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Abstract

We study a general Steffensen type method based on the
inverse interpolation Lagrange polynomial of second de-
gree.

We show how the auxiliary functions may be constructed
and we analyze some conditions on them which lead to
monotone approximations. We obtain some local conver-
gence results, which are illustrated by some numerical ex-
amples.

1 Introduction

As it is well known, the Steffensen method for approx-
imating the solutions of equations is an interpolatory type
method with controlled nodes [3], [4], [6], [7], [8].

More precisely, if we generate in the Lagrange polyno-
mial of inverse interpolation of degree 1, the nodes of inter-
polation, in a particular way, we obtain one of the known
variants of the Steffensen’s method [1], [5], [11], [8], [13],
[14].

Consider the equation

f(x) = 0 (1)

where f : [a, b] → R, a, b ∈ R, a < b. In a sufficiently
general case, in order to obtain approximations of a root x ∈
[a, b] of equation (1), we shall consider another equation,
equivalent to (1), of the form

x = g(x), g : [a, b] → [a, b]. (2)

Let F = f([a, b]) be the set of values of the function f for
x ∈ [a, b]. We suppose that f is one to one, i.e. there ex-
ists f−1 : F → [a, b]. We consider the interpolation nodes
ai ∈ [a, b], i = 1, 2, and bi = f(ai), i = 1, 2 the values of
function f at these nodes. The Lagrange interpolation poly-
nomial of first degree for the function f−1, on the nodes bi,

i = 1, 2, has the form:

L1(y) = a1 + [b1, b2; f−1](y − b1). (3)

Taking into account relation x = f−1(0), for y = 0 from
(3), we obtain an approximation of root x, given by relation

x ∼= a1 − [b1, b2; f−1]b1

from which, if we take into account equality

[b1, b2; f−1] =
1

[a1, a2; f ]
, (4)

we obtain:

x ∼= a1 − f(a1)
[a1, a2; f ]

(5)

i.e. the regula falsi, which leads us to the chord method.
Let xn ∈ [a, b] n ∈ N

∗ be an approximation of root x of
equation (1). If in (5) we take a1 = xn and a2 = g(xn), we
obtain the Steffensen’s method, which is written as:

xn+1 = xn − f(xn)
[xn, g(xn); f ]

, n = 0, 1, ..., x0 ∈ [a, b].

(6)
In the present work we shall study a Steffensen type

method, more general than (6), which will rely on the La-
grange polynomial of inverse interpolation of second de-
gree. Accordingly, let ai ∈ [a, b], i = 1, 2, 3 be three nodes
of interpolation, and bi = f(ai), i = 1, 2, 3. The Lagrange
interpolation polynomial of second degree, for the inverse
function f−1, has the form:

L2(y) = a1+

+ [b1, b2; f−1](y − b1) + [b1, b2, b3; f−1](y − b1)(y − b2)
(7)

with equality

f−1(y) = L2(y)+[y, b1, b2, b3; f−1](y−b1)(y−b2)(y−b3)
(8)
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for every y ∈ F.
For y = 0 from (7) and (8) we obtain:

x =a1 − [b1, b2; f−1]b1 + [b1, b2, b3; f−1]b1b2

− [0, b1, b2, b3; f−1]b1b2b3. (9)

It is easy to see that the following equality takes place:

[
b1, b2, b3; f−1

]
= − [a1, a2, a3; f ]

[a1, a2; f ][a1, a3; f ][a2, a3; f ]
.

(10)
From (4), (9) and (10) we obtain for x the approximation

x � a4 = a1− f(a1)
[a1, a2; f ]

− [a1, a2, a3; f ]f(a1)f(a2)
[a1, a2; f ][a2, a3; f ][a1, a3; f ]

,

(11)
with the error given by relation

x − a4 = −[0, b1, b2, b3; f−1]f(a1)f(a2)f(a3). (12)

Further on, we shall suppose that f ∈ C3[a, b] and f ′(x) �=
0 for every x ∈ [a, b]. Hence f−1 ∈ C3(F ), and the follow-
ing relation takes place

[
f−1(y)

]′′′
=

3[f ′′(x)]2 − f ′(x)f ′′′(x)
[f ′(x)]5

, (13)

where y = f(x), [6], [7], [12], [15]. From the mean value
theorem for divided differences, it results that there exists
η ∈ int(F ) so that

[0, b1, b2, b3; f−1] =
[f−1(y)]′′′y=η

6
. (14)

If we take into account that f is one to one and onto, it
results that for η ∈ int(F ), there exists ξ ∈]a, b[, so that
η = f(ξ) and from (14) and (13) we have:

[0, b1, b2, b3; f−1] =
3[f ′′(ξ)]2 − f ′(ξ)f ′′′(ξ)

6[f ′(ξ)]5
. (15)

Using as in (6) function g for the control of interpolation
nodes, we shall obtain, from (11), a generalized method of
Steffensen type.

