List of citations (ISI + books Springer + others) 51+3+29=83

 ISI Thomson Reuters citations (51):

M. Anisiu

Anisiu, MC, Anisiu, V: The first Seiffert mean is strictly (G,A)(G,A)-super-stabilizable. J. Inequal. Appl. 2014, 185 (2014)
citată în

  • Mustapha Raïssouli and József Sándor, Sub-super-stabilizability of certain bivariate means via mean-convexity, Journal of Inequalities and Applications 2016:273 DOI: 10.1186/s13660-016-1212-z

C. Alicu (căs. Anisiu), O. Mark, Some properties of the fixed points set for multifunctions, Studia Univ. Babe-Bolyai Math., 25 (1980), 77–79. 1
citată în

  • Hojjat Afsharia, Hamed H. Alsulamib, Erdal Karapınar, On the extended multivalued Geraghty type contractions, J. Nonlinear Sci. Appl. 9 (2016), 4695–4706

E. Cătinaş

E. Cătinaş, The inexact, inexact perturbed, and quasi-Newton methods are equivalent models, Math. Comp., 74 (2005), 291–301.
citată în

  • A.A. Magrenan, I.K. Argyros, Improved convergence analysis for Newton-like methods, Numer. Algor., 71 (2016) 4, pp 811–826, DOI: 10.1007/s11075-015-0025-3
  • I.K. Argyros, S. Hilout, The majorant method in the theory of Newton–Kantorovich approximations and generalized Lipschitz conditions, J. Comp. Appl. Math., 291 (2016), pp. 332–347, DOI: 10.1016/j.cam.2014.12.013
  • B. Zhang, N. Adurthi, R. Rai, P. Singla, A Novel Sampling Technique for Probabilistic Static Coverage Problems, Journal of Mechanical Design, 138 (2016), pp. 031403-1—9, DOI: 10.1115/1.4032395

Păvăloiu, E. Cătinas, On a Newton–Steffensen type method, Appl. Math. Lett. 26 (2013) 659–663.
citata in

  • S. Amat, S. Busquier, J.A. Ezquerro, M.A. Hernández-Verón, A Steffensen type method of two steps in Banach spaces with applications, J. Comp. Appl. Math, 291 2016, pp. 317–331, DOI: 10.1016/j.cam.2015.03.038
  • Qian-Guo – Iterative methods for solving mixed quasi variational inequalities, Nonlinear Sci. Lett. A, 7(2)(2016), 51-57

E. Cătinaş, On some iterative methods for solving nonlinear equations, Rev. Anal. Numer. Theor. Approx. 23 (1994), 47–53
citată în

  • A.A. Magrenan, I.K. Argyros, Improved convergence analysis for Newton-like methods, Numer. Algor., 71 (2016) 4, pp 811–826, DOI: 10.1007/s11075-015-0025-3

M. Crăciun

C. Vamoş, M. Crăciun, Separation of components from a scale mixture of Gaussian white noises, Physical Review E 81, Article Number: 051125 (2010), doi:10.1103/PhysRevE.81.051125, ISSN: 2470-0045,
citată în

  • Xu, D. and Beck, C., Transition from lognormal to χ2-superstatistics for financial time series, Physica A: Statistical Mechanics and its Applications, 453 (2016), 173-183, doi:10.1016/j.physa.2016.02.057, IF 1.785
  • Suciu, N., Schüler, L., Attinger, S., and Knabner, P, Towards a filtered density function approach for reactive transport in groundwater, Advances in Water Resources, 90, (2016), 83-98, doi:10.1016/j.advwatres.2016.02.016, IF 4.349

C. Vamoş, M. Crăciun, Automatic Trend Estimation, Springer, Dordrecht, 2013
citatǎ în.

  • Niknam, S. A., Kobza, J., Hines, J. W. Techniques of trend analysis in degradation-based prognostics, The International Journal of Advanced Manufacturing Technology, (2016), 1-13, DOI 10.1007/s00170-016- 8909-5, IF 1.568

CI Gheorghiu

CI Gheorghiu, F.-I. Dragomirescu, Spectral methods in linear stability. Applications to thermal convection with variable gravity field, Applied Numerical Mathematics 59 (6), 1290-1302
citata in:

  • Islam, Md Shafiqul, Humaira Farzana, and Samir Kumar Bhowmik. Numerical Solutions of Sixth Order Eigenvalue Problems Using Galerkin Weighted Residual Method, Differential Equations and Dynamical Systems (2016): 1-19 doi:10.1007/s12591-016- 0323-9

