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Preface

If it works once, it is a trick;

if it works twice, it is a method;

if it works a hundred of times, it is a very good family of algorithms.

John P. Boyd, SIAM Rev., 46(2004)

The aim of this work is to emphasize the capabilities of spectral and pseu-
dospectral methods in solving boundary value problems for differential and par-
tial differential equations as well as in solving initial-boundary value problems
for parabolic and hyperbolic equations. Both linear and genuinely nonlinear
problems are taken into account. The class of linear boundary value problems
include singularly perturbed problems as well as eigenvalue problems.
Our intention is to provide techniques that cater for a broad diversity of the

problems mentioned above.
We believe that hardly any topic in modern mathematics fails to inspire

numerical analysts. Consequently, a numerical analyst has to be an open minded
scientist ready to borrow from a wide range of mathematical knowledge as well
as from computer science. In this respect we also believe that the professional
software design is just as challenging as theorem-proving.
The book is not oriented to formal reasoning, which means the well known

sequence of axioms, theorem, proof, corollary, etc. Instead, it displays rigorously
the most important qualities as well as drawbacks of spectral methods in the
context of numerical methods devoted to solve boundary value and eigenvalue
problems for differential equations as well as initial-boundary value problems
for partial differential equations.
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Introduction

Because of being extremely accurate, spectral methods have been intensively
studied in the past decades. Mainly three types of spectral methods can be iden-
tified, namely, collocation, tau and Galerkin. The choice of the type of method
depends essentially on the application. Collocation methods are suited to non-
linear problems or having complicated coefficients, while Galerkin methods have
the advantage of a more convenient analysis and optimal error estimates. The
tau method is applicable in the case of complicated (even nonlinear) boundary
conditions, where Galerkin approach would be impossible and the collocation
extremely tedious.
In any of these cases, the standard approach, where the trial (shape) and

test functions simply span a certain family of functions (polynomials), has sig-
nificant disadvantages. First of all, the matrices resulting in the discretization
process have an increased condition number, and thus computational rounding
errors deteriorate the expected theoretical exponential accuracy. Moreover, the
discretization matrices are generally fully populated, and so efficient algebraic
solvers are difficult to apply.
These disadvantages are more obvious when solving fourth order problems,

where stability and numerical accuracy are lost when applying higher order
approximations.
Several attempts were made in order to try to circumvent these inconve-

niences of the standard approach. All these attempts are based on the fairly
large flexibility in the choice of trial and test functions. In fact, using various
weight functions, they are constructed in order to incorporate as much bound-
ary data as possible and, at the same time, to reduce the condition number and
the bandwidth of matrices. In this respect we mention the papers of Cabos [27],
Dongarra, Straughan and Walker [55], Hiegemann [112] or our contribution in
some joint works with S. I. Pop [165], [164] for tau method; the papers of D. Fu-
naro and W. Heinrichs [76], Heinrichs [103] and [104] or Hiegemann and Strauss
[111] for the collocation variant; and the papers of Bjoerstad and Tjoestheim
[16], Jie Shen [176] and [177] for Galerkin schemes, to quote but a few. All the
above mentioned papers are dealing with methods in which the trial and test
functions are based on Chebyshev polynomials. The monographs of Gottlieb and
Orszag [90], Gottlieb, Hussaini and Orszag [93] and that of Canuto, Hussaini,
Quarteroni and Zang [33] contain details about the spectral tau and Galerkin
methods as well as about the collocation (pseudospectral) method. They con-

ix



x INTRODUCTION

sider the basis of Chebyshev, Hermite and Legendre polynomials and Fourier
and sinc functions in order to build up the test and trial functions. The well
known monograph of J. P. Boyd [19], beyond very subtle observations about
the performance and limitations of spectral methods, contains an exhaustive
bibliography for spectral methods at the level of year 2000.
A more strange feature of spectral methods is the fact that, in some sit-

uations, they transform self-adjoint differential problems into non symmetric,
i.e., non normal, discrete algebraic problems. We pay some attention to this as-
pect and observe that a proper choice of the trial and test functions can reduce
significantly the non normality of the matrices involved in the approximation.
In order to carry out our numerical experiments we used exclusively the

software system MATLAB. The textbook of Hunt, Lipsman and Rosenberg
[118] is a useful guide to that. Particularly, to implement the pseudospectral
derivatives we used the MATLAB codes provided by the paper of Weideman
and Reddy, [204].
The writing of this book has benefited enormously from a lot of discussions

with Dr. Sorin Iuliu Pop, presently at the T U Eindhoven, during the time he
prepared his Ph. D. at the universities ”Babes-Bolyai” Cluj-Napoca, Romania
and Heidelberg , Germany.

Calin-Ioan Gheorghiu
June 20, 2007
Cluj-Napoca
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Chapter 1

Chebyshev polynomials

His courses were not voluminous, and he did not consider the quan-
tity of knowledge delivered; rather, he aspired to elucidate some of
the most important aspects of the problems he spoke on. These were
lively, absorbing lectures; curious remarks on the significance and
importance of certain problems and scientific methods were always
abundant.

A. M. Liapunov who attended Chebyshev’s courses in late 1870 (see
[26])

In their monograph [71] Fox and Parker collected the underlying principles
of the Chebyshev theory. The polynomials whose properties and applications
will be discussed were introduced more than a century ago by the Russian
mathematician P. L. Chebyshev (1821-1894). Chebyshev was the most eminent
Russian mathematician of the nineteenth century. He was the author of more
than 80 publications, covering approximation theory, probability theory, num-
ber theory, theory of mechanisms, as well as many problems of analysis and
practical mathematics. His interest in mechanisms (as a boy he was fascinated
by mechanical toys!) led him to the theory of the approximation of functions
(see [181] P. 210 for a Note on the life of P. L. Chebyshev as well as the compre-
hensive article [26]). Their importance for numerical analysis was rediscovered
around the middle of the last century by C. Lanczos (see [126]).

1.1 General properties

Let PN be the space of algebraic polynomials of degree at most N ∈ N, N > 0,
and the weight function ω : I = [−1, 1]→ R+ defined by

ω (x) :=
1√
1− x2

.

3



4 CHAPTER 1. CHEBYSHEV POLYNOMIALS

Let us introduce the fundamental space L2ω (I) by

L2ω (I) :=
n
v : I → R| v Lebesgue measurable and kvk0,ω <∞

o
,

where the norm

kvkω :=

⎛⎝ 1Z
−1

|v (x)|2 ω (x) dx

⎞⎠
1
2

,

is induced by the weighted scalar (inner) product

(u, v)ω :=

⎛⎝ 1Z
−1

u (x) v (x)ω (x) dx

⎞⎠ . (1.1)

Definition 1 The polynomials Tn (x) , n ∈ N, defined by

Tn (x) := cos (n arccos (x)) , x ∈ [−1.1],

are called the Chebyshev polynomials of the first kind.

Remark 2 [150] To establish a relationship between algebraic and trigonomet-
ric polynomials let us resort to the trigonometric identity

cos (nθ) + i sin (nθ) = (cos θ + i sin θ)n =

= cosn θ + i

µ
n

1

¶
cosn−1 θ · sin θ + i2

µ
n

2

¶
cosn−2 θ · sin2 θ + . . . .

The terms on the right hand side involving even powers of sinθ are real while
those with odd powers sinθ are imaginary. Besides, we know that sin2m θ =¡
1− cos2 θ

¢m
, m ∈ N. Consequently, for any natural n we can write

Tn (cos θ) := cos (nθ) ,

where Tn (x) := cos (n arccos (x)) = α
(n)
0 + α

(n)
1 x + . . . + α

(n)
n xn is the Cheby-

shev’s polynomial of order (degree) n which is an algebraic polynomial of degree
n with real coefficients. Obviously,

T0 (x) = 1, T1 (x) = x, T2 (x) = 2x
2 − 1, T3 (x) = 4x

3 − 3x,
T4 (x) = 8x4 − 8x2 + 1, . . . .

It follows that every even trigonometric polynomial

Qn (θ) :=
α0
2
+

nX
k=1

αk cos (kθ) ,

is transformed, with the aid of substitution θ = arccosx, into the corresponding
algebraic polynomial of degree n

Pn (x) := Qn (arccosx) =
α0
2
+

nX
k=1

αk cos (k arccos (x)) .
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Figure 1.1: Some Chebyshev polynomials

This substitution specifies in fact a homeomorphic, continuous and one-to-one
mapping of the closed interval [0, π] onto [−1, 1] . It is important that, conversely,
the substitution, x = cosθ, transforms an arbitrary algebraic polynomial

Pn (x) := a0 + a1x+ a2x
2 + . . .+ anx

n,

of degree n into an even trigonometric polynomial

Qn (θ) = Pn (cos θ) =
α0
2
+

nX
k=1

αk cos (kθ) ,

where the coefficients αk depend on Pn. Indeed, we have

cosm x =

µ
eix + e−ix

2

¶
=

1

2m

µ
eimx +

µ
m

1

¶
ei(m−2)x + . . .+ e−imx

¶
=

=
1

2m

µ
cosmx+

µ
m

1

¶
cos (m− 2)x+ . . .+ cos (−mx)

¶
.

