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Abstract

We study a general Steffensen type method based on the
inverse interpolation Lagrange polynomial of second de-
gree.

We show how the auxiliary functions may be constructed
and we analyze some conditions on them which lead to
monotone approximations. We obtain some local conver-
gence results, which are illustrated by some numerical ex-
amples.

1 Introduction

As it is well known, the Steffensen method for approx-
imating the solutions of equations is an interpolatory type
method with controlled nodes [3], [4], [6], [7], [8].

More precisely, if we generate in the Lagrange polyno-
mial of inverse interpolation of degree 1, the nodes of inter-
polation, in a particular way, we obtain one of the known
variants of the Steffensen’s method [1], [5], [11], [8], [13],
[14].

Consider the equation

fla)=0 )
where f : [a,b] — R, a,b € R, a < b. In a sufficiently
general case, in order to obtain approximations of aroot= €
[a, b] of equation (1), we shall consider another equation,
equivalent to (1), of the form
x =g(x), g:[a,b] — [a,b]. )
Let ' = f([a,b]) be the set of values of the function f for
x € [a,b]. We suppose that f is one to one, i.e. there ex-
ists f=! : F' — [a, b]. We consider the interpolation nodes
a; € [a,b],i=1,2,and b; = f(a;), i = 1,2 the values of
function f at these nodes. The Lagrange interpolation poly-
nomial of first degree for the function f~!, on the nodes b;,
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1 = 1, 2, has the form:
Li(y) = a1 + [b1,bo; ] (y — b1). 3)

Taking into account relation 7 = f~1(0), for y = 0 from
(3), we obtain an approximation of root Z, given by relation

T ay — [by,bo; f b

from which, if we take into account equality

1

bibos fl] = ——— 4

[ 1 27f } [(11702;](.]7 ( )
we obtain: fan)
. ay

e [ahaz;f] ®

i.e. the regula falsi, which leads us to the chord method.

Let x,, € [a,b] n € N* be an approximation of root T of
equation (1). If in (5) we take a; = x,, and as = g(x,,), we
obtain the Steffensen’s method, which is written as:

gl "0

, Zo € [a, b].
(6)

In the present work we shall study a Steffensen type
method, more general than (6), which will rely on the La-
grange polynomial of inverse interpolation of second de-
gree. Accordingly, let a; € [a,b], i = 1,2, 3 be three nodes
of interpolation, and b; = f(a;), ¢ = 1,2, 3. The Lagrange
interpolation polynomial of second degree, for the inverse
function f~!, has the form:

Tp+1 = Tn —

La(y) = a1+

+ [b1, b2 f ] (y — b1) + [b1, b2, bs; £ (y — b1)(y — b2)
(7

with equality

F () = La(y)+[y, b1, ba, bs; £~ (y—b1) (y—b2) (y—b3)
®)
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for every y € F.
For y = 0 from (7) and (8) we obtain:

[blabQ; f_l]bl + [b17b27b3; f_l
—[0,b1, b2, ba; £~ b1babs.

Jbybs

T =a1 —
©)
It is easy to see that the following equality takes place:

la1, a2, as; f]

N 1] =
(bbb /1] [al,az;f][ahas;f][a%as;f](.

10)
From (4), (9) and (10) we obtain for T the approximation
fla1) la1, az, az; f1f(a1) f(az)

la1,a0; f] [al,az;f][azas;f][ahag;(f]

1)

T >~ay = a1 — y

with the error given by relation

T —ay = 7[O;b1;b23b3;fﬁl]f(al)f(aa)f(a:i)'

Further on, we shall suppose that f € C3[a, b] and f/(x) #
0 for every z € [a, b]. Hence f~! € C3(F), and the follow-
ing relation takes place

12)

3[f" ()] = f' (@) f" (x)
[f'(2)]? ’
where y = f(x), [6], [7], [12], [15]. From the mean value

theorem for divided differences, it results that there exists
1 € int(F) so that

)" =

13)

n

Wl

y=n
6 .