C.I. Gheorghiu, Spectral Methods for Non-Standard Eigenvalue Problems: Fluid and Structural Mechanics and Beyond, Springer 2014
citata in:

  • Z Huang, JP Boyd – Bandwidth truncation for Chebyshev polynomial and ultraspherical/Chebyshev Galerkin discretizations of differential equations: restrictions and two Improvements, Journal of Computational and Applied Mathematics, 302, ( 2016) 340–355 http://dx.doi.org/10.1016/j.cam.2016.01.047
  • Y Araki, T Samejima, Fourier series expansion type of spectral collocation method for vibration analysis of cylindrical shells, Acoustical Science and Technology, 37 (2016) 211-220 http://doi.org/10.1250/ast.37.211

CI Gheorghiu, ME Hochstenbach, B Plestenjak, J Rommes Spectral collocation solutions to multiparameter Mathieu’s system, Applied Mathematics and Computation 218 (24), 11990-12000
citata in:

  • P Amodio, G Settanni, Numerical solution of multiparameter spectral problems by high order finite different schemes, (NUMTA–2016): AIP Conf. Proc. 1776, 090027 (2016) http://dx.doi.org/10.1063/1.4965391

B Plestenjak, CI Gheorghiu, ME Hochstenbach, Spectral collocation for multiparameter eigenvalue problems arising from separable boundary value problems, Journal of Computational Physics 298, 585-601
citata in

  • P Amodio, G Settanni, Numerical solution of multiparameter spectral problems by high order finite different schemes, (NUMTA–2016): AIP Conf. Proc. 1776, 090027 (2016) http://dx.doi.org/10.1063/1.4965391

C. Mustăţa (membru de onoare)

C Mustăţa, Extensions of semi-Lipschitz functions on quasi-metric spaces, Rev. Anal. Numér. Théor. Approx., vol. 30, no.1, (2001), pp. 61-67
citat in:

  • Agrawal, Purshottam N.; İspir, Nurhayat. Degree of Approximation for Bivariate Chlodowsky–Szasz–Charlier Type Operators. Results in Mathematics, 2016, 69. Jg., Nr. 3-4, S. 369-385, IF: 0.768, DOI: 10.1007/s00025-015- 0495-6

D. Otrocol

Otrocol, I.A. Rus, Functional-differential equations with maxima of mixed type argument, Fixed Point Theory, 9(2008), no. 1, pp. 207-220.
Citată în

  • S. B. Dhage, B. C. Dhage, Dhage iteration method for approximating positive solutions of PBVPS of nonlinear quadratic differential equations with maxima, International Journal of Analysis and Applications (jurnal ISI, nu are factor de impact), 10, No. 2 (2016), 101-111.

D. Otrocol, Systems of functional differential equations with maxima, of mixed type, Electron. J. Qual. Theory Differ. Equ., 2014 (2014), no. 5, 1-9.
citată în

  • B. C. Dhage, Approximating solutions of nonlinear periodic boundary value problems with maxima, Cogent Mathematics (jurnal ISI, nu are factor de impact) (2016), 3: 1206699, DOI 10.1080/23311835.2016.1206699

D. Otrocol, V. Ilea, Ulam stability for a delay differential equation, Cent. Eur. J. Math., 2013, 11(7), 1296-1303.
citată în

  • S. Erman, A. Demir, An analysis on the stability of a state dependent delay differential equation, Open Math. (IF: 0.512) 2016; 14: 425–435, DOI 10.1515/math-2016- 0038

T. Cătinaș, D. Otrocol, Iterates of multivariate Cheney-Sharma operators, J. Comput. Anal. Appl., 15(2013), no.7, 1240-1246.
Citată în

  • A. Petrusel, I.A. Rus, M.A. Serban, Nonexpansive operators as graphic contractions, J. Nonlinear Convex Anal. (IF: 0.691), 17 (2016), No. 7, 1409-1415

T. Cătinaș, D. Otrocol, Iterates of multivariate Cheney-Sharma operators, J. Comput. Anal. Appl., 15(2013), no.7, 1240-1246.
citată în

  • U. Abel, O. Agratini, Asymptotic behaviour of Jain operators, Numerical Algorithms (IF: 1.366), 71 (2016), 3, pp 553–565, 10.1007/s11075-015- 0009-3

