Citations in journals from Web of Sciences with Impact Factor > 0.3:

E. Cătinaş, On some iterative methods for solving nonlinear equations, Rev Anal Numer Theor Approx, 23 (1994) 47-53

cited by:

I.K. Argyros and S. Hilout, Majorizing sequences for iterative procedures in Banach spaces, J. Complexity, 28 (2012) 5-6, 562-581, Impact Factor 2011 (IF) 1.099

E. Cătinaş, On some iterative methods for solving nonlinear equations, Rev Anal Numer Theor Approx, 23 (1994) 47-53

cited by:

I.K. Argyros and S. Hilout, Majorizing sequences for iterative methods, J. Comp. Appl. Math., 236 (2012) 1947–1960, IF 1.112

E. Cătinaş, On some iterative methods for solving nonlinear equations, Rev Anal Numer Theor Approx, 23 (1994) 47-53

cited by:

Fenlin Yang, Ke Chenb and Bo Yua, Homotopy method for a mean curvature-based denoising model, Apppl. Numer. Math., 62 (2012) 185–200, IF 0.967

E. Cătinaş, Estimating the radius of an attraction ball, Applied Mathematics Letters 22 (2009) 712 714.

cited by:

L.A. Melara, A.J.Kearsley, The radius of attraction for Newton’s method and TV-minimization image denoising, Appl. Math. Lett., 25 (2012) 2417–2422, IF 1.371

E. Cătinaş, The inexact, inexact perturbed and quasi-Newton methods are equivalent models, Math. Comput. 74, 291–301 (2004)

cited by:

I.K. Argyros, S. Hilout, Weaker conditions for the convergence of Newton’s method, J. Complexity, 28 (2012), 364-387 IF 1.099

I. Păvăloiu, Introduction in the Theory of Approximation of Equations Solutions, Dacia Ed., Cluj-Napoca, 1976.

cited by:

I.K. Argyros and S. Hilout, Majorizing sequences for iterative methods, J. Comp. Appl. Math., 236 (2012) 1947–1960, IF 1.112

I. Păvăloiu, Sur la méthode de Steffensen pour la résolution des équations opérationnelles non linéaires, Rev. Roumaine Math. Pures Appl. 13 (6) (1968) 857–861

cited by:

I.K. Argyros and S. Hilout, Majorizing sequences for iterative methods, J. Comp. Appl. Math., 236 (2012) 1947–1960, IF 1.112

I. Păvăloiu, On the convergence of a Steffensen-type method, in: Seminar on Mathematical Analysis, Preprint, 91–7, ‘‘Babeş–Bolyai’’ Univ., Cluj-Napoca, 1991, pp. 121–126.

cited by:

I.K. Argyros and S. Hilout, Majorizing sequences for iterative methods, J. Comp. Appl. Math., 236 (2012) 1947–1960, IF 1.112

I. Păvăloiu, Sur la méthode de Steffensen pour la résolution des équations opérationnelles non linéaires, Rev. Roumaine Math. Pures Appl. 13 (1968) 857–861.

cited by:

I.K. Argyros and S. Hilout, Majorizing sequences for iterative procedures in Banach spaces, J. Complexity, 28 (2012) 5-6, 562-581, IF 1.099

I. Păvăloiu, Introduction in the Theory of Approximation of Equations Solutions, Dacia Ed., Cluj-Napoca, 1976.

cited by:

I.K. Argyros and S. Hilout, Majorizing sequences for iterative procedures in Banach spaces, J. Complexity, 28 (2012) 5-6, 562-581, IF 1.099

I. Păvăloiu, On the convergence of a Steffensen–type method, Seminar on Mathematical Analysis, 121–126, 91–7, ‘‘Babeş–Bolyai’’ Univ., Cluj-Napoca, 1991. Preprint.

cited by:

I.K. Argyros and S. Hilout, Majorizing sequences for iterative procedures in Banach spaces, J. Complexity, 28 (2012) 5-6, 562-581, IF 1.099