Thus, let xn ∈ [a, b], n ∈ N
∗, an approximation of so-

lution x of equation (1); then, we shall obtain approxima-
tion xn+1 from (11) considering a1 = xn, a2 = g(xn),
a3 = g(g(xn)), i.e.

xn+1 = xn − f(xn)
[xn, g(xn); f ]

− (16)

− [xn, g(xn), g(g(xn)); f ]f(xn)f(g(xn))
[xn, g(xn); f ][xn, g(g(xn)); f ][g(xn), g(g(xn)); f ]

,

n = 0, 1, ...

We shall name the method (16), the Steffensen’s method of
degree three.

For the study of convergence of sequences (xn)n≥0 and
(g(xn))n≥0 generated by (16), we shall analyze first the
conditions on functions f and g, as well as on initial value
x0 ∈ [a, b], so that the two considered sequences to be
monotonically. This fact will give us the possibility to con-
trol the error at each iteration step. We also study the local
convergence, and we shall show that, under certain assump-
tions, function g can be chosen to assure assumptions re-
garding monotonous convergence [2], [9], [10], [11].

2 The Convergence of Steffensen Method of
Order Three

In the following we shall study the convergence of se-
quences (xn)n≥0 and (g(xn))n≥0 given by (16).

We shall consider the following assumptions on the func-
tions f and g:

(α1) equation (1) has a unique root x ∈]a, b[;

(α2) equation (2) is equivalent to (1);

(α3) function g is decreasing on [a, b];

(α4) there exists � ∈ R, 0 < � ≤ 1 so that, for every x ∈
[a, b] the following relation takes place:

|g(x) − g(x)| ≤ � |x − x| ; (17)

(α5) f ∈ C3([a, b]);

(α6) function Ef : [a, b] → R, given by relation:

Ef (x) = 3(f ′′(x))2 − f ′(x)f ′′′(x) (18)

verifies condition Ef (x) ≤ 0 for every x ∈ [a, b].

The following theorems take place, depending on the
properties of monotonicity and convexity of function f :

Theorem 1 If functions f, g and initial value x0 ∈ [a, b]
verify conditions:

i1. g(x0) ∈ [a, b];

ii1. f ′(x) > 0, for every x ∈ [a, b];

iii1. f ′′(x) ≥ 0, for every x ∈ [a, b];

iv1. function f and g verify assumptions α1) − α6),

then, the elements of sequences (xn)n≥0, (g(xn))n≥0 and
(g(g(xn)))n≥0 generated by (16) remain in the inter-
val [a, b] and, moreover, following properties hold:

j1. if f(x0) < 0, then, for every n = 0, 1, ..., the following
relations are verified:

xn ≤ xn+1 ≤ x ≤ g(xn+1) ≤ g(xn); (19)
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jj1. if f(x0) > 0, then, for every n = 0, 1, ..., the following
relations are verified:

xn ≥ xn+1 ≥ x ≥ g(xn+1) ≥ g(xn); (20)

jjj1. lim xn = lim g(xn) = x;

jv1. |xn+1 − x| ≤ |xn+1 − g(xn)| , n = 0, 1, ...,

Theorem 2 If x0 ∈ [a, b] and functions f, g verify condi-
tions:

i2. g(x0) ∈ [a, b];

ii2. f ′(x) < 0, for every x ∈ [a, b];

iii2. f ′′(x) < 0, for every x ∈ [a, b];

iv2. functions f and g verify conditions α1) − α6),

then, the elements of sequences (xn)n≥0, (g(xn))n≥0 and
(g(g)xn)))n≥0 generate by (16) remain in the interval
[a, b] and, moreover, the following properties hold:

j2. if f(x0) > 0 then, for every n = 0, 1, ...,relations (19)
hold;

jj2. if f(x0) ≤ 0, then for every n > 0, 1, ...,relations (20)
hold;

jjj2. relations from jjj1 and jv1 from Theorem 1 are veri-
fied.