F. Pătrulescu

M. Sofonea and F. Pătrulescu, Analysis of a history-dependent frictionless contact problem, Math. Mech. Solids, 18, no.4 (2013), pp. 409-430.
citată în

  • J. Ogorzały, A dynamic contact problem with history-dependent operators, Journal of Elasticity, 124, no. 1 (2016), pp. 107–132. DOI:10.1007/s10659-015- 9563-0
  • S. Migórski and J. Ogorzały, A class of evolution variational inequalities with memory and its application to viscoelastic frictional contact problems, Journal of Mathematical Analysis and Applications, 442, no. 2 (2016), pp. 685–702. DOI: 10.1016/j.jmaa.2016.04.076

A. Farcaş, F. Pătrulescu and M. Sofonea, A history-dependent contact problem with unilateral constraint, Ann. Acad. Rom. Sci. Ser. Math. Appl., 4, no. 1 (2012), pp. 90-96.
citată în

  • J. Ogorzały, A dynamic contact problem with history-dependent operators, Journal of Elasticity, 124, no. 1 (2016), pp. 107–132. DOI:10.1007/s10659-015- 9563-0
  • S. Migórski and J. Ogorzały, A class of evolution variational inequalities with memory and its application to viscoelastic frictional contact problems, Journal of Mathematical Analysis and Applications, 442, no. 2 (2016), pp. 685–702. DOI: 10.1016/j.jmaa.2016.04.076

M. Sofonea, F. Pătrulescu and A. Farcaş, A viscoplastic contact problem with normal compliance, unilateral constraint and memory term, Appl. Math. Opt., 62 (2014), pp. 175-198.
citată în

  • J. Ogorzały, A dynamic contact problem with history-dependent operators, Journal of Elasticity, 124, no. 1 (2016), pp. 107–132. DOI:10.1007/s10659-015- 9563-0
  • S. Migórski and J. Ogorzały, A class of evolution variational inequalities with memory and its application to viscoelastic frictional contact problems, Journal of Mathematical Analysis and Applications, 442, no. 2 (2016), pp. 685–702. DOI: 10.1016/j.jmaa.2016.04.076
  • A. Kulig, A quasistatic viscoplastic contact problem with normal compliance, unilateral constraint, memory term and friction, Nonlinear Analysis: Real World Applications, 33 (2017), pp 226. DOI: 10.1016/j.nonrwa.2016.06.007

F. Pătrulescu, T.Groşan and I. Pop, Mixed convection boundary layer flow from a vertical truncated cone in a nanofluid, Int. J. Num. Meth. Heat Fluid Flow, 24, no. 5 (2014), pp. 1175-1190.
citată în

  • C.S.K. Raju, N. Sandeep and A. Malvandi, Free convective heat transfer of MHD Cu-kerosene nanofluid over a cone with temperature dependent viscosity, Acta Astronautica, DOI 10.1016/j.actaastro.2016.10.011
  • A. Muhammad , A. J. Chamkha , S. Iqbal  and M. Ahmad , Effects of temperature-dependent viscosity and thermal conductivity on mixed convection flow along a magnetized vertical surface. International Journal of Numerical Methods for Heat Fluid Flow 26:5 (2016). DOI: 10.1108/HFF-08- 2014-0265

I. Păvăloiu (membru de onoare)

I Păvăloiu, Introduction in the theory of approximation of equations solutions, 1976, Editura Dacia, Cluj-Napoca, 208
citat in

  • Argyros, Ioannis K.; Hilout, Saïd. The majorant method in the theory of Newton–Kantorovich approximations and generalized Lipschitz conditions. Journal of Computational and Applied Mathematics, 2016, vol. 291.(2016) pp. 332-347, IF 1.328, http://dx.doi.org/10.1016/j.cam.2014.12.013

Pavaloiu, I., La resolution des systemes d’equations operationnelles a l’aide des methodes iteratives, Mathematica (Cluj), Vol. 11, Issue: 34, pp: 137-141, 1969
citat in

  • Jachymski, Jacek; Klima, Jakub, Around Perov’s Fixed Point Theorem for Mappings on Generalized Metric Spaces, Fixed Point Theory, Vol.: 17 (2016), no. 2, pp. 367-380 , IF. 0.581

N. Suciu

Vamoş, Călin, Nicolae Suciu, and Harry Vereecken. Generalized random walk algorithm for the numerical modeling of complex diffusion processes. Journal of Computational Physics 186.2 (2003): 527-544, http://dx.doi.org/doi:10.1016/S0021-9991(03)00073- 1, IF: 2.556
Citat in:

  • Sun, Wei, and Zhiyong Liu. Multi-scale modeling of the ionic diffusivity of cement-based materials.Journal of Wuhan University of Technology-Mater. Sci. Ed. 31.1 (2016): 123-130, http://dx.doi.org/doi:10.1007/s11595-016- 1341-8, IF: 0.400

Suciu, N., N., C. Vamoş, Jan Vanderborght, H. Hardelauf, and H. Vereecken. Numerical investigations on ergodicity of solute transport in heterogeneous aquifers. Water resources research 42.4 (2006), http://dx.doi.org/doi:10.1029/2005WR004546, IF: 3.792
Citat in:

  • de Barros, Felipe PJ, and Marco Dentz. Pictures of blockscale transport: Effective versus ensemble dispersion and its uncertainty. Advances in Water Resources 91 (2016): 11-22, http://dx.doi.org/10.1016/j.advwatres.2016.03.004, IF: 4.349

Radu, F. A., Suciu, N., Hoffmann, J., Vogel, A., Kolditz, O., Park, C. H., & Attinger, S. (2011). Accuracy of numerical simulations of contaminant transport in heterogeneous aquifers: a comparative study. Advances in Water Resources, 34(1), 47-61, http://dx.doi.org/doi:10.1016/j.advwatres.2010.09.012, IF: 4.349
Citat in:

  • Shao, Q., Fahs, M., Younes, A., Makradi, A., Mara, T. (2016). A new benchmark reference solution for double-diffusive convection in a heterogeneous porous medium.Numerical Heat Transfer, Part B: Fundamentals, 1-20, http://dx.doi.org/10.1080/10407790.2016.1215718, IF: 1.330

Suciu N., C. Vamoş, and J. Eberhard (2006), Evaluation of the first-order approximations for transport in heterogeneous media, Water Resour. Res., W11504, http://dx.doi.org/doi:10.1029/2005WR004714, IF: 3.792
Citat in:

  • de Barros, Felipe PJ, and Marco Dentz. Pictures of blockscale transport: Effective versus ensemble dispersion and its uncertaintyAdvances in Water Resources 91 (2016): 11-22, http://dx.doi.org/10.1016/j.advwatres.2016.03.004, IF: 4.349

Eberhard, J., N. Suciu, and, C. Vamoş (2007), On the self-averaging of dispersion for transport in quasi-periodic random media, J. Phys. A: Math. Theor., 40, 597-610, http://dx.doi.org/doi:10.1088/1751-8113/40/4/002, IF: 1.577
Citat in:

  • de Barros, Felipe PJ, and Marco Dentz. Pictures of blockscale transport: Effective versus ensemble dispersion and its uncertainty Advances in Water Resources 91 (2016): 11-22, http://dx.doi.org/10.1016/j.advwatres.2016.03.004, IF: 4.349

Radu, F.A., A. Muntean, I. S. Pop, N. Suciu, and O. Kolditz (2013), A mixed finite element discretization scheme for a concrete carbonation model with concentration-dependent porosity, J. Comput. Appl. Math., 246, 74-85, http://dx.doi.org/doi:10.1016/j.cam.2012.10.017, IF: 1.328
Citat in:

  • Van Wijngaarden, W. K., Van Paassen, L. A., Vermolen, F. J., Van Meurs, G. A. M., Vuik, C. (2016). Simulation of front instabilities in density-driven flow, using a reactive transport model for biogrout combined with a randomly distributed permeability field. Transport in Porous Media, 112(2), 333-359, http://dx.doi.org/10.1007/s11242-016- 0649-3, IF: 1.653
  • Van Wijngaarden, W. K., Van Paassen, L. A., Vermolen, F. J., Van Meurs, G. A. M., Vuik, C. (2016). A Reactive Transport Model for Biogrout Compared to Experimental Data. Transport in Porous Media, 111(3), 627-648, http://dx.doi.org/10.1007/s11242-015- 0615-5, IF: 1.653

Suciu, N. (2014), Diffusion in random velocity fields with applications to contaminant transport in groundwater, Adv. Water Resour., 69, 114-133, http://dx.doi.org/doi:10.1016/j.advwatres.2014.04.002, IF: 4.349
Citat in:

  • de Barros, Felipe PJ, and Marco Dentz. Pictures of blockscale transport: Effective versus ensemble dispersion and its uncertaintyAdvances in Water Resources 91 (2016): 11-22, http://dx.doi.org/10.1016/j.advwatres.2016.03.004, IF: 4.349