I. Păvăloiu, On an approximation formula, Rev. Anal. Numer. Theor. Approx. 26 (1997), Ns. 1-2, pp. 179-183

cited by:

F. Pătrulescu, A numerical method for the solution of an autonomous initial value problem, Carpathian J. Math., 28 (2012) no. 2, 289-296, IF 0.906

I. Păvăloiu, Introduction in the Theory of Approximation of Equations Solutions, Dacia Ed., Cluj-Napoca, 1976.

cited by:

I.K. Argyros, S. Hilout, Weaker conditions for the convergence of Newton’s method, J. Complexity, 28 (2012), 364-387 IF 1.099

C. Vamoş, Automatic algorithm for monotone trend removal, Physical Review E, vol. 75 (2007) no. 3, art.id.: 036705,

cited by:

Jeng Yih-Nen; Yang Tzung-Ming; Cheng You-Chi, A class of fast and accurate deterministic trend decomposition in the spectral domain using simple and sharp diffusive filters, Journal of the Franklin Institute-Engineering and Applied Mathematics, Vol.: 349, Issue: 6, Pages: 2065-2092, 2012, IF 2.724

V.V. Morariu, L. Buimaga-Iarinca, C. Vamoş, Ş.M. Şoltuz, Detrended fluctuation analysis of autoregressive processes, Fluctuation and noise letters, v. 7 (2007) no. 3, L249-L255,

cited by:

Kristoufek Ladislav, How are rescaled range analyses affected by different memory and distributional properties? A Monte Carlo study, Physica A-Statistical Mechanics And Its Applications, Vol. 39, Issue 17, Pages: 4252-4260, Published: SEP 2012, IF 1.373

C. Vamoş, Ş. M. Şoltuz, M. Crăciun, Order 1 autoregressive process of finite length, Rev. Anal. Numér. Théor. Approx., vol 36, no.2, 199-214 (2007),

cited by:

Long B.C.; Knight K.L.; Hopkins T., Parcell A.C., Feland J.B., Production of Consistent Pain by Intermittent Infusion of Sterile 5% Hypertonic Saline, Followed by Decrease of Pain With Cryotherapy, Journal of Sport Rehabilitation vol. 21, issue 3, pp. 225-230, 2012, IF 1.072

C. Vamoş, N. Suciu and H. Vereecken, Generalized random walk algorithm for the numerical modeling of complex diffusion processes, Journal of Computational Physics, 186(2), pp. 527-544, 2003,

cited by:

Aleksander Stanislavsky and Karina Weron, A study of difusion under a time-dependent force by time subordination, Journal of Statistical Mechanics: Theory and Experiment, Issue 07 (July 2012), Published 19 July 2012, P07020, IF 1.727

and

Lin Liu, Wei Sun, Guang Ye, Huisu Chen, Zhiwei Qian, Estimation of the ionic diffusivity of virtual cement paste by random walk algorithm, Construction and Building Materials, Vol. 28, No. 1. (March 2012), pp. 405-413, Impact Factor: 1.366

C. Vamoş, N. Suciu, and A. Georgescu, Hydrodynamic equations for one-dimensional systems of inelastic particles, Physical Review E, Vol. 55, pp. 6277-6280, 1997,

cited by:

Wylie J.J.; Yang R.; Zhang Q., Periodic orbits of inelastic particles on a ring, Physical Review E, Volume 86, Issue: 2, Article Number: 026601, Part 2, 2012IF 2.255

N. Suciu, Spatially inhomogeneous transition probabilities as memory effects for diffusion in statistically homogeneous random velocity fields, Physical Review E, 81, 056301,

cited by:

Dorini, F. A.; Cunha, M. C. C., On the linear advection equation subject to random velocity fields, Behaviour Research and Therapy, 50(1), 679-690, 2012, IF 3.295

C. Vamoş, N. Suciu, and A. Georgescu, Hydrodynamic equations for one-dimensional systems of inelastic particles, Physical Review E, Vol. 55, pp. 6277-6280, 1997,

cited by:

Wylie J.J.; Yang R.; Zhang Q., Periodic orbits of inelastic particles on a ring, Physical Review E, Volume 86, Issue: 2, Article Number: 026601, Part 2, 2012IF 2.255

C. I. Gheorghiu, Spectral Methods for Differential Problems, Ed. Casa Cartii de Stiinta, Cluj-Napoca, 2007, ISBN 978-973-133-099-0; Zbl 1122.65118,

cited by:

EH Doha, AH BhrawyAn efficient direct solver for multidimensional elliptic Robin boundary value problems using a Legendre spectral-Galerkin method, Computers & Mathematics with Applications, http://dx.doi.org/10.1016/j.camwa.2011.12.0500 2012, Volume 64, Issue 4, August, 2012, Pages 558-571 – IF 1.747

and

IMR Sadiq, T Gambaryan-Roisman, P Stephan, Falling liquid films on longitudinal grooved geometries: Integral boundary layer approach, Physics of Fluids, 24 (2012) no.1, 014104, IF 1.926

and

Claude Brezinski, Paraskevi Fika and Marilena Mitrouli, Moments of a linear operator, with applications to the trace of the inverse of matrices and the solution of equations, Numerical Linear Algebra with Applications, Vol. 19, Issue 6, pages 937–953, December 2012, IF 1.163

C.I. Gheorghiu, Dragomirescu, I.F., Spectral methods in linear stability. Applications to thermal convection with variable gravity field, Applied Numerical Mathematics, 59(2009) 1290-1302; DOI 10.1016/j.apnum.2008.07.004- impact factor 0.967,

cited by:

EH Doha, WM Abd-Elhameed, AH BhrawyAn efficient direct solver for multidimensional elliptic Robin boundary value problems using a Legendre spectral-Galerkin method, Computers & Mathematics with Applications, Volume 64, Issue 4, August 2012, Pages 558–571 http://dx.doi.org/10.1016/j.camwa.2011.12.050,- IF: 1.574

Rhoades, BE; Soltuz SM, The equivalence between the convergences of Ishikawa and Mann iterations for an asymptotically nonexpansive in the intermediate sense and strongly successively pseudocontractive maps, JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS  Volume: 289  Issue: 1   Pages: 266-278   DOI: 10.1016/j.jmaa.2003.09.057 Published: JAN 1 2004

cited by:

Wang, Xuewu; Marino, Giuseppe; Muglia, Luigi, On the Convergence of Mann and Ishikawa Iterative Processes for Asymptotically phi-Strongly Pseudocontractive Mappings ABSTRACT AND APPLIED ANALYSIS    Article Number: 850104   DOI: 10.1155/2012/850104   Published: 2012, IF 1.318

and

Colao, Vittorio, On the Convergence of Iterative Processes for Generalized Strongly Asymptotically phi-Pseudocontractive Mappings in Banach Spaces , JOURNAL OF APPLIED MATHEMATICS    Article Number: 563438   DOI: 10.1155/2012/563438   Published: 2012, IF 0.656

and

Hussain, Nawab; Chugh, Renu; Kumar, Vivek; et al. On the Rate of Convergence of Kirk-Type Iterative Schemes, JOURNAL OF APPLIED MATHEMATICS, Article Number: 526503 DOI: 10.1155/2012/526503, Published: 2012 , IF 0.656

Rhoades, BE; Soltuz, SM, The equivalence between Mann-Ishikawa iterations and multistep iteration, NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS  Volume: 58   Issue: 1-2   Pages: 219-228   DOI: 10.1016/j.na.2003.11.013 Published: JUL 2004

cited by:

Wang, Xuewu; Marino, Giuseppe; Muglia, Luigi, On the Convergence of Mann and Ishikawa Iterative Processes for Asymptotically phi-Strongly Pseudocontractive Mappings ABSTRACT AND APPLIED ANALYSIS    Article Number: 850104   DOI: 10.1155/2012/850104   Published: 2012, IF 1.318

and

Xue, Zhiqun; Rafiq, Arif; Zhou, Haiyun On the Convergence of Multistep Iteration for Uniformly Continuous Phi-Hemicontractive Mappings, ABSTRACT AND APPLIED ANALYSIS Article Number: 386983 DOI: 10.1155/2012/386983 Published: 2012, IF 1.318

and

Hussain, Nawab; Chugh, Renu; Kumar, Vivek; et al. On the Rate of Convergence of Kirk-Type Iterative Schemes, JOURNAL OF APPLIED MATHEMATICS, Article Number: 526503, DOI: 10.1155/2012/526503 Published: 2012, IF 0.656

and

Colao, Vittorio, On the Convergence of Iterative Processes for Generalized Strongly Asymptotically phi-Pseudocontractive Mappings in Banach Spaces, JOURNAL OF APPLIED MATHEMATICS Article Number: 563438 DOI: 10.1155/2012/563438 Published: 2012, IF 0.656

and

Z Xue, A Rafiq, H Zhou, On the Convergence of Multistep Iteration for Uniformly Continuous-Hemicontractive Mappings, – Abstract and Applied Analysis, 2012 – Article ID 386983, 9 pages, doi:10.1155/2012/386983, IF 1.318

and

N Hussain, R Chugh, V Kumar, A Rafiq, On the rate of convergence of Kirk-type iterative schemes, J. of Applied Mathematics Vol. 2012 (2012), Article ID 526503, 22 pages doi:10.1155/2012/526503, IF 0.656

Soltuz, SM, The equivalence of Picard, Mann and Ishikawa iterations dealing with quasi-contractive operators, Math Commun,  Volume: 10   Pages: 81-88   Published: 2005

cited by:

Phuengrattana, Withun; Suantai, Suthep, Strong convergence theorems and rate of convergence of multi-step iterative methods for continuous mappings on an arbitrary interval, Fixed Point Theory and Applications Article Number: 9   DOI: 10.1186/1687-1812-2012-9   Published: 2012, IF: 1.634

B.E. Rhoades, SM. Soltuz, The equivalence between Mann-Ishikawa iterations and multistep iteration, Nonlinear Analysis-Theory Methods & Applications, 58(2004), 219–228.

cited by:

Vittorio Colao, On the Convergence of Iterative Processes for Generalized Strongly Asymptotically phi-Pseudocontractive Mappings in Banach Spaces, JOURNAL OF APPLIED MATHEMATICS    Article Number: 563438   DOI: 10.1155/2012/563438  Published: 2012, IF: 0.656

Soltuz, SM, The equivalence between Krasnoselskij, Mann, Ishikawa, Noor and multistep iterations Mathematical Communications, 2007 – hrcak.srce.hr

cited by:

N Hussain, R Chugh, V Kumar, A Rafiq On the rate of convergence of Kirk-type iterative schemes, Journal of Applied Mathematics, Volume 2012 (2012), Article ID 526503, 22 pages, doi:10.1155/2012/52650, IF=0.656

Ş. M Şoltuz, The equivalence of Picard, Mann and Ishikawa iterations dealing with quasi-contractive operators, Mathematical Communications, 2005 – 10, 81–88 (2005)

cited by:

N Hussain, R Chugh, V Kumar, A Rafiq, On the rate of convergence of Kirk-type iterative schemes, – Journal of Applied Mathematics, Volume 2012 (2012), Article ID 526503, 22 pages, doi:10.1155/2012/526503, 2012 – hindawi.com, IF=0.656

and

W Phuengrattana, S Suantai, Strong convergence theorems and rate of convergence of multi-step iterative methods for continuous mappings on an arbitrary interval, Fixed Point Theory and Applications, vol.9, 2012 – doi:10.1186/1687-1812-2012-9, Springer, IF=0.776

D. Otrocol, I.A. Rus, Functional-differential equation with “maxima”, of mixed type, Fixed Point Theory, 9(2008), no.1, 207-220,

cited by:

Rabha W. Ibrahim, Extremal solutions for certain type of fractional differential equations with maxima, Advances in Difference Equations, 2012, 2012:7, Published: 8 February 2012, IF: 0.845

D. Otrocol, Abstract Volterra operators, Carpathian J. Math., 24 (2008), no. 3, 370-377,

cited by:

I.A. Rus, An abstract point of view on iterative approximation of fixed points: impact on the theory of fixed point equations, Fixed Point Theory, 13, No. 1, 179-192, 2012, IF: 0.970.

