, 05, 03103, 02102,

1051, 1031,

[
0 0
0 0

]

,

[
0 0 0
0 0 0

]

,

[
1
1

]

.

Remark 3.2 If in (3.3) the constant would be 2 instead of 3, Conjecture
3.1 could be proved by induction, as Theorem 2.1 was.

Remark 3.3 A result as in Theorem 2.3 does not hold for two-rows
arrays, because for M = 2 and N = 9 there are 12 arrays with 8 palin-
dromes, but no arrays with 9 palindromes. We conjecture that this is
true for M = 2 and each N ≥ 9.

3.2 The average number of palindromes

The average number of HV-palindromes contained in all the arrays
from AM×N , A being an alphabet with q ≥ 2 letters, is defined by

Eq(M,N) =

∑

W∈AM×N

P (W )

qMN
,

where P (w) is the total HV-palindrome complexity of the word w.
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Theorem 3.2 For an alphabet A with q ≥ 2 letters, the average number
of palindromes Eq(M,N) satisfies

lim
M→∞
N→∞

Eq(M,N)

MN
= 0.

Proof. We calculate

Eq(M,N) =

1

qMN
∑

W∈AM×N

∑

Π∈PALW

1 =
1

qMN
∑

W∈AM×N

M∑

m=1

N∑

n=1

∑

Π∈PALW (m,n)
1.

We fix M0 ≤M and N0 ≤ N two natural numbers. Then

Eq(M,N) =
1

qMN
∑

W∈AM×N

M0∑

m=1

N0∑

n=1

∑

Π∈PALW (m,n)
1

+
1

qMN
∑

W∈AM×N

∑

m>M0 or n>N0

∑

Π∈PALW (m,n)
1 =

1

qMN

M0∑

m=1

N0∑

n=1

∑

W∈AM×N

∑

Π∈PALW (m,n)

+
1

qMN
∑

m>M0 or n>N0

∑

Π∈PALW (m,n)

∑

W∈AM×N
Π⊆W

≤

1

qMN

M0∑

m=1

N0∑

n=1
qMN ∙ qdm/2e∙dn/2e

+
1

qMN

M,N∑

m>M0 or n>N0

∑

Π∈PALA(m,n)
(M−m+1)(N−n+1)qMN−mn ≤

M0∑

m=1

N0∑

n=1
qdm/2e∙dn/2e+

M,N∑

m>M0 or n>N0

(M−m+1)(N−n+1)qdm/2e∙dn/2e−mn.

We obtain

Eq(M,N)

MN
≤
1
MN

M0∑

m=1

N0∑

n=1
qdm/2e∙dn/2e +

∞,∞∑

m>M0 or n>N0

qdm/2e∙dn/2e−mn,

therefore lim sup
M→∞
N→∞

Eq(M,N)

MN
≤ 0 +

∞,∞∑

m>M0 or n>N0

qdm/2e∙dn/2e−mn.
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The double series
∑

m,n
qdm/2e∙dn/2e−mn is convergent (actually the inequal-

ity qdm/2e∙dn/2e−mn ≤ q
1−mn
4 holds).

So,
∞,∞∑

m>M0 or n>N0

qdm/2e∙dn/2e−mn tends to 0 for M0, N0 →∞. Hence

lim sup
M→∞
N→∞

Eq(M,N)

MN
≤ 0.
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[10] A. Ivány. On the d-complexity of words, Ann. Univ. Sci. Budapest.
Sect. Comput., 8 (1987) 69–90.

[11] J. Jeuering. The derivation of on-line algorithms, with an applica-
tion to finding palindromes, Algorithmica, 11 (1994), 146-184.
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