Suciu, N, C. Vamoş, H. Vereecken, and P. Knabner (2011), Global random walk simulations for sensitivity and uncertainty analysis of passive transport models, Annals of the Academy of Romanian Scientists, Series on Mathematics and its Applications, 3(1), 218-234, (http://www.mathematics-and-its-applications.com/preview/july2011/data/13_suciu_n.pdf)
Citat in:

  • Mayoral-Villa, E., Alvarado-Rodríguez, C. E., Klapp, J., Gómez-Gesteira, M., Sigalotti, L. D. G. (2016). Smoothed particle hydrodynamics: Applications to migration of radionuclides in confined aqueous systems. Journal of contaminant hydrology, 187, 65-78, http://dx.doi.org/10.1016/j.jconhyd.2016.01.008, IF: 2.063

C. Vamoş

C. Vamoş, M. Crăciun, Separation of components from a scale mixture of Gaussian white noises, Physical Review E 81, Article Number: 051125 (2010)
citată în

  • Xu, D. and Beck, C., Transition from lognormal to χ2-superstatistics for financial time series, Physica A: Statistical Mechanics and its Applications, 453, (2016), 173-183, doi:10.1016/j.physa.2016.02.057, IF 1.785
  • Suciu, N., Schüler, L., Attinger, S., and Knabner, P, Towards a filtered density function approach for reactive transport in groundwater, Advances in Water Resources, 90, (2016), 83-98, doi:10.1016/j.advwatres.2016.02.016, IF 4.349

Vamoş, M. Crăciun, Automatic Trend Estimation, Springer, Dordrecht, 2013
citatǎ în.

  • Niknam, S. A., Kobza, J., Hines, J. W. Techniques of trend analysis in degradation-based prognostics, The International Journal of Advanced Manufacturing Technology, (2016), 1-13, . DOI 10.1007/s00170-016- 8909-5, IF 1.568

Vamoş, Călin, Nicolae Suciu, and Harry Vereecken. Generalized random walk algorithm for the numerical modeling of complex diffusion processes. Journal of Computational Physics 186.2 (2003): 527-544, http://dx.doi.org/doi:10.1016/S0021-9991(03)00073-1,
citatǎ în.

  • Sun, Wei, and Zhiyong Liu. Multi-scale modeling of the ionic diffusivity of cement-based materialsJournal of Wuhan University of Technology-Mater. Sci. Ed. 31.1 (2016): 123-130, http://dx.doi.org/doi:10.1007/s11595-016- 1341-8, IF: 0.400

Suciu, N., C. Vamoş, Jan Vanderborght, H. Hardelauf, and H. Vereecken. Numerical investigations on ergodicity of solute transport in heterogeneous aquifers. Water resources research 42.4 (2006), http://dx.doi.org/doi:10.1029/2005WR004546,
citatǎ în.

  • de Barros, Felipe PJ, and Marco Dentz. Pictures of blockscale transport: Effective versus ensemble dispersion and its uncertainty. Advances in Water Resources 91 (2016): 11-22, http://dx.doi.org/10.1016/j.advwatres.2016.03.004, IF: 4.349

Suciu N., C. Vamoş, and J. Eberhard (2006), Evaluation of the first-order approximations for transport in heterogeneous media, Water Resour. Res., W11504, http://dx.doi.org/doi:10.1029/2005WR004714,
citatǎ în.

  • de Barros, Felipe PJ, and Marco Dentz.Pictures of blockscale transport: Effective versus ensemble dispersion and its uncertainty. Advances in Water Resources 91 (2016): 11-22, http://dx.doi.org/10.1016/j.advwatres.2016.03.004, IF: 4.349

Eberhard, J., N. Suciu, and, C. Vamoş (2007), On the self-averaging of dispersion for transport in quasi-periodic random media, J. Phys. A: Math. Theor., 40, 597-610, http://dx.doi.org/doi:10.1088/1751-8113/40/4/002,
citatǎ în

  • de Barros, Felipe PJ, and Marco Dentz.Pictures of blockscale transport: Effective versus ensemble dispersion and its uncertainty. Advances in Water Resources 91 (2016): 11-22, http://dx.doi.org/10.1016/j.advwatres.2016.03.004, IF: 4.349