If we take into account that f is one to one and onto, it
results that for n € int(F), there exists £ €]a, b|, so that
n = f(£) and from (14) and (13) we have:

3O = f1() (&)
6L ()I° '

Using as in (6) function g for the control of interpolation
nodes, we shall obtain, from (11), a generalized method of
Steffensen type.

Thus, let z,, € [a,b], n € N* an approximation of so-
Iution T of equation (1); then, we shall obtain approxima-
tion x,1 from (11) considering a1 = x,, as = g(zy,),

[0,b1,bo,b3; f 1] = (14)

[0,b1,b,b3; f 1] = (15)

az = g(g(zn)), ie.
— f(zn) .
Tpn+1 = T [xn,g(xn),f] (16)
B [T, 9(zn), 9(g(zn)); f1f (@n) f(g9(2n))
[Tn, 9(70); fllTn, 9(9(zn)); fllg(@n), ((wn))7f]’
n=20,1,...

We shall name the method (16), the Steffensen’s method of
degree three.
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For the study of convergence of sequences (z,),>0 and
(9(xn))n>0 generated by (16), we shall analyze first the
conditions on functions f and g, as well as on initial value
xo € [a,b], so that the two considered sequences to be
monotonically. This fact will give us the possibility to con-
trol the error at each iteration step. We also study the local
convergence, and we shall show that, under certain assump-
tions, function g can be chosen to assure assumptions re-
garding monotonous convergence [2], [9], [10], [11].

2 The Convergence of Steffensen Method of
Order Three

In the following we shall study the convergence of se-
quences (z,,)n>0 and (g(z,))n>0 given by (16).

We shall consider the following assumptions on the func-
tions f and g:

ay) equation (1) has a unique root T €)a, bl;

)
a) equation (2) is equivalent to (1);
)
)

a) function g is decreasing on [a, b];

(
(
(
( there exists £ € R, 0 < ¢ < 1 so that, for every x €
[a, b] the following relation takes place:

o1

l9(z) = g(@)| < ]z —7; (17)
(a5) f € C%([a,b]);
(ag) function Ey : [a,b] — R, given by relation:
Ej(w) =3(f"(2))* = f'(@)f"(x) ~ (18)

verifies condition Ey(x) < 0 for every x € [a, b].

The following theorems take place, depending on the
properties of monotonicity and convexity of function f:

Theorem 1 [f functions f, g and initial value xy € [a,b)
verify conditions:

i1. g(zo) € [a,b];
ii;. f'(z) > 0, for every x € [a, b];
iii;. f"(x) >0, for every x € [a, b];

ivy. function f and g verify assumptions o) — ),

then, the elements of sequences (T )n>0, (G(Tn))n>0 and
(9(9(zn)))n>0 generated by (16) remain in the inter-
val [a, b] and, moreover, following properties hold:

Ji. if f(zo) < 0, then, for everyn = 0,1, ...,
relations are verified:

the following

Ty < Tpy1 ST < g(Tnp1) < g(xn); (19)



Ji1- if f(xzo) > 0O, then, foreveryn = 0,1, ...,
relations are verified:

the following

Ty > Tpg1 > T > (Tny1) > g(xn); (20)

i1 limz, = limg(2,) = T;
Vi. |Zpg1 — | < @1 — g(zn)], n=0,1, ...

Theorem 2 If xq € [a,b] and functions f, g verify condi-
tions:

io. g(ﬂ?o) € [aab];
iio. f'(z) <O, for every x € [a,b];
iiio. f(z) <0, for every x € [a, b];

ivo. functions f and g verify conditions o) — ),

then, the elements of sequences (xy)n>0, (§(2n))n>0 and
(9(9)xn)))n>0 generate by (16) remain in the interval
[a, b] and, moreover, the following properties hold:

Jo. if f(xo) > O then, for everyn = 0,1, ...
hold;

,relations (19)

Jio- if f(xo) <0, then for every n > 0,1, ...
hold;

,relations (20)

Jjje. relations from jjj, and jv, from Theorem 1 are veri-

fied.