Theorem 3 If x0 ∈ [a, b] and functions f, g verify condi-
tions:

i3. g(x0) ∈ [a, b];

ii3. f ′(x) < 0, for every x ∈ [a, b];

iii3. f ′′(x) ≥ 0, for every x ∈ [a, b];

iv3. functions f and g verify assumptions α1) − α6),

then, the elements of sequences the (xn)n≥0, (g(xn))n≥0

and (g(g)xn)))n≥0 generated by (16), remain in the
interval [a, b] and the following properties hold:

j3. if f(x0) > 0, then for every n = 0, 1, ..., relations (19)
hold;

jj3. if f(x0) < 0, the for every n = 0, 1, ..., relations (20)
hold.

jjj3. statements jjj1 and jv1 of Theorem 1 hold.

Theorem 4 If x0 ∈ [a, b] and functions f, g verify condi-
tions:

i4. g(x0) ∈ [a, b];

ii4. f ′(x) > 0, for every x ∈ [a, b];

iii4. f ′′(x0) ≤ 0, for every x ∈ [a, b];

iv4. functions f and g verify assumptions α1) − α6),

then, the elements of sequences (xn)n≥0, (g(xn))n≥0 and
(g(g(xn)))n≥0, generated by (16), remain in the inter-
val [a, b], and moreover, the following properties hold:

j4. if f(x0) < 0 then relations (19) hold;

jj4. if f(x0) > 0 then relations (20) hold;

jjj4. statements jjj1 and jv1 of Theorem 1 hold.

Proof. (Theorem 1). Let xn ∈ [a, b], n ∈ N
∗, for which

g(xn) ∈ [a, b]. Suppose that f(xn) < 0, then, from ii1,
it results xn < x. Assumption α3) leads us to relation
g(xn) > x and g(g(xn)) < x. From (17) we have:

|g(g(xn)) − x| ≤ � |g(xn) − x| ≤ �2 |xn − x| ,
i.e.

xn ≤ g(g(xn)) < x.

It is obvious that the following relations take place:

a ≤ xn ≤ g(g(xn)) < x < g(xn) ≤ b. (21)

Further on, in order to simplify writing, we shall denote by
D(xn) the expression

D(xn) =

=
[xn, g(xn), g(g(xn)); f ]

[xn, g(xn); f ][xn, g(g(xn)); f ][g(xn), g(g(xn)); f ]

and then (16) becomes

xn+1 = xn − f(xn)
[xn, g(xn); f ]

− D(xn)f(xn)f(g(xn)),

(22)
n = 0, 1, ..., . From ii1, iii1 and (21) it follows that results
D(xn) ≥ 0, f(xn) < 0 and f(g(xn)) > 0 which together
with (22) lead us to relation xn+1 > xn. By use of New-
ton’s identity (9) we obtain, for the nodes considered in (16)

x − xn+1 =

= − [0, f(xn), f(g(xn)), f(g(g(xn))); f−1]·
· f(xn)f(g(xn))f(g(g(xn))). (23)

From (15) and (21) it follows that there exists ξn ∈
]xn, g(xn)[ such that (23) can be represented in the form:

x − xn+1 = −Ef (ξn)f(xn)f(g(xn))f(g(g(xn)))
6[f ′(ξn)]5

(24)

Taking into account ii1 and assumption α6) from (24) we
obtain x − xn+1 ≥ 0, i.e. x ≥ xn+1. The last relation,
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together with α3) lead us to relations g(xn+1) ≥ x, and
from xn+1 > xn, we have g(xn+1) < g(xn). From the
facts proven above, it is obvious that relations (19) hold. If
f(xn) > 0, then we shall use identity

f(xn)
[xn, g(xn); f ]

+ D(xn)f(xn)f(g(xn)) = (25)

=
f(xn)

[xn, g(g(xn)); f ]
+ D(xn)f(xn)f(g(g(xn))).

As f(xn) > 0 then, from ii1 and α3) relations xn > x,
g(xn) < x imply the stated result.

From (17) it is easy to see that relation g(g(xn)) ≥ xn

takes place, i.e. we have:

a ≤ g(xn) ≤ x ≤ g(g(xn)) ≤ xn ≤ b.

From the above relation it results that f(g(xn)) < 0;
f(xn) > 0 and f(g(g(xn))) > 0 and from (25) and (16)
it results xn+1 < xn. From (24) for ξn ∈]g(xn), xn[ it re-
sults xn+1 ≥ x which, together with g(xn+1) > g(xn)
leads us to relations (20).