Suciu, N, C. Vamoş, H. Vereecken, and P. Knabner (2011), Global random walk simulations for sensitivity and uncertainty analysis of passive transport models, Annals of the Academy of Romanian Scientists, Series on Mathematics and its Applications, 3(1), 218-234, (http://www.mathematics-and-its-applications.com/preview/july2011/data/13_suciu_n.pdf),
citatǎ în

  • Mayoral-Villa, E., Alvarado-Rodríguez, C. E., Klapp, J., Gómez-Gesteira, M., Sigalotti, L. D. G. (2016). Smoothed particle hydrodynamics: Applications to migration of radionuclides in confined aqueous systems. Journal of contaminant hydrology, 187, 65-78, http://dx.doi.org/10.1016/j.jconhyd.2016.01.008, IF: 2.063

C. Vamoş, Automatic algorithm for monotone trend removal, Physical Review E 75, article id. 036705, 2007. DOI:10.1103/PhysRevE.75.036705,
citatǎ în

  • Niknam, S. A., Kobza, J., Hines, J. W. (2016). Techniques of trend analysis in degradation-based prognostics. The International Journal of Advanced Manufacturing Technology, 1-13, IF 1.568.

V.V. Morariu, L. Buimaga-Iarinca, C. Vamoş, Ş.M. Şoltuz, Detrended fluctuation analysis of autoregressive processes, Fluctuation and noise letters 7, L249-L255, 2007, DOI:10.1142/S0219477507003908
citata in

  • Brigatti, E., Vieira, M. V., Kajin, M., Almeida, P. J. A. L., de Menezes, M. A., Cerqueira, R. (2016). Detecting and modelling delayed density-dependence in abundance time series of a small mammal (Didelphis aurita). Scientific reports, 6. IF 5.228

Citations in books (Springer) (3)

 Păvăloiu, E. Cătinaş, On a Newton-Steffensen type method, Appl. Math. Lett. 26, 659–663 (2013)
citata in

  • S. Amat, S. Busquier, Á. A. Magreñán, L. Orcos, Chapter, Advances in Iterative Methods for Nonlinear Equations, Volume 10 of the series SEMA SIMAI Springer Series pp 5-21, 2016, An Overview on Steffensen-Type Methods, Springer, DOI: 10.1007/978-3-319-39228-8_2

T. Cătinaș, D. Otrocol, Iterates of multivariate Cheney-Sharma operators, J. Comput. Anal. Appl., 15(2013), no.7, 1240-1246.
Citată în

  • A. Petruşel, I. A. Rus, M.-A. Şerban, Fixed Point Structures, Invariant Operators, Invariant Partitions, and Applications to Carathéodory Integral Equations, Chapter in Contributions in Mathematics and Engineering, Editors: Panos M. Pardalos, Themistocles M. Rassias, 497-515, 2016, 10.1007/978-3- 319-31317-7_24

T. Cătinaş, D. Otrocol, Iterates of Bernstein type operators on a square with one curved side via contraction principle, Fixed Point Theory 13 (1), (2012) 97–106.
Citată în

  • A. Petruşel, I. A. Rus, M.-A. Şerban, Fixed Point Structures, Invariant Operators, Invariant Partitions, and Applications to Carathéodory Integral Equations, Chapter in Contributions in Mathematics and Engineering, Editors: Panos M. Pardalos, Themistocles M. Rassias, 497-515, 2016, 10.1007/978-3-319-31317-7_24

Other citations (29)

E. Cătinaş

E. Cătinaş, On some iterative methods for solving nonlinear equations, Rev. Anal. Numer. Theor. Approx. 23 (1994), 47–53
citată în

  • I.K. Argyros , D. Gonzalez , Improved convergence analysis of mixed secant methods for perturbed subanalytic variational inclusions, J. Nonlinear Funct. Anal. 2016 (2016), Article ID 11.

 

E. Cătinaş, The inexact, inexact perturbed, and quasi-Newton methods are equivalent models, Math. Comp., 74 (2005), 291–301.
citată în

  • I. K. Argyros, Expanding the applicability of the Gauss-Newton method for a certain class of systems of equations, J. Numer. Anal. Approx. Theory, vol. 45 (2016) no. 1, pp. 3–13
  • I.K. Argyros, D. Gonzalez, A unifying convergence analysis of Newton’s method for twice Fréchet-differentiable operators, Applicationes mathematicae, 42 (2015) 1, pp. 29-56.