Here we should take into account that cosm x is a real function and therefore
the last term in this chain of equalities is obtained from the preceding term by
taking its real part. The imaginary part of cosm x is automatically set to zero.
Some Chebyshev polynomials are depicted in Fig. 1.1.

Proposition 3 (Orthogonality) The polynomials Tn (x) are orthogonal, i.e.,

(Tn, Tm)0,ω =
π

2
cnδn,m, m, n ∈ N,
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where δn,m stands for the Kronecker delta symbol and, throughout this work, the
coefficients cn are defined by

cn :=

⎧⎨⎩ 0, n < 0
2, n = 0
1, n ≥ 1.

(1.2)

This fundamental property of Chebyshev polynomials, the recurrence relation

Tk+1 (x) = 2xTk (x)− Tk−1 (x) , k > 0, T0 (x) = 1, T1 (x) = x, (1.3)

as well as the estimations

|Tk (x)| ≤ 1, |x| ≤ 1, Tk (±1) = (±1)k , (1.4)

|T 0k (x)| ≤ k2, |x| ≤ 1, T 0k (±1) = (±1)
k
k2,

are direct consequences of the definition.

Remark 4 As it is well known from the approximation theorem of Weierstrass,
the set of orthogonal polynomials {Tn (x)}n∈N is also complete in the space
L2ω (I) and, consequently, each and every function u from this space can be
expanded in a Chebyshev series as follows

u (x) =
∞X
k=0

buk · Tk (x) , (1.5)

where the coefficients buk are
buk = (u, Tk)0,∞

kTkk20,ω
=

2

πck
(u, Tk)0,ω .

Some other properties of Chebyshev polynomials are available, for instance,
in the well known monographs Atkinson [10] and Raltson and Rabinowitz [171].
In [171], p.301, the following theorem is proved

Theorem 5 Of all polynomials of degree r with coefficient of xr equal to 1, the
Chebyshev polynomial of degree r multiplied by 1/2r−1 oscillates with minimum
maximum amplitude on the interval [−1, 1] .

Due to this property the Chebyshev polynomials are sometimes called equal-
ripple polynomials.
However, their importance in numerical analysis and in general, in scientific

computation, is enormous and it appears in fairly surprising domains. For in-
stance, in the monograph [39] p.162, a procedure currently in use for accelerating
the convergence of an iterative method, making use of Chebyshev polynomials
is considered.
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Remark 6 Best approximation with Chebyshev polynomials V. N. Murty
shows in his paper [147] that there exists a unique best approximation of T1 (x)
with respect to linear space spanned by polynomials of odd degree ≥ 3, which is
also a best approximation of T1 (x) with respect to the linear space spanned by
{Tj (x)}nj=0,j 6=1 . If n = 4k or n = 4k− 1, the extreme points of the deviation of
T1 (x) from its best approximation are 2k in number, whereas if n = 4k + 1 or
n = 4k + 2, this number is 2k + 2.

In the next section we try to introduce the Chebyshev polynomials in a more
natural way. We advocate that the Fourier series is intimately connected with
the Chebyshev series, and that some known convergence properties of the former
provide valuable results for the latter.

1.2 Fourier and Chebyshev Series

The most important feature of Chebyshev series is that their conver-
gence properties are not affected by the values of f (x) or its deriva-
tives at the boundaries x = ±1 but only by the smoothness of f (x)
and its derivatives throughout −1 ≤ x ≤ 1.
Gottlieb and Orszag, [90], P. 28

1.2.1 The trigonometric Fourier series

It is well known that the ’trigonometric polynomial ’

pN (x) :=
1

2
a0 +

NX
k=1

(ak cos kx+ bk sin kx) , (1.6)

with

ak =
1

π

Z π

−π
f (x) cos kxdx, bk =

1

π

Z π

−π
f (x) sin kxdx,

can be thought of as a least square approximation to f (x) with respect to the
unit weight function on [−1, 1] (see Problem 6).
The Fourier series, obtained by letting n → ∞ in (1.6), is apparently most

valuable for the approximation of functions of period 2π. Indeed, for certain
classes of such functions the series will converge for most values of x in the
complete range −∞ ≤ x ≤ +∞.
However, unless f (x) and all its derivatives have the same values at −π

and π, there exists a ’terminal discontinuity’ of some order at these points.
The rate of convergence of the Fourier series, that is the rate of decrease of its
coefficients, depends on the degree of smoothness of the function, measured by
the order of the derivative which first becomes discontinuous at any point in
the closed interval [−π, π]. Finally, we might be interested in a function defined
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only in the range [0, π], being then at liberty to extend its definition to the
remainder of the periodic interval [−π, 0] in any way we please.
It is worth noting that, integrating by parts in the expressions of ak and bk

over [0, π] we deduce that cosine series converge ultimately like k−2, and sine
series like k−1, unless f(x) has some special properties. If f (0) = f (π) = 0, we
can show that sine series converges like k−3, in general, the fastest possible rate
for Fourier series.

1.2.2 The Chebyshev series

The terminal discontinuity of Fourier series of a non-periodic function can be
avoided with the Chebyshev form of Fourier series. We consider the range
−1 ≤ x ≤ 1 and make use of the change of variables

x = cos θ,

so that
f (x) = f (cos θ) = g (θ) . (1.7)

The new function g (θ) is even and genuinely periodic, since g (θ) = g (θ + 2π) .
Moreover, if f (x) has a large numbers of derivatives in [−1, 1] , then g (θ) has
similar properties in [0, π] . We should then expect the cosine Fourier series

g (θ) =
1

2
a0 +

NX
k=1

ak cos kθ, ak =
2

πck

Z 1

−1
g (θ) cos kθdθ (1.8)

to converge fairly rapidly. Interpreting (1.8) in terms of original variable x, we
produce the following Chebyshev series

f (x) = a0+
∞X
k=1

akTk(x), ak =
2

πck

Z 1

−1
ω (x) f (x)Tk (x) dx, ω (x) :=

¡
1− x2

¢−1/2
.

(1.9)
This series has the same convergence properties as the Fourier series for f(x),
with the advantage that the terminal discontinuities are eliminated. Elementary
computations show that, for sufficiently smooth functions, the coefficients ak
have the order of magnitude 1/2k−1 (k!), considerably smaller for large k than
the k−3 of the best Fourier series.

Remark 7 (Continuous least square approximation) The expansion

pn(x) :=
nX

k=0

akTk(x), ak =
2

πck

Z 1

−1
ω (x) f (x)Tk (x) dx,

has the property that the error en(x) := f (x)− pn(x) satisfies the ’continuous’
least square condition

S :=

Z 1

−1
ω (x) e2n(x)dx = min .
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The minimum value is given by

Smin =

Z 1

−1
ω (x) f2(x)dx− 1

2
π

Ã
nX

k=0

cka
2
k

!
.

As n → ∞, we produce the Chebyshev series, which has the same convergence
properties as the Fourier series, but generally with a much faster rate of con-
vergence.

1.2.3 Discrete least square approximation

We now move on to the discrete case of least square approximation in which the
integrated mean square error over I, from the classical least square approxima-
tion, is replaced by a sum over a finite number of nodes, say x0, x1, ..., xN ∈ I.
The function f (x) , f : I → R is approximated by a polynomial p (x) with the
error e (x) := f (x)− p (x) and find the polynomial p(x) such that the sum

S :=
NX
k=0

ω (xk) e
2 (xk) ,

attains its minimum with respect to the position of the nodes xk in [−1, 1] and
for a specified class of polynomials. We seek an expansion of the form

pN (x) :=
NX
r=0

arψr (x) ,

where the functions ψr (x) are, at this stage, arbitrary members of some partic-
ular system (should that consist of polynomials, trigonometric functions, etc.).
Conditions for a minimum are now expressed with respect to the coefficients
ar, S = S (a0, a1, ..., ar). They are

∂S/∂ai = 0, i = 0, 1, 2, ..,N

and they produce a set of linear algebraic equations for these quantities. The
matrix involved is diagonal if the functions are chosen to satisfy the discrete
orthogonality conditions

NX
k=0

ω (xk)ψr (xk)ψs (xk) = 0, r 6= s.

The corresponding coefficients ar are then given by

ar =

PN
k=0 ω (xk)ψr (xk) f (xk)PN

k=0 ω (xk)ψ
2
r (xk)

, r = 0, 1, 2, ..., N,

and the minimum value of S is

Smin =
NX
k=0

ω (xk)

(
f2 (xk)−

NX
k=0

a2rψ
2
r (xk)

)
.
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1.2.4 Chebyshev discrete least square approximation

Let’s consider a particular case relevant for the Chebyshev theory.
In the trigonometric identity

1

2
+ cos θ + cos 2θ + ...+ cos(N − 1)θ + 1

2
cosNθ =

1

2
sinNθ cot

θ

2
, (1.10)

the right-hand side vanishes for θ = kπ/N, k ∈ Z. Since

2 cos rθ cos sθ = cos (r + s) θ + cos (r − s) θ, (1.11)

it follows that the set of linearly independent functions ψr (θ) = cos rθ satisfy
the discrete orthogonality conditions

NX
k=0

1

ck
ψr (θk)ψs (θk) = 0, r 6= s, θk = kπ/N, (1.12)

where, throughout in this work, the coefficients ck are defined by

ck :=

½
2, k = 0, N,

1, 1 ≤ k ≤ N − 1.