Theorem 3 If xy € [a,b] and functions f, g verify condi-
tions:

i3. g(z0) € [a,b];
iis. f'(z) <0, forevery x € [a,b];
iiiz. f"(x) > 0, for every x € [a, b];

ivs. functions f and g verify assumptions o) — ),

then, the elements of sequences the (z,,)n>0, (9(Zn))n>0
and (g(g)zn)))n>0 generated by (16), remain in the
interval [a, b] and the following properties hold:

js- if f(xo) > 0, then for every n = 0,1, ...,
hold;

relations (19)

Jis- if f(zo) < 0, the for everyn = 0,1, ...,
hold.

relations (20)

Jijs. statements jjj, and jv, of Theorem I hold.

Theorem 4 If xo € [a,b] and functions f, g verify condi-
tions:

i4~ g(xO) € [aab];
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iiy. f'(z) > 0, forevery x € [a, b];
iiiy. f"(z0) <0, for every x € [a, b];
ivy. functions f and g verify assumptions o) — ),

then, the elements of sequences (Zn)n>0, (g(2n))n>0 and
(9(g(xn)))n>0, generated by (16), remain in the inter-
val [a, b], and moreover, the following properties hold.:

Ja- if f(xo) < O then relations (19) hold;
Jia- if f(xo) > O then relations (20) hold;
Jjja. statements jjj, and jv, of Theorem 1 hold.

Proof. (Theorem 1). Let z,, € [a,b], n € N*, for which
g(zy) € [a,b]. Suppose that f(z,) < 0, then, from ii;,
it results x,, < T. Assumption ag) leads us to relation
g(xy) > T and g(g(z,)) < T. From (17) we have:

l9(9(wn)) — 7| < L]g(zn) — 7| < £2|an — 7],

B 2 < glg(zn)) < 7.

It is obvious that the following relations take place:

n)) <T < g(x,) <0 21

Further on, in order to simplify writing, we shall denote by
D(xz,,) the expression

a <, <g(g(e

D(zy) =
_ [0, 9(xn), 9(g(zn)); f]
[0, 9(@n); fl[2n, 9(9(xn)); fllg(@n), 9(g(zn)); f]
and then (16) becomes
=z, — 7]0(%1) — D(z T T
Tptl = Tp s 9(2n): /] D(zy) f(xn) f(9(zn)),
(22)
n = 0,1,...,. From iiy, iii; and (21) it follows that results

D(z,) >0, f(x,) < 0and f(g(z,)) > 0 which together
with (22) lead us to relation x,, 1 > x,. By use of New-
ton’s identity (9) we obtain, for the nodes considered in (16)

T — Tpy1 =
)t
(23)

=0, f(wn), f(g(xn)), flg(g(z
-f(:vn) (9(zn)) f(9(g(zn)))-

From (15) and (21) it follows that there exists &, €
|@n, g(z5)] such that (23) can be represented in the form:

_Ep(&n) f(zn) f(g(xn)) f(9(g(zn)))
6Lf"(€n)1°

Taking into account ii; and assumption «g) from (24) we
obtain ¥ — z,41 > 0,1i.e. T > x,41. The last relation,

(24)

T — Tpy1 =



together with a) lead us to relations g(z,+1) > Z, and
from z,41 > x,, we have g(z,4+1) < g(x,). From the
facts proven above, it is obvious that relations (19) hold. If
f(zy) > 0, then we shall use identity

f(@n)
[T, g(zn); f]
[Tn, 9(g(zn)); f]

As f(x,) > O then, from ii; and «3) relations x,, > T,
g(zy) < T imply the stated result.

From (17) it is easy to see that relation g(g(z,)) > =,
takes place, i.e. we have:

+ D(zn) f(zn) f(9(g(xn)))-

a<g(zn) <T < g(9(zn)) < an <.
From the above relation it results that f(g(z,)) < 0;
f(zn) > 0and f(g(g(zy))) > 0 and from (25) and (16)
it results x,+1 < . From (24) for &, €]g(z,), x| it re-
sults &, 11 > T which, together with g(x, 1) > g(z,)
leads us to relations (20).