E. Catinas, On the superlinear convergence of the successive approximation method, J. Optim. Theory Appl., 113 2002 (3), 473-485
citata in

  • Uskov Yu. I., Katerinina S. Yu., Katerinina M. A. [Matrix form of discrete analogue of generalized differential equation of curved axis of one-dimensional element]. Vestnik Volgogradskogo gosudarstvennogo arhitekturno-stroiteľnogo universiteta. Seriya: Stroiteľstvo i arhitektura [Bulletin of Volgograd State University of Architecture and Civil Engineering. Series: Civil Engineering and Architecture], 2015, iss. 41(60), pp. 130—138.

M. Crăciun

Craciun, M., Approximation operators constructed by means of Sheffer sequences, Revue d’Analyse Numérique et de Théorie de l’Approximation, vol. 30, no.(2), 2001, pp. 135-150
citata in:

  • Başcanbaz-Tunca, G., Erençin, A., and İlarslan, H. G. İ., Bivariate Cheney-Sharma operators on simplex, arXiv preprint arXiv:1606.02940, (2016).
  • Costabile, F. A., Longo, E, Umbral interpolation, Publications de l’Institut Mathematique, vol. 99 (113), 2016, pp.165-175, DOI: 10.2298/PIM1613165C, IF 2014:0.27

C. Vamoş, M. Crăciun, Automatic Trend Estimation, Springer, Dordrecht, 2013
citatǎ în

  • Malik, O. U., Hilderman, R. J., Hamilton, H. J., and Dosselmann, R, Retail price time series imputation, International Journal of Business Intelligence and Data Mining, vol. 11, no.1, (2016). 49-62, DOI 10.1504/IJBIDM.2016.076426
  • Ruzanski, E. and Chandrasekar, V., An Investigation of Radar-Derived Precursors to Lightning Initiation, 24 th International Lightning Detection Conference/ 6th International Lightning Meteorology Conference, 18-21 April 2016, California, USA

C.I. Gheorghiu

C.I. Gheorghiu, Spectral methods for differential problems Cluj-Napoca 2007
cited by

  • Hung Quoc Nguyen, Multiscale Stochastic Simulation Of Transient Complex Flows, Ph. D. Thesis, University Of Southern Queensland, 2016
  • David Sáenz López, Estudio de los Métodos Espectrales en Ecuaciones Diferenciales de una Dimensión y su comparación con el método de Diferencias Finitas, Pontificia Universidad Católica Del Perú, 2016

 

IS Pop, CI Gheorghiu, A Chebyshev-Galerkin method for fourth order problems, Proceedings of ICAOR 2, 217-220,
citata in

  • David Sáenz López, Estudio de los Métodos Espectrales en Ecuaciones Diferenciales de una Dimensión y su comparación con el método de Diferencias Finitas, Pontificia Universidad Católica Del Perú, 2016
  • Попов, Д. И.; Утемесов, Р. М., Эффективный спектральный метод для исследования устойчивости дисперсных течений, News of Altai State University . 2016, Vol. 89 Issue 1, p52-57. 6p.

B Plestenjak, CI Gheorghiu, ME Hochstenbach, Spectral collocation for multiparameter eigenvalue problems arising from separable boundary value problems, Journal of Computational Physics 298, 585-601
citata in

  • Shinsaku Sakaue, Using Multiparameter Eigenvalues for Solving Quadratic Programming with Quadratic Equality Constraints, Mathematical Engineering Technical Reports, Department Of Mathematical Informatics, Graduate School Of Information Science And Technology, The University Of Tokyo, 2016

Gheorghiu, C.I., On some one-step implicit methods as dynamical systems,
citata in

  • HM Oliveira, Bifurcation equations for periodic orbits of implicit discrete dynamical systems – arXiv preprint arXiv:1608.01898, 2016 – arxiv.org

Otrocol

Otrocol, I.A. Rus, Functional-differential equations with maxima of mixed type argument, Fixed Point Theory, 9(2008), no. 1, pp. 207-220.
Citată în

  • B. C. Dhage, Dhage iteration method for nonlinear first order ordinary hybrid differential equations with mixed perturbation of second type and maxima, J. Nonlinear Funct. Anal. 2016 (2016), Article ID 31

D. Otrocol, Properties of solutions of system of differential equations with maxima, via weakly Picard operator theory, Commun. Appl. Anal. 17 (2013), 99-107.
Citată în

  • D. V. Mule, B. R. Ahirrao, Approximating positive solutions of nonlinear first order ordinary quadratic differential equations with maxima, Adv. Inequal. Appl. 2016, 2016:11

D. Otrocol, Sisteme Lotka-Volterra cu argument întârziat, Presa Universitară Clujeană, Cluj-Napoca, 2007.
Citată în

  • I.A. Rus, Some variants of contraction principle, generalizations and applications, Stud. Univ. Babeș-Bolyai Math. 61 (2016), No. 3, 343–358.