Further, we find from (1.10) and (1.11) that the normalization factors for these
orthogonal functions are

NX
k=0

1

ck
ψ2r (θk) =

½
N/2, k = 0,N,

N, 1 ≤ k ≤ N − 1. (1.13)

Consequently, for the function g (θ) , θ ∈ [0, π], a trigonometric (Fourier) dis-
crete least square approximation, over equally spaced nodes

θk = kπ/N, k = 0, 1, 2, ..., N,

is given by the ’interpolation’ polynomial

pN (θ) =
NX
r=0

1

cr
ar cos rθ, ar =

NX
k=0

2

Nck
g (θk) cos rθk, θk =

kπ

N
. (1.14)

The corresponding Chebyshev discrete least square approximation follows im-
mediately using (1.7). It reads

pN (x) =
NX
r=0

1

cr
arTr(x), ar =

NX
k=0

2

Nck
f (xk)Tr (xk) , xk = cos

µ
kπ

N

¶
. (1.15)

Let us observe that the nodes xk are not equally spaced in [−1, 1] . The nodes

θk =
kπ

N
, k = 1, 2, ..., N − 1,

are the turning points (extrema points) of TN (x) on [−1, 1] and they are called
the Chebyshev points of the second kind.
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Remark 8 For the expansion (1.15), the error eN (x) := f (x)−pN (x) satisfies
the ’discrete’ least square condition

S :=
NX
k=0

1

ck
e2N (xk) = min,

and

Smin =
NX
k=0

1

ck

(
f2 (xk)−

NX
r=0

a2rT
2
r (xk)

)
.

1.2.5 Orthogonal polynomials least square approximation

We have to notice that, so far, we have not used the orthogonality properties
of the Chebyshev polynomials, with respect to scalar product (1.1). Similar
particular results can be found using this property. For the general properties
of orthogonal polynomials we refer to the monographs [43] or [187].
Each and every set of such polynomials satisfies a three-term recurrence

relation
φr+1 (x) = (αrx+ β)φr (x) + γr−1φr−1 (x) , (1.16)

with the coefficients

αr =
Ar+1

Ar
, γr−1 = −

Ar+1

Ar

Ar−1
Ar

kr
kr−1

,

where Ar is the coefficient of x
r in φr (x) , and

kr =

Z 1

−1
ω (x)φ2r (x) dx.

Following Lanczos [126], we choose the normalization kr = 1, and write (1.16)
in the form

pr−1φr−1 (x) + (−x+ qr)φr (x) + prφr+1 (x) = 0, (1.17)

with

pr =
Ar

Ar+1
, qr = −βrpr.

If we define p−1 (x) := 0 and choose the N+1 nodes xi, i = 0, 1, 2, ..., N so that
they are the zeros of the orthogonal polynomial φN+1 (x) , we see that they are
also the eigenvalues of the tridiagonal matrix diag (pk−1 qk pk) . The eigenvector
corresponding to the eigenvalue xk has the components φ0 (xk) , φ1 (xk) , ..., φN (xk)
and from the theory of symmetric matrices we know that the set of these vectors
forms an independent orthonormal system. Each and every vector is normalized
to be a unit vector, i.e.,

λk

NX
r=0

φ2r (xk) = 1,
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and the matrix

X =

⎛⎜⎜⎜⎝
λ
1/2
0 φ0 (x0) λ

1/2
1 φ0 (x1) . . . λ

1/2
N φ0 (xN )

λ
1/2
0 φ1 (x0) λ

1/2
1 φ1 (x1) . . . λ

1/2
N φ1 (xN )

. . . . . . . . . . . .

λ
1/2
0 φN (x0) λ

1/2
1 φN (x1) . . . λ

1/2
N φN (xN )

⎞⎟⎟⎟⎠
is orthogonal. It means X ·X 0 = X 0 ·X = IN+1, which implies two more discrete
conditions in addition to the normalization one. i.e.,PN

k=0 λkφ
2
r (xk) = 1, r = 0, 1, 2, ..., NPN

k=0 λkφr (xk)φs (xk) = 0, r 6= s.
(1.18)

It follows that a solution of the least square problem in this case, with weights
ω (xk) = λk, and the nodes taken as the N + 1 zeros of φN+1 (x) , is given by

pN (x) =
NX
r=0

arφr (x) , ar =
NX
k=0

λkf (xk)φr (xk) . (1.19)

For the Chebyshev case, using weight function ω(x) =
¡
1− x2

¢−1/2
, we find

φ0 (x) = π−1/2T0 (x) , φr (x) =
¡
1
2π
¢−1/2

Tr(x), r = 0, 1, 2, ...

λ−1k = 2
π

PN
r=0

1
ck
T 2r (xk) =

2
π

PN
r=0

1
ck
cos2 rθk,

θk =
2k+1
N+1

π
2 , k = 0, 1, 2, ..., N.

The trigonometric identity (1.10) leads to a very simple form of λk, namely

λk = π/ (N + 1) ,

and finally to

pN (x) =
PN

r=0
1
cr
brTr (x) ,

br =
2

N+1

PN
k=0 f (xk)Tr(xk), xk = cos

³
2k+1
N+1

π
2

´
, k = 0, 1, 2, ..., N.

(1.20)

Remark 9 For the expansion (1.20), the error eN (x) := f (x)−pN (x) satisfies
the ’discrete’ least square condition

S :=
NX
k=0

e2N (xk) = min,

and

Smin =
NX
k=0

(
f2 (xk)−

NX
r=0

a2rT
2
r (xk)

)
.



1.2. FOURIER AND CHEBYSHEV SERIES 13

It can be shown that the error eN (x) satisfies the following minmax criterion
for sufficiently smooth functions

max
¯̄̄
eN (x) /f

(N+1) (ξ)
¯̄̄
= min, ξ ∈ (−1, 1) .

Remark 10 The least square approximation polynomial pN (x) from (1.20) must
agree with the Lagrangian interpolation polynomial

pN (x) =
NX
k=0

lk (x) f (xk) ,

(see Appendix 1) which uses as nodes the Chebyshev points of the first kind xk =

cos
³
2k+1
N+1

π
2

´
, k = 0, 1, 2, ..., N. These nodes are in fact the zeros of TN+1(x).

Remark 11 In [71] it is shown that for sufficiently well-behaved functions f (x)
the approximation formula (1.20) is slightly better than (1.15) .

1.2.6 Orthogonal polynomials and Gauss-type quadrature
formulas

There exists an important connection between the weights λk of the orthogonal
polynomial discrete least square approximation and the corresponding Gauss
type quadrature formulas. First, we notice that Lagrangian quadrature formula
(see Appendix 1) readsZ 1

−1
ω (x) f (x) dx =

NX
k=0

µkf (xk) , (1.21)

where

µk =

Z 1

−1
ω (x) lk (x) dx.

The polynomial

pN (x) =
NX
k=0

lk(x)f (xk) , (1.22)

fits f (x) exactly in the N + 1 zeros of Π (x) and has degree N. The formula
(1.21) is exact for polynomials of degree N or less.
A Gauss quadrature formula has the formZ 1

−1
ω (x) f (x) dx =

NX
k=0

νkf (xk) , (1.23)

where the weights νk and abscissae xk (quadrature nodes) are to be determined
such that the formula should be exact for polynomials of as high a degree as
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possible. Since there are 2N + 2 parameters in the above formula, we should
expect to be able to make (1.23) exact for polynomials of degree ≤ 2N + 1.
To this end, we consider a system of polynomials φk (x) , k = 0, 1, 2, ..., N

which satisfy the ”continuous” orthogonality conditionsZ 1

−1
ω (x)φr (x)φs (x) dx = 0, r 6= s. (1.24)

Suppose that f(x) is a polynomial of degree 2N + 1 and write it in the form

f(x) = qN (x)φN+1 (x) + rN (x) , (1.25)

where the suffices indicate the degrees of the polynomial involved. Since qN (x)
can be expressed as a linear combination of orthogonal polynomials φk (x) , k =
0, 1, 2, ...,N, the orthogonality relations implyZ 1

−1
ω (x) f (x) dx =

Z 1

−1
ω (x) rN (x) dx,

which by (1.21) is exactly, i.e.,Z 1

−1
ω (x) f (x) dx =

NX
k=0

µkrN (xk) ,

for specified xk and corresponding µk. If we choose xk to be the zeros of
φN+1 (x) , it follows from (1.25) that we obtained formally the required Gauss
quadrature formula (1.23) with νk = µk. Now rN (x) , as a polynomial of degree
N can be represented exactly, due to (1.19) , in the form

rN (x) =
NX
k=0

arφr (x) .