The consequence jjj; is a result of relation (19) or (20).
For jv,, from (19), respectively (20), it results that it ex-
ists v = lim z,,. Getting to the limit for n — oo in (16)
we obtain f(u) = 0, and from assumption «y) it results
u = g(u),ie. u =7, and lim g(z,) = ¢g(T) = T. Thus,
Theorem 1 is proven. m
Proof. (Theorem 2). We notice that if instead of equa-
tion (1) we consider equation —f(x) = 0, then function
h : [a,b] — R, h(z) = —f(z) verifies all assump-
tions of Theorem 1 relating to f. If f € C3([a,b]), then
—f € C3([a, b]) and as) hold. Also, if f verifies ) from
relation F¢(x) = E_y(x) it results that —f verifies too
a6).

Obviously, assumptions ii; and iii; are verified by h =
— f. Also, relations (16) do not change if we replace f by
— f. Taking into account Theorem 1, it is obvious that the
consequences from Theorem 2 take place. m
Proof. (Theorem 3). Let z,, € [a,b], n € N*, for which
g(xy,) € [a,b], an approximation of Z. Suppose f(z,) < 0,
then, obviously, form iis it results z,, > T, g(z,) < T,
and g(g(z,)) > T. From iis, iiis, taking into account the
last relations, and from (16) it results z,+; < z,. From
(24), a), ii3 and iiig it results T — z, 41 < 0, 1. Ty >
Z. From z,1; < x, and from «3) it results g(x,4+1) >
g(z,). Relation (20) results from the facts proven above.
If f(z,) > O then, obviously x,, < T, g(zn) > T and
9(g9(x,)) < Z. By use of relation (25) from iis, iiiz and
(16) it results x,, 41 > =z, and g(xpy1) < g(xy,). From
(24), «) and iiig taking into account the last relations, it
results T — x,4+1 > 0, 1.e. 2,41 < 7, and thus relations
(19) hold. Consequence jjj; results from (19) and (20). =
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Proof. (Theorem 4.) We shall use the same reasoning as
in the case of Theorem 2, i.e. we shall notice that if f ver-
ifies the assumptions of Theorem 4, then hy : [a,b] — R,
hi(x) = — f(x) verifies the assumptions of Theorem 3. We
notice that E¢(z) = E_y(z) for every z € [a, b] and thus
ag) is also verified for — f. Also, function h; verifies as-
sumptions iiz and iiis. It thus follows that the consequences
of Theorem 3 take place, which imply the proof of Theorem
4. As one can notice, in every case, relation jv,. offers us a
control of error at every step of iteration. m

3 The Local Convergence of Steffensen’s
Method of Order Three

In the following, in order to point out the convergence
order of method (16), we shall provide a result concerning
the local convergence of this method. Accordingly, we shall
admit that functions f and g verify the following assump-
tions:

(1) there exists m, M € R, m > 0, M > 0, so that m <
F(@)] < M, for every z € [a, b

B2) there exists E > 0, E € R so that |E;(z)| < E for
every x € [a,b].
The following theorem holds:
Theorem 5 If functions f and g verify assumptions 31),

0B2), 1), a3), aq) and for some xo € [a,b] the following
relations are verified:

1
po=p|F—zo| <1, p=2f (EML)>, (26)
§=[F—,T+] Cla,0], 27)

then, the elements of sequences (xy)n>0, (9(zn))n and
(9(g(xn)))n>0 remain in the interval [a,b], and for every
n = 0,1, ..., the following relations hold:

T — 2ng| < PPIT — 20l

|z, — 7| < %pg"“, n=1,2,.. (28)

ie limz, =limg(x,) =limg(g(xz,)) ==.