The consequence jjj1 is a result of relation (19) or (20).
For jv1, from (19), respectively (20), it results that it ex-
ists u = lim xn. Getting to the limit for n → ∞ in (16)
we obtain f(u) = 0, and from assumption α2) it results
u = g(u), i.e. u = x, and lim g(xn) = g(x) = x. Thus,
Theorem 1 is proven.
Proof. (Theorem 2). We notice that if instead of equa-
tion (1) we consider equation −f(x) = 0, then function
h : [a, b] → R, h(x) = −f(x) verifies all assump-
tions of Theorem 1 relating to f. If f ∈ C3([a, b]), then
−f ∈ C3([a, b]) and α5) hold. Also, if f verifies α6) from
relation Ef (x) = E−f (x) it results that −f verifies too
α6).

Obviously, assumptions ii1 and iii1 are verified by h =
− f. Also, relations (16) do not change if we replace f by
−f. Taking into account Theorem 1, it is obvious that the
consequences from Theorem 2 take place.
Proof. (Theorem 3). Let xn ∈ [a, b], n ∈ N

∗, for which
g(xn) ∈ [a, b], an approximation of x. Suppose f(xn) < 0,
then, obviously, form ii3 it results xn > x, g(xn) < x,
and g(g(xn)) > x. From ii3, iii3, taking into account the
last relations, and from (16) it results xn+1 < xn. From
(24), α6), ii3 and iii3 it results x − xn+1 < 0, i.e. xn+1 >
x. From xn+1 < xn and from α3) it results g(xn+1) >
g(xn). Relation (20) results from the facts proven above.
If f(xn) > 0 then, obviously xn < x, g(xn) > x and
g(g(xn)) < x. By use of relation (25) from ii3, iii3 and
(16) it results xn+1 > xn and g(xn+1) < g(xn). From
(24), α6) and iii3 taking into account the last relations, it
results x − xn+1 > 0, i.e. xn+1 < x, and thus relations
(19) hold. Consequence jjj3 results from (19) and (20).

Proof. (Theorem 4.) We shall use the same reasoning as
in the case of Theorem 2, i.e. we shall notice that if f ver-
ifies the assumptions of Theorem 4, then h1 : [a, b] → R,
h1(x) = −f(x) verifies the assumptions of Theorem 3. We
notice that Ef (x) = E−f (x) for every x ∈ [a, b] and thus
α6) is also verified for −f. Also, function h1 verifies as-
sumptions ii3 and iii3. It thus follows that the consequences
of Theorem 3 take place, which imply the proof of Theorem
4. As one can notice, in every case, relation jv1. offers us a
control of error at every step of iteration.

3 The Local Convergence of Steffensen’s
Method of Order Three

In the following, in order to point out the convergence
order of method (16), we shall provide a result concerning
the local convergence of this method. Accordingly, we shall
admit that functions f and g verify the following assump-
tions:

β1) there exists m, M ∈ R, m > 0, M > 0, so that m ≤
|f ′(x)| ≤ M, for every x ∈ [a, b];

β2) there exists E > 0, E ∈ R so that |Ef (x)| ≤ E for
every x ∈ [a, b].

The following theorem holds:

Theorem 5 If functions f and g verify assumptions β1),
β2), α1), α2), α4) and for some x0 ∈ [a, b] the following
relations are verified:

ρ0 = p |x − x0| < 1, p = M�
m2

(
EM�
6m

) 1
2 ; (26)

δ =
[
x − 1

p , x + 1
p

] ⊆ [a, b], (27)

then, the elements of sequences (xn)n≥0, (g(xn))n and
(g(g(xn)))n≥0 remain in the interval [a, b], and for every
n = 0, 1, ..., the following relations hold:

|x − xn+1| ≤ p2 |x − xn|3 ;

|xn − x| ≤ 1
pρ3n+1

0 , n = 1, 2, ... (28)

i.e. lim xn = lim g(xn) = lim g(g(xn)) = x.

Proof. From α4), α2) and (26) it results g(x0) ∈ δ and,
more, g(g(x0)) ∈ δ. If we take account of (24), for n = 0,
and of assumptions β1), β2), and α4) the following relation
results:

|x − x1| ≤ EM3�3

6m5 |x − x0|3 ≤ p2 |x − x0|3 . (29)

From (26), (27) and (29) it results x1 ∈ δ and relation (28)
for n = 1 holds. If we suppose that for n ≥ 1, xn ∈ δ,
then, from (24), proceeding as above, we deduce:

|x − xn+1| ≤ p2 |x − xn|3 (30)
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or
p |x − xn+1| ≤ (p |x − xn|)3. (31)

From (30) results xn+1 ∈ δ, and from (31) results (28).
Relations (26) and (28) imply lim xn = lim g(xn) =
lim g(g(xn)) = x.