Consequently, we can writeZ 1

−1
ω (x) rN (x) dx =

Z 1

−1
ω (x)

Ã
NX
k=0

arφr (x)

!
dx = a0φ0

Z 1

−1
ω (x) ,

due to (1.24) with r = 0. Moreover, the general solution of the least square
problem (1.19) and in particular, the normalization condition, imply

a0φ0

Z 1

−1
ω (x) =

NX
k=0

λkf (xk)

Z 1

−1
ω (x)φ20dx =

NX
k=0

λkf (xk) ,

or, more explicitly Z 1

−1
ω (x) f (x) dx =

NX
k=0

λkf (xk) .
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It follows that the weights in Gauss quadrature formula (1.23) , which is exact
for polynomials of order 2N + 1, equal the weights λk of the discrete least
square solution (1.19) , and the nodes xk are the zeros of the relevant orthogonal
polynomial φN+1 (x) .
If, in particular,

φ0 (x) := (π)
−1/2 T0 (x) , φr (x) :=

µ
1

2
π

¶−1/2
Tr (x) , r = 1, 2, ...

we get the Gauss-Chebyshev quadrature formula, i.e.,Z 1

−1
ω (x) f (x) dx =

π

N + 1

NX
k=0

f (xk) , xk = cos

µ
2k + 1

N + 1

π

2

¶
. (1.26)

1.3 Chebyshev projection

Let us introduce the map PN : L
2
ω (I)→ PN , I = [−1, 1] ,

PNu (x) :=
NX
k=0

buk · Tk (x) , (1.27)

where the coefficients buk, k = 1, 2, . . . , N are defined in (1.5). Due to the
orthogonality properties of Chebyshev polynomials, PNu (x) represents the or-
thogonal projection of function u onto PN with respect to scalar product
(1.1). Consequently, we can write

(PNu (x) , v (x))ω = (u (x) , v (x))ω , ∀v ∈ PN . (1.28)

More than that, due to the completeness of the set of Chebyshev polynomials,
the following limit holds:

ku− PNukω → 0 as N →∞.

Remark 12 A lot of results concerning the general theory of approximation by
polynomials are available in Chapter 9 of [33]. We extract from this source only
the results we strictly use.

The quantity u − PNu is called truncation error and for it we have the
following estimate.

Lemma 13 For each and every u ∈ Hs
ω(I), s ∈ N, one has

ku− PNukω ≤ CN−s kuks,ω , (1.29)

where the constant C is independent of N and u.
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Remark 14 There exists a more general result which reads

ku− PNukω ≤ C σN (p)N
−m

mX
k=0

°°°u(k)°°°
ω
,

for a function u that belongs to L2ω (−1, 1) along with its distributional deriva-
tives of order m and σN (p) =

½
1, 1 < p <∞,

1 + logN, p = 1 and p =∞.

Remark 15 Unfortunately, the approximation using the Chebyshev projection
is optimal only with respect to the scalar product (·, ·)0,ω . This statement is
confirmed by the estimation

ku− PNukω ≤ CN2l−s− 1
2 kuks,ω , s ≥ l ≥ 1,

in which a supplementary quantity
¡
l − 1

2

¢
appears in the power of N. To avoid

this inconvenient Canuto et al. [33] [1988, Ch. 9,11] introduced orthogonal
projections with respect to other scalar products.

Remark 16 If (1.5) is the Chebyshev series for u (x) , the same series for the
derivative of u ∈ H1

ω(I), has the form

u0 (x) =
∞X
k=0

bu(1)k · Tk (x) , (1.30)

where (see (1.56) in the Problem 10)

bu(1)k =
2

ck

∞X
p = k + 1
p+ k = odd

pbuk.

Consequently,

PN (u
0) =

NX
k=0

bu(1)k · Tk (x) ,

but in applications is sometimes used the derivative of the projection, namely
(PNu)

0
, which is called the ‘Chebyshev-Galerkin derivative’ .

We end this section with some ‘inverse inequalities’ concerning summability
and differentiability for algebraic polynomials.

Lemma 17 For each and every u ∈ PN , we have

kukLqω(−1,1) ≤ CN2( 1p− 1
q ) kukLpω(−1,1) , 1 ≤ p ≤ q ≤ ∞,°°u(r)°°

Lpω(−1,1)
≤ CN2r kukLpω(−1,1) , 2 ≤ p ≤ ∞, r ≥ 1. (1.31)
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1.4 Chebyshev interpolation

We re-write the results from Fourier and Chebyshev Series Section in a more
formal way.
First, we observe that the quadrature formulas represent a way to connect

the space L2ω (−1, 1) with the space of polynomials of a specified degree. For
the sake of precision, the interpolation nodes will be furnished by following
Chebyshev-Gauss quadrature formula (rule)Z 1

−1
f (x)ω (x) dx :=

NX
j=0

f (xj)ωj ,

where the choices for the nodes xj and the weights ωj lead to rules which have
different orders of precision. The most frequently encountered rules are:

1. the Chebyshev-Gauss formula (CGauss)

xj := cos
(2j + 1)π

2N + 1
and ωj =

π

N + 1
, j = 0, 1, 2, . . . , N (1.32)

The quadrature nodes are the roots of the Chebyshev polynomial TN+1
and the formula is exact for polynomials in P2N+1.

2. the Chebyshev-Gauss-Radau formula (CGaussR)

xj := cos
2jπ

2N + 1
j = 0, 1, 2, . . . , N and ωj =

½ π
N+1 , j = 0,

π
2N+2 , j = 1, 2, . . . , N.

(1.33)
In this case, the order of precision is only 2N.

3. the Chebyshev-Gauss-Lobatto formula (CGaussL)

xj := cos
jπ

N
j = 0, 1, 2, . . . , N and ωj =

½
π
2N , j = 0 and j = N,
π
N , j = 1, 2, . . . ,N − 1.

(1.34)
In this case, the order of precision diminishes to 2N − 1.

Corresponding to each and every formula above we introduce a discrete scalar
(inner) product and a norm as follows:

(u, v)N :=
NX
j=0

ωju (xj) v (xj) , (1.35)

kukN :=

⎛⎝ NX
j=0

ωju
2 (xj)

⎞⎠ 1
2

. (1.36)

The next result is due to Quarteroni and Vali [169], Ch.5.
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Lemma 18 For the set of Chebyshev polynomials, there holds

kTkkN = kTkkω , k = 0, 1, 2, ...,N−1, kTNkN =
½

kTNkω , for CGauss√
2 kTNkω , for CGaussL.

Proof. The first two equalities are direct consequences of the order of precision
of quadrature formulas. For the third, we can write

kTNk2N =
π

2N

¡
cos2 0 + cos2 π

¢
+

π

N

N−1X
j=1

cos2 jπ = π = 2 kTNk2ω .

Let INu ∈ PN the interpolation polynomial of order (degree) N correspond-
ing to one of the above three sets of nodes xk. It has the form

INu =
NX
k=0

ukTk (x) , (1.37)

where the coefficients are to be determined and are called the ’degrees of free-
dom’ of u in the transformed space ( called also “phase” space). For the (CGaussL)
choice of nodes, using the discrete orthogonality and normality conditions (1.12),
(1.13) we have

(INu, Tk)N =
NX
p=0

up (Tp, Tk)N =
ckπ

2
uk. (1.38)

But interpolation means

INu (xj) = u (xj) , j = 0, 1, 2, ..., N,

which implies

(INu, Tn)N = (u, Tn)N =
NX
j=0

π

cjN
u(xj) cos

njπ

N
. (1.39)

The identities (1.38) and (1.39) lead to the ’discrete Chebyshev transform’

uk =
2

ckN

NX
j=0

1

cj
u(xj) cos

kjπ

N
, k = 0, 1, 2, ..., N. (1.40)

Making use of this transformation, we can pass from the set of values of the func-
tion u in the nodes (CGaussL) , the so-called physical space, to the transformed
space. The inverse transform reads

u(xj) =
NX
j=0

uj cos
kjπ

N
, j = 0, 1, 2, ..., N. (1.41)



1.4. CHEBYSHEV INTERPOLATION 19

Due to their trigonometric structure, these two transformations can be carried
out using FFT (fast Fourier transform-see [33] Appendix B, or [40] and [41]).
A direct consequence of the last lemma is the equivalence of the norms k·kω

and k·kN . Thus, in the (CGaussL) case, for uN =
PN

k=0 ukTk we can write

°°uN°°2
N
=

NX
k=0

(uk)
2 kTkk2N =

N−1X
k=0

(uk)
2 kTkk2ω + 2 (uN )

2 kTNk2ω ,

and °°uN°°2
ω
=

NX
k=0

(uk)
2 kTkk2ω .

Consequently, we get the sequence of inequalities°°uN°°
ω
≤
°°uN°°

N
≤
√
2
°°uN°°

ω
.