Proof. From ay), as) and (26) it results g(zp) € ¢ and,
more, g(g(xo)) € J. If we take account of (24), for n = 0,
and of assumptions 31 ), 82), and ) the following relation
results:

EM®¢®
6mb
From (26), (27) and (29) it results ;1 € § and relation (28)
for n = 1 holds. If we suppose that forn > 1, x,, € 4,

then, from (24), proceeding as above, we deduce:

Z— x| <p?lZ—z0)*. (29

‘f—l‘ﬂ <

|Z — Tns1] < P°|T — 20| (30)



or

PIT — 2ny1| < ([T — za)®. 31

From (30) results x,,41 € 9, and from (31) results (28).
Relations (26) and (28) imply limz, = limg(z,) =
limg(g(z,)) =7. m

Remark 6 Relations (28) show that the q-convergence or-
der of the method given by (16) is at least 3.

4 Construction of Auxiliary Function g

Further on, we shall show that, within supplementary as-
sumptions upon f, depending on its monotony and convex-
ity, we can construct the functions g, which fulfill, respec-
tively, the assumptions of Theorems 1-4. More precisely,
the essential assumptions upon function g, are given by ),
as), ay) and iy or, analogously, iz, i3, is.

The following theorems take place:

Theorem 7 If f verifies assumptions iiy and iiiy of Theo-
rem I and moreover, if it exists { € R, 0 < £ < 1, so that
() < (1 +0)f'(a), then, function g given by relation

g(x) =2 — Af(x)
1 1+[

[f/(a)
sumptions o), 043) and Qy).

(32)

where \ €

] fulfills the conditions given by as-

Proof. From iiy and iii; it results f'(z) > Oand f”(z) > 0
for every = € [a,b]. m
It is obvious that function g given by (32) verifies aw).
For a3) and avy) it is sufficient that function ¢’ (x) should
verify relations

—<1-Mf'(x) <0 (33)
where 0 < ¢ < 1.
From (33) ii; and iii; it results:
1 1+7
< + (34)

Fla) ="~ Py

It is not difficult to show that if A verifies (34), then ¢'(z)
verifies

—{<4'(x) <0,

i.e. assumptions az) and ay) are verified.

Theorem 8 If assumptions iiy and iiia of Theorem 2 are
fulfilled, and, moreover; if foran ¢ € R, 0 < £ < 1 relation
(1+£6)f'(a) < f'(b), takes place, then, function g given by
relation (32), where \ €] J},’bf) , f/l(‘; ) [ verifies the conditions
given by assumptions as), ag) and ).
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Proof. From ii and iiis it results f/(z) < Oand f”(z) <0
for every « € [a,b]. Let h : [a,b] — R given by relation
h(x) = —f(z); then g has the form

g(x) = x + Ah(x).

From relation h”(x) > 0 it results that function A’ is in-
creasing, and moreover h'(z) > 0 for every z € [a,].
It is thus obvious that the following relations are valid
h'(a) < B(xz) < h'(b)ie.
1 1 1
> .
h'(a) = h'(x) — (D)
Function g given by (32) verifies assumption «s). For
ag)and o) the following relations are sufficient:

(35)

—0 <1+ M/ (2) <0, forevery x € [a,b,  (36)

where 0 < ¢ < 1.
From (36) follows that

—1—0< Ah(z) < —1,

hence

142
h'(x)

>—-A> h,( 5 forevery x € [a, b]. 37)

From assumption A € [ F0)° Fla )} follows

140
h'(b) "

From (35), (37) and (38) we deduce relations

77 (a) <-A< (38)

14+¢
h' ()"

1+2

Wy <

1
@) S W (a) <-A< (39)

It is obvious that if A verifies (38), from (39) it results that
A verifies (37), i.e. (36) takes place, and thus function g
verifies ag) and o). ®

Theorem 9 If assumptions iiz and iii3 of Theorem 3 are
fulfilled, and, moreover, if foran { € R, 0 < £ < 1, relation
(14+0)f'(b) < f'(a), takesplace then, function g, given by
relation (32), where A € [ (a) 77 (b)] verifies assumptions

ag), az) and ay).

Proof. We consider again function & : [a,b] + R, h(z) =
— f(). From ii3 and iii3 results A’'(z) > 0 and b (z) < 0
i.e. function h’'(x) is decreasing, and the following relations

hold:
1 1

@ S W S “0)

1
h'(b)’
for every € [a, b]. In order that g verifies «3) and ), the
following relations are sufficient:

144
= ()

g < —A< (41)

If we take into account the substitution considered, and the
assumption upon parameter A from (40), we deduce that A
verifies (41). m

Assumption (1 + ¢) f'(b) < f’(a) assures us that the set
of values which A could take is not a void one.