A. Ilea, D. Otrocol, Integro-differential equation with two times modifications Carpathian J. Math., 27 (2011), No. 2, 209-216.
Citată în

  • M. Lauran, Solutions of a system of integral equations with deviating argument, Creative Math. & Inf., 25 (2016), No. 1, 63 – 70.

Cătinaș, D. Otrocol, Iterates of multivariate Cheney-Sharma operators, J. Comput. Anal. Appl., 15(2013), no.7, 1240-1246.
Citată în

  • G. Bascanbaz-Tunca, A. Erencin, H. Gulince-Ilarslan, Bivariate Cheney-Sharma operators on simplex, 2016, arXiv.org

F. Pătrulescu

M. Sofonea and F. Pătrulescu, A viscoelastic contact problem with adhesion and surface memory effects, Math. Model. Anal., 19, no. 5 (2014), pp. 607-626.
citată în

  • M. Selmani and L. Selmani, On a frictional contact problem with adhesion in piezoelectricity, Bull. Belg. Math. Soc. Simon Stevin, 23, no. 2 (2016), pp. 263-284.

F. Pătrulescu, T.Groşan and I. Pop, Mixed convection boundary layer flow from a vertical truncated cone in a nanofluid, Int. J. Num. Meth. Heat Fluid Flow, 24, no. 5 (2014), pp. 1175-1190.
citată în

  • C.S.K. Raju and N. Sandeep, The effect of thermal radiation on MHD ferrofluid flow over a truncated cone in the presence of non-uniform heat source/sink, Global Journal of Pure and Applied Mathematics, 12, no. 1 (2016), pp. 9-15.
  • C. S. K. Raju and N. Sandeep, Opposing and assisting flow characteristics of radiative casson fluid due to cone in the presence of induced magnetic field, International Journal of Advanced Science and Technology, 88 (2016), pp.43-62. DOI: 10.14257/ijast.2016.88.05

N. Suciu

Radu, F. A., Suciu, N., Hoffmann, J., Vogel, A., Kolditz, O., Park, C. H., & Attinger, S. (2011). Accuracy of numerical simulations of contaminant transport in heterogeneous aquifers: a comparative study. Advances in Water Resources, 34(1), 47-61, http://dx.doi.org/doi:10.1016/j.advwatres.2010.09.012, IF: 4.349
Citat in:

  • Frolkovič, P., Lampe, M., & Wittum, G. (2016). Numerical simulation of contaminant transport in groundwater using software tools of r^ 3t. Computing and Visualization in Science, 18(1), 17-29, http://dx.doi.org/doi:10.1007/s00791-016- 0268-0
  • Wilson, A. B. (2016). Modeling, Analysis, and Simulation of Adsorption in Functionalized Membranes, http://tigerprints.clemson.edu/all_dissertations/1687/ (teza de doctorat)

Radu, F.A., A. Muntean, I. S. Pop, N. Suciu, and O. Kolditz (2013), A mixed finite element discretization scheme for a concrete carbonation model with concentration-dependent porosity, J. Comput. Appl. Math., 246, 74-85, http://dx.doi.org/doi:10.1016/j.cam.2012.10.017, IF: 1.328
Citat in:

  • Wijngaarden-van Rossum, V. (2016). Mathematical Modelling and Simulation of Biogrout(Doctoral dissertation, TU Delft, Delft University of Technology), http://repository.tudelft.nl/islandora/object/uuid:3c5fac03-e5ff- 4b5c-a68d- 7737c227bb09/?collection=research

C. Vamoş

C. Vamoş, M. Crăciun, Automatic Trend Estimation, Springer, Dordrecht, 2013
citatǎ în

  • Malik, O. U., Hilderman, R. J., Hamilton, H. J., and Dosselmann, R, Retail price time series imputation, International Journal of Business Intelligence and Data Mining, vol. 11, no.1, (2016). 49-62, DOI 10.1504/IJBIDM.2016.076426
  • Ruzanski, Evan, and V. Chandrasekar, An Investigation of Radar-Derived Precursors to Lightning Initiation, 24 th International Lightning Detection Conference/ 6th International Lightning Meteorology Conference, 18-21 April 2016, California, USA
Menu