For the Chebyshev interpolation, in each and every case, (CG) , (CGR) , (CGL) ,
we have the following result (see [33], Ch. 9 and [169] Ch. 4):

Lemma 19 If u ∈ Hm
ω (−1, 1) , m ≥ 1, then the following estimation holds

ku− INukω ≤ CN−m kukm,ω , (1.42)

and if 0 ≤ l ≤ m, then a less sharp one holds, namely

ku− INukl,ω ≤ CN2l−m kukm,ω . (1.43)

In L∞ω (−1, 1), we have the estimation

ku− INukL∞ω ≤ CN2l−m kukm,ω . (1.44)

1.4.1 Collocation derivative operator

Associated with an interpolator is the concept of a collocation derivative (dif-
ferentiation) operator called also Chebyshev collocation derivative or even pseu-
dospectral derivative. The idea is summarized in [184]. Suppose we know the
value of a function at several points (nodes) and we want to approximate its
derivative at those points. One way to do this is to find the polynomial that
passes through all of data points, differentiate it analytically, and evaluate this
derivative at the grid points.
In other words, the derivatives are approximated by exact differentiation of

the interpolate.
Since interpolation and differentiation are linear operations, the process of

obtaining approximations to the values of the derivative of a function at a set
of points can be expressed as a matrix-vector multiplication. The matrices
involved are called pseudospectral differentiation (derivation) matrices or simply
differentiation matrices.



20 CHAPTER 1. CHEBYSHEV POLYNOMIALS

Thus, if u := (u (x0) u (x1) ...u (xN ))
T
is the vector of function values, and

u0 := (u0 (x0) u0 (x1) ...u0 (xN ))
T
is the vector of approximate nodal derivatives,

obtained by this idea, then there exists a matrix, say D(1), such that

u0 = D(1)u. (1.45)

We will deduce the matrix D(1) and the next differentiation matrix D(2) defined
by

u00 = D(2)u. (1.46)

To get the idea we proceed in the simplest way following closely the paper of
Solomonoff and Turkel [183].
Thus, if

LN (x) :=
NX
k=0

u (xk) lk (x) , (1.47)

is the Lagrangian interpolation polynomial, we construct the first differentiation
matrixD(1) by analytically differentiating that. In particular, we shall explicitly
construct D(1) by demanding that for Lagrangian basis {lk (x)}Nk=0 , lk (x) ∈
PN ,

D(1)lk (xj) = l0k (xj) , j, k = 0, 1, 2, ..., N,

i.e.

D(1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
1
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝
l0k (x0)
...

l0k (xk)
...

l0k (xN )

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where 1 stands in the k th row. Performing the multiplication, we get

d
(1)
jk = l0k (xj) . (1.48)

We have to evaluate explicitly the entries d
(1)
jk in terms of the nodes xk, k =

0, 1, 2, ...,N. To this end, we rewrite the Lagrangian polynomials lk (x) in the
form

lk (x) :=
1

αk
ΠNl=0
l 6=k

(x− xl) , αk := Π
N
l=0
l6=k

(xk − xl) .

Taking, with a lot of care, the logarithm of lk (x) and differentiating, we obtain

l0k (x) = lk (x)
NX
l=0
l6=k

1/ (x− xl) . (1.49)
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This equality implies the diagonal elements

d
(1)
kk =

NX
l=0
l 6=k

1/ (xk − xl) , k = 1, 2, ..., N. (1.50)

In order to evaluate (1.49) at x = xj , j 6= k we have to eliminate the 0/0
indetermination from the right hand side of that. We therefore write (1.49) as

l0k (x) = lk (x) / (x− xj) + lk (x)
NX
l=0
l 6=k,j

1/ (x− xl) .

Since lk (xj) = 0 for j 6= k, we obtain that

l0k (xj) = lim
x→xj

lk (x)

(x− xj)
.

Using the definition of lk (x) , we get the off-diagonal elements, i.e.,

d
(1)
jk =

1

αk
ΠNl=0
l 6=k,j

(xj − xl) =
αj

αk (xj − xk)
. (1.51)

It is sometimes preferable to express the entries of D(1), (1.50) and (1.51) , in
a different way. Let’s denote by φN+1 (x) the product Π

N
l=0 (x− xl) . Then we

have successively

φ0N+1 (x) =
PN

k=0Π
N
l=0
l6=k

(x− xl) ,

φ0N+1 (xk) = αk,

φ00N+1 (xk) = 2αk
PN

l=0
l6=k

1/ (xk − xl) ,

and eventually we can write

d
(1)
jk =

⎧⎨⎩
αj

αk(xj−xk) =
φ0N+1(xj)

φ0N+1(xk)(xj−xk)
, j 6= kPN

l=0
l6=k

1
(xk−xl) =

φ00N+1(xk)

2φ0N+1(xk)
, j = k.

(1.52)

Similarly, for the second derivative we write

D(2)lk (xj) = l00k (xj) , j, k = 0, 1, 2, ..., N,

and consequently

d
(2)
jk =

⎧⎪⎨⎪⎩
2d
(1)
jk

h
d
(1)
jj − 1

xj−xk

i
, j 6= k,h

d
(1)
kk

i2
−
PN

l=0
l6=k

1
(xk−xl)2

, j = k.
(1.53)
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Remark 20 In [206], a simple method for computing n× n pseudodifferential
matrix of order p in O

¡
pn2

¢
operations for the case of quasi-polynomial approx-

imation is carried out. The algorithm is based on recursions relations for the
generation of finite difference formulas derived in [68]. The existence of efficient
preconditioners for spectral differentiation matrices is considered in [72]. Simple

upper bounds for the maximum norms of the inverse
¡
D(2)

¢−1
, corresponding to

(CGaussL) points, are provided in [182]. In [189] it is shown that differentiating
analytic functions using the pseudospectral Fourier or Chebyshev methods, the
error committed decays to zero at an exponential rate.

Remark 21 The entries of the Chebyshev first derivative matrix can be found
also in [93]. The gridpoints used by this matrix are xj from (1.34) , i.e., Cheby-

shev Gauss Lobato nodes. The entries d
(1)
jk are

d
(1)
jk =

cj
ck

(−1)j+k
(xj−xk) , j 6= k,

d
(1)
jj =

−xj
2(1−x2j)

, j 6= 0, N,

d00 = −dNN =
2N2+1
6 .

(1.54)

Remark 22 The software suite provided in the paper of Weideman and Reddy
[204] contains, among others, some codes (MATLAB ∗.m functions) for carry-
ing out the transformations (1.40) and (1.41), as well as for computing deriva-
tives of arbitrary order corresponding to Chebyshev, Hermite, Laguerre, Fourier
and sinc interpolators. It is observed that for the matrix D(l), which stands for
the l − th order derivative, is valid the recurrence relation

D(l) =
³
D(1)

´l
, l = 1, 2, 3, ...,

which is also suggested by (1.53) . The existence of this relation is a consequence
of the barycentric form of the interpolator (see P. Henrici [110], P. 252). On
the other hand, we have to observe that throughout this work we use standard
notations, which means that interpolating polynomials are considered to have
order N and sums to have lower limit j = 0 and upper limit N. Since MATLAB
environment does not have a zero index the authors of these codes begin sums
with j = 1 and consequently their notations involve polynomials of degree N−1.
Thus, in formulas (1.54) instead of N they introduce N − 1. However, it is
fairly important that, in these codes, the authors use extensively the vectorization
capabilities as well as the built-in (compiled) functions of MATLAB avoiding at
the same time nested loops and conditionals. Another important source for
pseudospectral derivative matrices is the book of L. N. Trefethen [197].

Remark 23 For Chebyshev and for Lagrangian polynomials as well, projec-
tion (truncation) and interpolation do not commute, i.e., (PNu)

0 6= PN (u
0)

and (INu)
0 6= IN (u

0) . The Chebyshev-Galerkin derivative (PNu)
0
and the pseu-

dospectral derivative (INu)
0
are asymptotically worse approximations of u0 than
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PN−1 (u
0) and IN−1 (u

0) , respectively, for functions with finite regularity (see
Canuto et al. [33] Sect. 9.5.2. and [93]).

Remark 24 (Computational cost) First, we consider the cost associated with
the matrix D(l). Thus, N2 operations are requested to compute αj . Given αj ,
another 2N2 is required to find the off-diagonal elements. N2 operations are
required to find all the diagonal elements from (1.52). Hence, it requires 4N2

operations to construct the matrix D(1). Second, a matrix-vector multiplication
takes N2 operations and consequently the evaluation of u0 in (1.45) would re-
quire 5N2 operations, which means asymptotically something of order O(N2).
This operation seems to be a somewhat expensive one because this would take
up most of CPU time if it were used in a numerical scheme to solve a typ-
ical PDE or ODE boundary value problem (the other computations take only
O(N) operations). Fortunately, the matrices of spectral differentiations have
various regularities in them. It is reasonable to hope that they can be exploited.
It is well known that certain methods using Fourier, Chebyshev or sinc basis
functions can also be implemented using FFT. By applying this technique the
matrix-vector multiplication (1.45) can be performed in O (N logN) operations
rather than the O

¡
N2
¢
operations. However, our own experience, confirmed by

[204], shows that there are situations where one might prefer the matrix approach
of differentiation in spite of its inferior asymptotic operation count. Thus, for
small values of N the matrix approach is in fact faster than the FFT approach.
The efficiency of FFT algorithm depends on the fact that the integer N has to be
a power of 2. More than that, the FFT algorithm places a limitation on the type
of algorithm that can be used to solve linear systems of equations or eigenvalue
problems that arise after discretization of the differential equations.