Theorem 10 If function f verifies assumptions ii4 and iiiy
of Theorem 4, and if, moreover, foran { € R, 0 < £ < 1,
relation f'(a) < (14 £)f'(b), takes place, then function g
given by (32) where \ €] f,%b) , ]}th)[, verifies assumptions
ag), ag) and ay).

Proof. From iiiy it results that function f’ is decreasing, i.e.
the following relations take place:

f'(a) = f'(z) = f'(b),

for every z € [a, b].
From relation —¢ < ¢’(z) < 0, the following relations
result, for \ :

(42)

142 1
T 2> Tl

From relations (42), (43) it results

(43)

1 1 146 144
7@ S 7m <A S 7w S T
Which shows us that if A €] f,%b) , fl’tf) [, then, relation (43)

is verified, which assures us that assumptions «3) and «)
are verified. Relation f'(a) < (1 + £)f’(b) assures us that
the set of values of \ is not empty. m

5 Numerical Examples

Further on, we shall present two numerical examples,
which illustrate some of the obtained results.

Example 1 Let

fl@)=e"+6z—4=0 (44)

for x € [0,1]. Because f'(x) = e* +6 > 0and f"(z) =

e* > 0 for x € [0,1], we construct function g in such a

manner that Theorem 1 can be applied to this example.
Function Ey is given by relation

E¢(z) = 2€e"(e” - 3).

It is clear that E¢(x) < 0 for every x € [0, 1]. It is shown
at once that if we take function g given by relation

g(z) =z — §f(2),

then assumptions i1, ag), ay) and as upon function g are
verified for xo = 0, and { = & and thus A = % is an
acceptable value.

If in (16) we consider functions f and g given by (44),
respectively (45), then we obtain, for the root T € (0,1) of
equation (44) the approximations given in Table 1.

Obviously, sequence (,,)n>0, generated from (16) in the
conditions of Theorem 1, verifies its conclusions, i.e. se-
quences (xp)n>0 and (g(g(zy)))n>0 are increasing, and

(45)
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n| o g (xn) 9(g(zn))

010 0.5 0.39187978821665
1 0.41440725449098 | 0.41442110496351 | 0.41441761121909
2 0.41441831498704 | 0.41441831498704 | 0.41441831498704

Table 1. Numerical results for f(z) = e* + 6z —
4.

sequence (g(xy,))n>0 is decreasing. From Table 1, by use
of jv, the following relation clearly results:

lzo — 7| < 10714,
where T is the root of the given equation.
Example 2 We consider equation:

flz)=ze®+42+4=0 (46)

for x € [—1,0]. For the derivatives of order 1 and 2 of f,
we have relations

fl(x)=(x+1)e"+4>0, z € [-1,0];
f'(z) = (x+2)e” >0, z € [-1,0].
Once more, we shall show that the Theorem 1 can be

applied. It is easy to see that function E¢(x) may be put in
the form:
~4].

An elementary reasoning leads us to conclusion
E¢(z) < 0 for every x € [—1,0].
We consider function g given by relation

T {1/'2 T xr
Ef(x) =e"(z+3) {72 ;L_E3+96

g(z) =z — §f(x). 47)

We conclude that all the assumptions of Theorem I are
verified. By use of relations (16) we obtain the results from
Table 2. In this case we notice that sequences (T, )n>0 and
(9(9(zn))), », are decreasing, and sequence (g(zy))n>0 is
increasing. For the error, we have relation:

1T — 2o < 10714

n | Tn g (zn) 9(g(zn))
010 -0.8 -0.8881073657412
1 -0.90850552567187 | -0.90845262256514 | -0.90844243232071
2 | -0.90844000122266 | -0.90844000122266 | -0.90844000122266

Table 2. Numerical results for f(z) = ze® +
4x + 4.
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