Citations in journals from Web of Sciences with Impact Factor > 0.3 published online 2012 :

E. Cătinaş, Inexact perturbed Newton methods and application to a class of Krylov solvers. J. Optim. Theory Appl. 108, 543–571 (2001)

cited by:

M.J. Smietanski, A perturbed version of an inexact generalized Newton method for solving nonsmooth equations, Numer. Algor. DOI 10.1007/s11075-012-9613-7, IF 1.042

E. Cătinaş, The inexact, inexact perturbed and quasi-Newton methods are equivalent models, Math. Comput. 74, 291–301 (2004)

cited by:

M.J. Smietanski, A perturbed version of an inexact generalized Newton method for solving nonsmooth equations, Numer. Algor. DOI 10.1007/s11075-012-9613-7, IF 1.042

E. Cătinaş, The inexact, inexact perturbed and quasi-Newton methods are equivalent models, Math. Comput. 74, 291–301 (2004)

cited by:

I.K. Argyros and S. Hilout, Estimating upper bounds on the limit points of majorizing sequences for Newton’s method, Numer. Algor. DOI 10.1007/s11075-012-9570-1, IF 1.042

I. Păvăloiu, Introduction in the Theory of Approximation of Equations Solutions, Dacia Ed., Cluj-Napoca, 1976.

cited by:

I.K. Argyros and S. Hilout, Estimating upper bounds on the limit points of majorizing sequences for Newton’s method, Numer. Algor. DOI 10.1007/s11075-012-9570-1, IF 1.042

I. Păvăloiu, Introduction in the Theory of Approximation of Equations Solutions, Dacia Ed., Cluj-Napoca, 1976.

cited by:

I.K. Argyros S. Hilout, Secant–type methods and nondiscrete induction, Numer. Algor., DOI 10.1007/s11075-012-9540-7, IF 1.042

M.-C. Anisiu, V. Anisiu, Z. Kása, On the total palindrome complexity, Discr. Math. 310 (2010), 109-114

cited by:

T. I, Sh. Inenaga and M. Takeda, Palindrome pattern matching, Theoretical Computer Science, In Press, Corrected Proof, Available online 31 January 2012, http://dx.doi.org/10.1016/j.tcs.2012.01.047, IF 0.665

C. I. Gheorghiu, Spectral Methods for Differential Problems, Ed. Casa Cartii de Stiinta, Cluj-Napoca, 2007, ISBN 978-973-133-099-0; Zbl 1122.65118,

cited by:

EH Doha, WM Abd-Elhameed, AH Bhrawy, New spectral-Galerkin algorithms for direct solution of high even-order differential equations using symmetric generalized Jacobi polynomials, Collectanea Mathematica, 2012 – DOI: 10.1007/s13348-012-0067-y Springer IF 0.574

Citations in journals from Web of Sciences with Impact Factor < 0.3, ISI Proceedings:

V. Soporan, C. Pavai, C. Vamoş, Modelarea numerica a tumarii otelurilor in lingotiera in vederea optimizarii parametrilor tehnologic, Metalurgia, Vol. 48, No. 11, pp. 42-47, 1996.

cited by:

Andronache C.; Socalici A.; Heput T., Popa E., Research on the influence of steel ingot solidification process control on the tenacity characteristics, Metalurgia International vol. 17, No. 9, pp. 234-238, 2012, IF: 0.084

Citations in books published by reputed publishing houses

E. Cătinaş, The inexact, inexact perturbed and quasi-Newton methods are equivalent models, Math. Comput. 74, 291–301 (2004)

Citată în

A.Borzi, V. Schulz, Computational Optimization of Systems Governed by Partial Differential Equations, SIAM, Philadelphia, 2012, ISBN 978-1-61197-204-7.