Remark 6 Relations (28) show that the q-convergence or-
der of the method given by (16) is at least 3.

4 Construction of Auxiliary Function g

Further on, we shall show that, within supplementary as-
sumptions upon f, depending on its monotony and convex-
ity, we can construct the functions g, which fulfill, respec-
tively, the assumptions of Theorems 1–4. More precisely,
the essential assumptions upon function g, are given by α2),
α3), α4) and i1 or, analogously, i2, i3, i4.

The following theorems take place:

Theorem 7 If f verifies assumptions ii1 and iii1 of Theo-
rem 1 and moreover, if it exists � ∈ R , 0 < � ≤ 1, so that
f ′(b) ≤ (1 + �)f ′(a), then, function g given by relation

g(x) = x − λf(x) (32)

where λ ∈
[

1
f ′(a) ,

1+�
f ′(b)

]
fulfills the conditions given by as-

sumptions α2), α3) and α4).

Proof. From ii1 and iii1 it results f ′(x) > 0 and f ′′(x) ≥ 0
for every x ∈ [a, b].

It is obvious that function g given by (32) verifies α2).
For α3) and α4) it is sufficient that function g′(x) should

verify relations

−� ≤ 1 − λf ′(x) < 0 (33)

where 0 < � ≤ 1.
From (33) ii1 and iii1 it results:

1
f ′(a)

≤ λ <
1 + �

f ′(b)
. (34)

It is not difficult to show that if λ verifies (34), then g′(x)
verifies

−� ≤ g′(x) < 0,

i.e. assumptions α3) and α4) are verified.

Theorem 8 If assumptions ii2 and iii2 of Theorem 2 are
fulfilled, and, moreover, if for an � ∈ R, 0 < � ≤ 1 relation
(1 + �)f ′(a) < f ′(b), takes place, then, function g given by
relation (32), where λ ∈] 1+�

f ′(b) ,
1�

f ′(a) [ verifies the conditions
given by assumptions α2), α3) and α4).

Proof. From ii2 and iii2 it results f ′(x) < 0 and f ′′(x) � 0
for every x ∈ [a, b]. Let h : [a, b] → R given by relation
h(x) = −f(x); then g has the form

g(x) = x + λh(x).

From relation h′′(x) ≥ 0 it results that function h′ is in-
creasing, and moreover h′(x) > 0 for every x ∈ [a, b].
It is thus obvious that the following relations are valid
h′(a) ≤ h′(x) ≤ h′(b) i.e.

1
h′(a)

≥ 1
h′(x)

≥ 1
h′(b)

. (35)

Function g given by (32) verifies assumption α2). For
α3)and α4) the following relations are sufficient:

−� ≤ 1 + λh′(x) < 0, for every x ∈ [a, b], (36)

where 0 < � ≤ 1.
From (36) follows that

−1 − � ≤ λh(x) < −1,

hence

1+�
h′(x) ≥ −λ > 1

h′(x) for every x ∈ [a, b]. (37)

From assumption λ ∈
[

1+�
f ′(b) ,

1
f ′(a)

]
follows

1
h′(a) < −λ < 1+�

h′(b) . (38)

From (35), (37) and (38) we deduce relations

1
h′(x) ≤ 1

h′(a) < −λ < 1+�
h′(b) ≤ 1+�

h′(x) . (39)

It is obvious that if λ verifies (38), from (39) it results that
λ verifies (37), i.e. (36) takes place, and thus function g
verifies α2) and α3).

Theorem 9 If assumptions ii3 and iii3 of Theorem 3 are
fulfilled, and, moreover, if for an � ∈ R, 0 < � ≤ 1, relation
(1+�)f ′(b) < f ′(a), takes place, then, function g, given by
relation (32), where λ ∈ [

1+�
f ′(a) ,

1
f ′(b)

]
, verifies assumptions

α2), α3) and α4).

Proof. We consider again function h : [a, b] + R, h(x) =
−f(x). From ii3 and iii3 results h′(x) > 0 and h′′(x) ≤ 0
i.e. function h′(x) is decreasing, and the following relations
hold:

1
h′(a) ≤ 1

h′(x) ≤ 1
h′(b) , (40)

for every x ∈ [a, b]. In order that g verifies α3) and α4), the
following relations are sufficient:

1
h′(x) < −λ ≤ 1+�

h′(x) . (41)

If we take into account the substitution considered, and the
assumption upon parameter λ from (40), we deduce that λ
verifies (41).