1.5 Problems

(See Fox and Parker [71], Ch. 3, Practical Properties of Chebyshev Polynomials
and Series)

1. Prove the recurrence relation (1.3) for Chebyshev polynomials, using the
trigonometric identity

cos ((k + 1) θ) + cos ((k − 1) θ) = 2 cos θ cos (kθ)

and the decomposition

Tk (x) = cos (kθ) , θ = arccos (x) .

N

2. In certain applications we need expressions for products like Tr (x)Ts (x)
and xrTs (x) . Show for the first that the following identity holds

Tr (x)Ts (x) =
1

2
[Tr+s (x) + Ts−r (x)] .
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For the second, we have to show first that

xr =
1

2r−1

∙
Tr (x) +

µ
r

1

¶
Tr−2 (x) +

µ
r

2

¶
Tr−4 (x) + . . .

¸
,

and than we get

xrTs (x) =
1

2r−1

∙
Tr (x)Ts (x) +

µ
r

1

¶
Tr−2 (x)Ts (x) + . . .

¸
=

1

2r

rX
i=0

µ
r

i

¶
Ts−r+2i (x) .

Show also that

Tr (Ts (x)) = Ts (Tr (x)) = Trs (x) .N

3. Show that for the indefinite integral we haveZ
Tr (x) dx =

1

2

½
1

r + 1
Tr+1 (x)−

1

r − 1Tr−1 (x)
¾
, r ≥ 2,(1.55)Z

T0 (x) dx = T1 (x) ,

Z
T1 (x) dx =

1

4
{T0 (x) + T2 (x)} .N

4. The range 0 ≤ x ≤ 1. Any finite range, a ≤ y ≤ b, can be transformed to
the basic range −1 ≤ x ≤ 1 with the change of variables

y :=
1

2
[(b− a)x+ (b+ a)] .

Following C. Lanczos [126], we write

T ∗r (x) := Tr (2x− 1) ,

and all the properties of T ∗r (x) can be deduced from those of Tr (2x− 1) .N

5. Show that the set of Chebyshev polynomials T0 (x) , T1 (x) , ..., TN (x) is
a basis in PN .N

6. For the ’continuous’ least square approximation, using ’trigonometric poly-
nomial’ (1.6), to a function f (x) , x ∈ [−π, π], show that

min

Z π

−π
[f (x)− pN (x)]

2 dx =

Z π

−π
f2 (x) dx−π

(
1

2
a20 +

NX
k=1

¡
a2k + b2k

¢)
.N

7. Find in [−π, π] the Fourier series for f (x) = |x| , and observe that it
converges like k−2. Find the similar series in the range [−1, 1] .N
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8. Justify the equality

(u− PNu, v)ω = 0, ∀v ∈ PN ,

where PN is the projection operator defined in (1.27) .N

9. Prove that the set of functions cos rθ, r = 0, 1, ..., N, are orthogonal under
summation over the points

θk =
2k + 1

N + 1

π

2
, k = 0, 1, ..., N,

i.e., they satisfy (1.12) and hence find a discrete least square Fourier series
different from (1.14).N

10. Justify the formula for the derivative of a Chebyshev series (1.30) . Hint
Let’s differentiate first, term-by-term, the finite Chebyshev sum p (x) =Pn

r=0
1
cr
arTr (x) , to obtain p

0 (x) =
Pn−1

r=0
1
cr
brTr (x) .We seek to compute

the coefficients br in terms of ar. To this end, we integrate p
0 (x), using

(1.55), to give Pn
r=0

1
cr
arTr (x) =

1
2

n
a0T0(x) + b0T1 (x) +

1
2b1T2 (x) +

Pn−1
r=2 br

h
Tr+1(x)
r+1 − Tr−1(x)

r−1

io
.

By equating coefficients of Tr (x) on each side we find

ar =
1
2r (br−1 − br+1) , r = 1, 2, ..., n− 2

an−1 =
1

2(n−1)bn−2, an =
1
2nbn−1.

We then can calculate the coefficient br successively, for decreasing r, from
the general recurrence relation

br−1 = br+1 + 2rar.

Consequently, we can write⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
bn−1 = 2nan, bn−2 = 2(n− 1)an−1,

bn−3 = 2(n− 2)an−2 + 2nan,
. . .

b1 = 4a2 + 8a4 + 12a6 + ...,
b0 = 2a1 + 6a3 + 10a5 + ... .

Each sum above is finite and finishes at an or an−1. Whenever we differ-
entiate term-by-term an infinite Chebyshev series, these sums are in fact
infinite series which have the general expressions

b2r =
P∞

s=r 2 (2s+ 1) a2s+1,
b2r+1 =

P∞
s=r 2 (2s+ 2) a2s+2, r = 0, 1, 2, ... .

N (1.56)
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11. For any v ∈ H1
0 (a, b) , (a, b) ⊂ R, prove the Poincare inequality

π2
Z b

a

u2dx ≤ (b− a)2
Z b

a

(u0)
2
dx.

Formally, we can write this in the form

π

b− a
kuk ≤ kuk1,0 . (1.57)

Hint Expand u (x) as well as u0 (x) in their respective Fourier series.N

12. Express the function f : [−1, 1] → R, f (x) = 1/
¡
1 + x+ x2

¢
as a series

of Chebyshev polynomials
P∞

r=0
1
cr
arTr (x) . Try to estimate the error.

Observe that the absolute values of the ”degrees of freedom” ar of f (x)
are decreasing with the increase of r. Find out the range L such that
aL 6= 0 and ar = 0, r > L, i.e., the order of the smallest non vanishing
coefficient. Using successively the transform (1.41) and the matrices of
differentiation D(l), compute³

f (ν) (x0) f (ν) (x1) ...f (ν) (xL)
´T

, ν = 0, 1, 2.

It is strongly recommended to set up a computing code, for instance a
MATLABm function (see also http://dip.sun.ac.za/˜weideman/research/differ.html).
Hint Equating each side of the identity

1 =
¡
1 + x+ x2

¢ ∞X
r=0

1

cr
arTr (x) ,

we find⎧⎨⎩
3
4a0 +

1
2a1 +

1
4a2 = 1,

1
2a0 +

7
4a1 +

1
2a2 +

1
4a3 = 0,

1
4ar−2 +

1
2ar−1 +

3
2ar +

1
2ar+1 +

1
4ar+2 = 0, r = 2, 3, ... .

To solve this infinite set of linear algebraic equations we solve in fact
successive subsets of equations, involving successive leading submatrices
(square matrices) of the infinite matrix. We assume, without proof, that
this process will converge whenever a convergent Chebyshev series exists.N

13. Show that the matrix D(2) with the entries defined in (1.53) is singular.

Hint D(2)v0 = D(2)v1 = 0, where v0 = (1 1 ...1)T , v1 := (x0 x1 ...xN )
T ,

v0, v1 ∈ RN+1, see the definition of Lagrangian interpolation polynomial,
(1.47) .N

14. [155], P. 702 Give a rule for computing the Chebyshev coefficients of the
product v (y)w (y) given that

v (y) :=
∞X
n=0

anTn (y) , w (y) :=
∞X
n=0

bnTn (y) .
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Hint. Let us define

eTn (x) := exp ¡i · n cos−1 x¢ , |x| ≤ 1, −∞ < n <∞, i =
√
−1.

It follows that 2Tn (x) = eTn (x) + eT−n (x) and eTn (x) eTm (x) = eTn+m (x) .
With these we can rewrite the above expansions as

2v (y) :=
∞X

n=−∞
ean eTn (y) , 2w (y) := ∞X

n=−∞

ebn eTn (y) ,
where ean = c|n|a|n| and ebn = c|n|b|n| for −∞ < n <∞. Therefore,

4v (y)w (y) =
∞X

n=−∞
een eTn (y) = 2 ∞X

n=0

enTn (y) ,

where

en =
1

cn

∞X
m=−∞

ean−mebm, een = c|n|e|n|.

Consequently, the nth Chebyshev coefficient of v (y)w (y) is 1
2en for n ≥

0.N

15. Observe the Gibbs phenomenon for the map

f (x) =

½
0, −2 ≤ x ≤ 0,

cos (x) , 0 ≤ x ≤ 2.