E. Cătinaş, On some iterative methods for solving nonlinear equations, Rev Anal Numer Theor Approx, 23 (1994) 47-53

Citată în

I.K. Argyros,Y.J. Cho, S. Hilout, Numerical Methods for Equations and Its Applications, CRC Press, Francis & Taylor Group, Boca Raton, USA, 2012, ISBN 978-1-57808-753-2

E. Cătinaş, Estimating the radius of an attraction ball, Applied Mathematics Letters 22 (2009) 712 714.

Citată în

I.K. Argyros,Y.J. Cho, S. Hilout, Numerical Methods for Equations and Its Applications, CRC Press, Francis & Taylor Group, Boca Raton, USA, 2012, ISBN 978-1-57808-753-2

E. Cătinaş, Inexact perturbed Newton methods and application to a class of Krylov solvers. J. Optim. Theory Appl. 108, 543–571 (2001)

Citată în

I.K. Argyros,Y.J. Cho, S. Hilout, Numerical Methods for Equations and Its Applications, CRC Press, Francis & Taylor Group, Boca Raton, USA, 2012, ISBN 978-1-57808-753-2

E. Cătinaş, The inexact, inexact perturbed and quasi-Newton methods are equivalent models, Math. Comput. 74, 291–301 (2004)

Citată în

I.K. Argyros,Y.J. Cho, S. Hilout, Numerical Methods for Equations and Its Applications, CRC Press, Francis & Taylor Group, Boca Raton, USA, 2012, ISBN 978-1-57808-753-2

E. Cătinaş, On the superlinear convergence of the successive approximations method, J. Optim. Theory Appl., 113 (2002) no. 3, pp. 473-485

Citată în

I.K. Argyros,Y.J. Cho, S. Hilout, Numerical Methods for Equations and Its Applications, CRC Press, Francis & Taylor Group, Boca Raton, USA, 2012, ISBN 978-1-57808-753-2

E. Cătinaş, Sufficient convergence conditions for certain accelerated successive approximations, Trends and Applications in Constructive Approximation, Eds. M.G. de Bruin, D.H. Mache and J. Szabados, International Series of Numerical Mathematics, vol. 1, pp. 71-75, 2005, Birkhauser Verlag, Basel

Citată în

I.K. Argyros,Y.J. Cho, S. Hilout, Numerical Methods for Equations and Its Applications, CRC Press, Francis & Taylor Group, Boca Raton, USA, 2012, ISBN 978-1-57808-753-2

E. Cătinaş, On accelerating the convergence of the successive approximations method, Rev. Anal. Numér. Théor. Approx., 30 (2001) no. 1, pp. 3-8

Citată în

I.K. Argyros,Y.J. Cho, S. Hilout, Numerical Methods for Equations and Its Applications, CRC Press, Francis & Taylor Group, Boca Raton, USA, 2012, ISBN 978-1-57808-753-2

C. Mustăţa, On the best approximation in metric spaces, Rev. Anal. Numer. Theor. Approx. 4 (1975), no. 1, 45–50.

cited by:

S. Cobzas, Functional analysis in asymmetric normed spaces, Birkhäuser, 2012, 232pp.

C. Mustăţa, A characterization of semi-Chebyshevian sets in a metric space, Anal. Numer. Theor. Approx. 7 (1978), no. 2, 169–170.

cited by:

S. Cobzas, Functional analysis in asymmetric normed spaces, Birkhäuser, 2012, 232pp.

C. Mustăţa, Some remarks concerning norm preserving. Extensions and best approximation, Rev. Anal. Numer. Theor. Approx. 29 (2000), no. 2, 173–180 (2002).

cited by:

S. Cobzas, Functional analysis in asymmetric normed spaces, Birkhäuser, 2012, 232pp.

C. Mustăţa, Uniqueness of the extension of semi-Lipschitz functions on quasi-metric spaces, Bul. Stiint. Univ. Baia Mare Ser. B Fasc. Mat.-Inform. 16 (2000), no. 2, 207–212.

cited by:

S. Cobzas, Functional analysis in asymmetric normed spaces, Birkhäuser, 2012, 232pp.

C. Mustăţa, Extensions of semi-Lipschitz functions on quasi-metric spaces, Rev. Anal. Numer. Theor. Approx. 30(2001), no. 1, 61–67 (2002).

cited by:

S. Cobzas, Functional analysis in asymmetric normed spaces, Birkhäuser, 2012, 232pp.

C. Mustăţa, Extension and approximation of semi-Lipschitz functions on a quasi-metric space, Numerical analysis and approximation theory (Cluj-Napoca, 2002), Cluj Univ. Press, Cluj-Napoca, 2002, pp. 362–385.

cited by:

S. Cobzas, Functional analysis in asymmetric normed spaces, Birkhäuser, 2012, 232pp.

C. Mustăţa, On the extremal semi-Lipschitz functions, Rev. Anal. Numer. Theor. Approx. 31 (2002), no. 1, 103–108(2003).

cited by:

S. Cobzas, Functional analysis in asymmetric normed spaces, Birkhäuser, 2012, 232pp.

C. Mustăţa, A Phelps type theorem for spaces with asymmetric norms, (Proc. 3rd International Conf. on Applied Mathematics, Borsa, 2002), Bul. Stiint. Univ. Baia Mare, Ser. B, Matematica-Informatica 18 (2002), no. 2, 275–280.

cited by:

S. Cobzas, Functional analysis in asymmetric normed spaces, Birkhäuser, 2012, 232pp.

C. Mustăţa, On the uniqueness of the extension and unique best approximation in the dual of an asymmetric linear space, Rev. Anal. Numer. Theor. Approx. 32 (2003), no. 2, 187–192.

cited by:

S. Cobzas, Functional analysis in asymmetric normed spaces, Birkhäuser, 2012, 232pp.

C. Mustăţa, Characterization of nearest points in spaces with asymmetric seminorm, Rev. Anal. Numer. Theor. Approx. 33 (2004), no. 2, 203–208 (2005).

cited by:

S. Cobzas, Functional analysis in asymmetric normed spaces, Birkhäuser, 2012, 232pp.

C. Mustăţa, On the extension of semi-Lipschitz functions on asymmetric normed spaces, Rev. Anal. Numer. Theor. Approx. 34 (2005), no. 2, 139–150.

cited by:

S. Cobzas, Functional analysis in asymmetric normed spaces, Birkhäuser, 2012, 232pp.

C. Mustăţa, Best uniform approximation of semi-Lipschitz functions by extensions, Rev. Anal. Numer. Theor. Approx. 36 (2007), no. 2, 161–171.

cited by:

S. Cobzas, Functional analysis in asymmetric normed spaces, Birkhäuser, 2012, 232pp.

C. Mustăţa, On the approximation of the global extremum of a semi-Lipschitz function, Mediterr. J. Math. 6 (2009), no. 2, 169–180.

cited by:

S. Cobzas, Functional analysis in asymmetric normed spaces, Birkhäuser, 2012, 232pp.

N. Suciu, C. Vamos, Vanderborght, J., Hardelauf, H., Vereecken, H.: Numerical investigations on ergodicity of solute transport in heterogeneous aquifers. Water Resour. Res. 42, W04409–W04419 (2006,

cited by:

Coutelieris, F. A., and Delgado, J., pp 5-21, in Transport Processes in Porous Media, Advanced Structured MaterialsVolume 20, Springer, 2012, ISBN: 978-3-642-27909-6

Citations in international journals

to be completed…

Citations in national journals

to be completed…

Menu