Assumption (1 + �)f ′(b) < f ′(a) assures us that the set
of values which λ could take is not a void one.
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Theorem 10 If function f verifies assumptions ii4 and iii4
of Theorem 4, and if, moreover, for an � ∈ R, 0 < � ≤ 1,
relation f ′(a) < (1 + �)f ′(b), takes place, then function g
given by (32) where λ ∈] 1

f ′(b) ,
1+�
f ′(a) [, verifies assumptions

α2), α3) and α4).

Proof. From iii4 it results that function f ′ is decreasing, i.e.
the following relations take place:

f ′(a) ≥ f ′(x) ≥ f ′(b), (42)

for every x ∈ [a, b].
From relation −� ≤ g′(x) < 0, the following relations

result, for λ :
1+�

f ′(x) ≥ λ > 1
f ′(x) . (43)

From relations (42), (43) it results

1
f ′(x) ≤ 1

f ′(b) < λ ≤ 1+�
f ′(a) ≤ 1+�

f ′(x) ,

Which shows us that if λ ∈] 1
f ′(b) ,

1+�
f ′(a) [, then, relation (43)

is verified, which assures us that assumptions α3) and α4)
are verified. Relation f ′(a) < (1 + �)f ′(b) assures us that
the set of values of λ is not empty.

5 Numerical Examples

Further on, we shall present two numerical examples,
which illustrate some of the obtained results.

Example 1 Let

f(x) = ex + 6x − 4 = 0 (44)

for x ∈ [0, 1]. Because f ′(x) = ex + 6 > 0 and f ′′(x) =
ex > 0 for x ∈ [0, 1], we construct function g in such a
manner that Theorem 1 can be applied to this example.

Function Ef is given by relation

Ef (x) = 2ex(ex − 3).

It is clear that Ef (x) < 0 for every x ∈ [0, 1]. It is shown
at once that if we take function g given by relation

g(x) = x − 1
6f(x), (45)

then assumptions i1, α3), α4) and α5 upon function g are
verified for x0 = 0, and � = e

6 and thus λ = 1
6 is an

acceptable value.
If in (16) we consider functions f and g given by (44),

respectively (45), then we obtain, for the root x ∈ (0, 1) of
equation (44) the approximations given in Table 1.

Obviously, sequence (xn)n≥0, generated from (16) in the
conditions of Theorem 1, verifies its conclusions, i.e. se-
quences (xn)n≥0 and (g(g(xn)))n≥0 are increasing, and

n xn g (xn) g (g (xn))
0 0 0.5 0.39187978821665

1 0.41440725449098 0.41442110496351 0.41441761121909

2 0.41441831498704 0.41441831498704 0.41441831498704

Table 1. Numerical results for f(x) = ex +6x−
4.

sequence (g(xn))n≥0 is decreasing. From Table 1, by use
of jv1 the following relation clearly results:

|x2 − x| < 10−14,

where x is the root of the given equation.

Example 2 We consider equation:

f(x) = xex + 4x + 4 = 0 (46)

for x ∈ [−1, 0]. For the derivatives of order 1 and 2 of f ,
we have relations

f ′(x) = (x + 1)ex + 4 > 0, x ∈ [−1, 0];
f ′′(x) = (x + 2)ex > 0, x ∈ [−1, 0].

Once more, we shall show that the Theorem 1 can be
applied. It is easy to see that function Ef (x) may be put in
the form:

Ef (x) = ex(x + 3)
[

2x2+8x+9
x+3 ex − 4

]
.

An elementary reasoning leads us to conclusion
Ef (x) < 0 for every x ∈ [−1, 0].

We consider function g given by relation

g(x) = x − 1
5f(x). (47)

We conclude that all the assumptions of Theorem 1 are
verified. By use of relations (16) we obtain the results from
Table 2. In this case we notice that sequences (xn)n≥0 and
(g(g(xn)))

n≥0 are decreasing, and sequence (g(xn))n≥0 is
increasing. For the error, we have relation:

|x − x2| < 10−14.

n xn g (xn) g (g (xn))
0 0 -0.8 -0.8881073657412

1 -0.90850552567187 -0.90845262256514 -0.90844243232071

2 -0.90844000122266 -0.90844000122266 -0.90844000122266

Table 2. Numerical results for f(x) = xex +
4x + 4.
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