Hint Use the Fourier expansion

SN (x) : =
1

4
sin (2) +

NX
n=1

1

n2π2 − 4 ×n
(−1)n+1 2 sin (2) cos

³nπx
2

´
+ nπ [1− (−1)n cos (2)] sin

³nπx
2

´o
.N

16. Provide the reason for the absence of a Gibbs phenomenon (effect) for the
Chebyshev series of f (x), f : [−1, 1] → R, and its derivatives at x = ±1.
Hint The map F (θ) := f (cos θ) satisfies F (2p+1) (0) = F (2p+1) (π) = 0
provided only that all derivatives of f (x) of order at most 2p+ 1 exist at
x = ±1.N
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Chapter 2

Spectral methods for o. d.
e.

”I have no satisfaction in formulas
unless I feel their numerical magnitude”.

Lord Kelvin

2.1 The idea behind the spectral methods

The spectral methods (approximations) try to approximate functions (solutions
of differential equations, partial differential equations, etc.) by means of trun-
cated series of orthogonal functions (polynomials) say, ek, k ∈ N. The well
known Fourier series (for periodic problems), as well as series made up by Cheby-
shev or Legendre polynomials (for non-periodic problems), are examples of such
series of orthogonal functions. Hermite polynomials and sinc functions are used
to approximate on the real line and Laguerre polynomials to approximate on
the half line.

Roughly speaking, a certain function u (x) will be approximated by the finite
sum

uN (x) :=
NX
k=0

buk · ek (x) , N ∈ N,

where the real (sometimes complex !) coefficients buk are unknown.
A spectral method is characterized by a specific way to determine these co-

efficients.

We will shortly introduce the tree most important spectral methods by mak-
ing use of a simple example.

29
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Let us consider the two-point boundary value problem½
N (u (x)) = f, x ∈ (a, b) @ R,

u (a) = u (b) = 0,

where N (·) stands, generally, for a certain non-linear differential operator of a
specified order, defined on an infinite dimensional space of functions.
The Galerkin method, (SG) for short, consists in the vanishing of the residue

RN := N
¡
uN
¢
− f,

in a “weak sense”, i.e.,

(SG)

bZ
a

w ·RN · ekdx = 0, k = 0, 1, 2, . . . ,N,

where w (x) is a weight function associated with the orthogonality of the func-
tions ek. The applicability of this method strongly depends on the apriority
fulfillment of the homogeneous boundary conditions by the functions ek.
Whenever this is not the case (SG) , method is modified as follows.
The N + 1 unknown coefficients buk will be searched as the solution to the

algebraic system

(ST )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

bZ
a

w ·RN · ekdx = 0, k = 0, 1, 2, . . . ,N − 1,

NX
k=0

buk · ek (a) = NX
k=0

buk · ek (b) = 0.
Thus we obtain the so called tau method, (ST ) for short.
The spectral collocation method, (SC) for short, requires that the given equa-

tion is satisfied in the nodes of a certain grid, {xk}k=1,2,...,N−1, x0 = a, xN = b,
and the boundary conditions are enforced explicitly, i.e.,

(SC)

½
N
¡
uN (xk)

¢
− f (xk) = 0, xk ∈ (a, b) , k = 1, 2, . . . , N − 1,

uN (a) = uN (b) = 0.

It is extremely important to underline the fact that the method does not use
equidistant nodes, because as it is well known such nodes lead to ill-conditioning
and Runge’s phenomenon.

Remark 25 Each and every formulation, (SG) , (ST ) and (SC) , represents
an algebraic system of equations- the first two for the unknowns bu0, bu1, . . . , buN ,
the third for u (x0) , u (x1) , ..., u (xN ) . Thus, the first two methods belong to
a more general class of methods, the so called weighted residual methods.
The spectral collocation method, which does not belong to that, is also called
the pseudospectral method. This method, unlike the finite difference and
finite element methods, does not use local interpolants but use a single global
interpolant instead.
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Remark 26 Whenever the basis functions ek are the Chebyshev polynomials,
the methods (SG), (ST ) and (SC) will be denoted respectively by (CG), (CT )
and (CC). The same convention holds for the Fourier, Legendre and other
classes of special polynomials.

Remark 27 Approximation properties. The spectral methods are particu-
larly attractive due to the following approximation properties. The ”distance”
between the solution u (x) of the above problem and its spectral approximation
uN (x) is of order 1/Ns, i.e., °°u− uN

°° ≤ C

Ns
,

where the exponent s depends only on the regularity (smoothness) of the solu-
tion u (x) . Moreover, if u (x) is infinitely derivable, the above distance vanishes
faster than any power of 1/N, and this means spectral accuracy. This sharply
contrasts with finite difference methods and finite element methods where a sim-
ilar distance is of order 1/Np with exponent p independent of the regularity of
u (x) but depending on the approximation scheme. In other words, while spec-
tral methods use trial (shape) and test functions, defined globally and very
smooth, in finite elements methods these functions are defined only locally and
are less smooth.

Remark 28 [33], [161] Computational aspects. The (SC) method solves
the differential problems in the so called physical space which is a subset
of RN+1 containing the nodal values u (x0) , u (x1) , ..., u (xN ) of the solution.
The (SG) and (ST ) methods solve the same problems in the so called trans-
formed space which is again a subset of RN+1 containing the coefficients
{buk}k=0,1,2,...,N . Each and every coefficient buk depends on all the values of
u (x) in the physical space. However, only a finite number of such coefficients
can be calculated, with an accuracy depending on the smoothness of u, from a
finite number of values of u. From the computational point of view this can be
achieved by means of the Chebyshev discrete transform (1.40) .The inverse of
this transform (1.41) is a map from transformed space onto physical space.

2.2 General formulation for linear problems

Let us consider the following linear two-point boundary value problem

(LP )

½
Lu = f, in (−1, 1) ,

Bu = 0,

where L is a linear differential operator acting in a Hilbert spaceX and B stands
for a set of linear differential operators defined on −1 and 1. If we introduce the
domain of definition of the operator L as

DB (L) := {u ∈ X| Lu ∈ X and Bu = 0} ,
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and suppose that DB (L) is dense in X, such that L : DB (L) ⊆ X → X, the
problem (LP ) takes the functional form

(LP )

½
u ∈ DB (L) ,
Lu = f.

There exist criteria, such as Lax-Milgram lemma or inf-sup condition (criterion),
which assure the fact that this problem is well defined. In order to obtain a
numerical solution of (LP ) we will approximate the operator L by a family of
“discrete” operators LN , N ∈ N. Every “discrete” operator will be defined on
a finite dimensional subspace XN of X, in which the solution will be searched,
and its codomain is a subspace Z of X.
The spectral approximation uN ∈ XN of the solution u ∈ X is ob-

tained by imposing the vanishing of the projection of the ”residual” (LNu− f)
on a finite dimensional subspace YN of Z. Consequently, if we denote by QN

the operator of orthogonal projection, QN : Z → YN , the nth order spectral
approximation uN of u is defined by

(SA)

½
uN ∈ XN ,

QN

¡
LNu

N − f
¢
= 0.

The projection operator QN will be defined with respect to a scalar product
(., .)N from YN as follows½

QN : Z → YN ,
(z −QNz, v)N = 0, ∀v ∈ YN .

Thus, the spectral approximation (SA) is equivalent with the “variational for-
mulation”

(V A)

½
uN ∈ XN ,¡

LNu
N − f, v

¢
N
= 0, ∀v ∈ YN .

This equivalence justifies the name of “weighted residuals” used alternatively
for the spectral methods. Schematically, the spectral methods look like this:

DB (L) ⊆ X
LN−→X,

XN ⊂ X
LN−→Z ⊆ X

QN−−→YN ⊂ Z.

A particular choice of subspaces Z, XN , YN , as well as of the scalar product
(., .)N (or projection operator QN ), defines a specific spectral method. The
space XN is the space of trial or shape functions and the space YN is that of
test functions.

2.3 Tau-spectral method

This method, discovered by C. Lanczos, [126] pp.464-469, is suitable for non-
periodic problems with complicated boundary conditions. The Chebyshev
tau method (CT for short) is characterized by the following choice:
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•
X := L2ω (−1, 1) ;

•
XN := {v ∈ PN | Bv = 0} ; (2.1)

•
YN := PN−β; (2.2)

where β stands for the number of boundary conditions. The projection op-
erator QN is the projection operator of X with respect to the scalar product
(1.1), the “discrete” operators LN coincide with L and the scalar product (., .)N
from YN remains as well the scalar product (1.1).
Practically, if we accept the family {Tk, k = 0, 1, 2, . . . , N} as a basis for the

finite dimensional space XN and a subset of this {Tk, k = 0, 1, 2, . . . , N − β} as
the set of ”test” functions in YN , the variational formulation (V A) corresponding
to (LP ) reads as follows:

(CT )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

find the coefficients buk of uN (x) ∈ PN ,

uN (x) :=
NX
k=0

buk · Tk (x) , such that

1Z
−1

¡
LuN (x)− f (x)

¢
Tk (x)ω (x) dx = 0, k = 0, 1, 2, . . . N − β,

and
NX
k=0

bukB (Tk) = 0.
(2.3)

The equation (2.3) represents the projection of the equation (LP ) onto the
space PN−β and the boundary conditions are explicitly imposed by the last β
equations.
The stability and convergence of tau approximation is usually proved with

the discrete form of ”inf-sup” condition (see [11]), this tool being more suitable
when the finite dimensional spaces XN and YN are different one from the other.
For linear differential operators the convergence results are fairly general. Thus,
let L be the linear differential operator

Lu := u(m) +
m−1X
i=0

aiu
(i), (2.4)

where ai ∈ L2ω (−1, 1) and let B be the bounded linear operator on the boundary
which furnishes m supplementary conditions. The next result is proved in [172]:
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Lemma 29 If the coefficients (functions) ai are polynomials and the homoge-
neous problem ½

Lu = 0, in (−1, 1) ,
Bu = 0,

has only the null solution, then for large N the (CT) method leads to a unique so-
lution, which converges to the unique solution of the non-homogeneous problem,
with respect to the norm k·km,ω . The convergence error and the best approxima-
tion error of the solution in PN with respect to the same norm have the same
order of magnitude.

This result was extended to the case of more general coefficients, namely
ai ∈ L2ω (−1, 1) , by Cabos in his paper [27].
However, these results can not be extended for partial differential equations

and consequently we consider an example where we alternatively use the “inf-
sup” criterion (see [148] or [33] Ch. 10).

Lemma 30 (Existence and uniqueness) Let (W, k·kW ) and (V, k·kV ) be
two Hilbert spaces such that W v X and V v X the second inclusion being
continuous i.e., there exists a constant C such that kvkV ≤ C kvk , ∀v ∈ V, and
let DB (L) be dense in W. If there exists the real positive constants α and β such
that the following three conditions with respect to the operator L hold⎧⎪⎨⎪⎩

0 < sup {(Lu, v) | u ∈ DB (L)} , ∀v ∈ V,

α kukW ≤ sup
n
(Lu,v)
kvkV

| v ∈ V, v 6= 0
o
, ∀u ∈ DB (L) ,

|(Lu, v)| ≤ β kukW kvkV , ∀u ∈ DB (L) , ∀v ∈ V,

(2.5)

then the non-homogeneous problem (2.4) has a unique solution (in a weak sense)
which depends continuously on the right hand member f , i.e., there exists a
positive constant C such that

kukW ≤ C kfk .

Remark 31 Just in case of elliptic (coercive) operators i.e.,

∃α > 0 such that α kuk ≤ (Lu, u) , ∀u ∈ DB (L) ,

the first two conditions above are fulfilled taking V = W = X. Similarly, the
blondeness of bilinear form (Lu, v) implies automatically the third condition.
Consequently, the Lax-Milgram lemma is a particular case of the above criterion
(see our contribution [83] or the original reference [127]).

In order to prove the numerical stability of the method a discrete form of
the “inf-sup” criterion is useful. The following lemma is proved in [11].

Lemma 32 (Numerical stability) Let XN and YN be two finite dimensional
spaces of dimension N such that XN v W, YN v V and L satisfying the
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conditions from the above lemma. If there exists γ > 0, γ independent of N,
such that the discrete form of the “inf-sup” criterion holds, i.e.,

α kukW ≤ sup
½
(Lu, v)

kvkV
| v ∈ YN , v 6= 0

¾
, ∀u ∈ XN ,

then there exists C > 0, C independent of N , for which°°uN°°
W
≤ C kfk . (2.6)

The inequality (2.6) means exactly numerical stability of the numerical
method.
In this case, the convergence of the numerical method can be established

looking for a linear operator

RN : DB (L)→ XN

which satisfies

ku−RNuk→ 0, as N →∞, ∀u ∈ DB (L) .

Then °°u− uN
°°
W
→ 0, as N →∞, (2.7)

due to the inequality°°u− uN
°°
W
≤
µ
1 +

β

γ

¶
ku−RNukW (2.8)

(see for example [33], Ch. 10).
The limit (2.7) expresses precisely the convergence of the method.

Example 33 Let us consider the fourth order boundary value problem½
u(iv) + λ2u = f, x ∈ (−1, 1) ,

u (±1) = u0 (±1) = 0,

where λ ∈ R, f ∈ L2ω (−1, 1) and Lu := u(iv) + λ2u,

L : DB (L)→ L2ω (−1, 1) , DB (L) :=
©
v ∈ H4

ω (−1, 1) |v (±1) = v0 (±1) = 0
ª
.

According to (2.3) the Chebyshev-tau solution of the problem has the form

uN (x) :=
NX
k=0

buk · Tk (x) ,
where the coefficients {buk}k=0,1,2,...,N solve the algebraic system( R 1

−1

h¡
uN
¢(iv)

(x) + λ2uN (x)− f (x)
i
Tk (x)ω (x) dx = 0, k = 0, 1, 2, . . . ,N − 4,

uN (±1) =
¡
uN
¢0
(±1) = 0.

(2.9)
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In this case XN := {v ∈ PN | v (±1) = v0 (±1) = 0} and YN = PN−4. The
estimations (1.4) transform the boundary conditions into

uN (±1) =
NX
k=0

(±1)k buk; ¡
uN
¢0
(±1) =

NX
k=0

(±1)k k2buk.
The fourth order derivative can be written with respect to the system Tk (x) as

¡
uN
¢(iv)

(x) =
N−4X
k=0

bu(4)k Tk (x) , (2.10)

where

bu(4)k =
1

ck

NX
p=k+4

p+k=even

p
h
p2
¡
p2 − 4

¢2 − 3k2p4 + 3k4p2 − k2
¡
k2 − 4

¢2i bup, k = 0, 1, 2, . . . , N−4.

Consequently, the final form of the system (2.9) reads as follows⎧⎪⎪⎨⎪⎪⎩
PN

k=0 (±1)
k buk =PN

k=0 (±1)
k
k2buk = 0,

1
ck

PN
p=k+4

p+k=even
p
h
p2
¡
p2 − 4

¢2 − 3k2p4 + 3k4p2 − k2
¡
k2 − 4

¢2i bup + λ2buk = bfk,
k = 0, 1, 2, . . . , N − 4,

where bfk = 2

πck

Z 1

−1
f (x)Tk (x)ω (x) dx, k = 0, 1, 2, . . . , N.

In order to establish the numerical stability of the method we have to mention
first that the coercivity and the boundeness of the operator L were proved by
Maday [133]. This implies the validity of the three inequalities (2.5). It remains
to verify the discrete form of “inf-sup” condition. To do this we define W :=
H4
ω (−1, 1) and V := L2ω (−1, 1) along with the spaces XN and YN defined above.

As uN ∈ PN ,
¡
uN
¢(iv) ∈ PN−4, and integrating two times by parts we get³

LuN ,
¡
uN
¢(iv)´

0,ω
=

Z 1

−1

h¡
uN
¢(iv)i2

ωdx+ λ2
Z 1

−1

¡
uN
¢(iv)

uNωdx(2.11)

=
°°°¡uN¢(iv)°°°2

0,ω
+ λ2

Z 1

−1

¡
uN
¢00 ¡

uNω
¢00

dx.

From [133], Lemma 5.1, we use the inequality

301

Z 1

−1
φ00 (ωφ)00 dx ≥

Z 1

−1

¡
φ00
¢2
ωdx, ∀φ ∈ H2

0,ω (−1, 1) . (2.12)

The inequalities 2.11 and 2.12 lead to the inequality³
LuN ,

¡
uN
¢(iv)´

0,ω
≥
°°°¡uN¢(iv)°°°2

0,ω
+

λ2

301

°°°¡uN¢00°°°2
0,ω

. (2.13)
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Due to the fact that uN ∈ H4
ω (−1, 1)∩H2

0,ω (−1, 1) the successive use of Poincare’s
inequality implies the existence of C > 0, independent of u such that°°°¡uN¢(iv)°°°

0,ω
≥ C

°°uN°°
4,ω

, (2.14)

where k·k4,ω stands for the norm in H4
ω (−1, 1) . The inequalities (2.13) and

(2.14) prove the discrete form of the “inf-sup” condition and consequently the
numerical stability of the method. The convergence of this method is based
on the inequality (2.8). To this end let us consider the algebraic polynomial
PN,4u ∈ PN , attached to the exact solution u of the problem. In [33] Ch. 9, the
existence of this polynomial is proved for all u ∈ H4

ω (−1, 1) and the following
two inequalities are established

ku− PN,4ukk,ω ≤ CNk−m kukm,ω , 0 ≤ k ≤ 4, m ≥ 4, (2.15)

|PN,4u (±1)| = |(u− PN,4u) (±1)| ≤ ku− PN,4uk∞ .

Due to the fact that u − PN,4u ∈ H4
ω (−1, 1) the Sobolev inequality (see again

[33], Appendix) implies

ku− PN,4uk∞ ≤ C ku− PN,4uk
1
2
0 ku− PN,4uk

1
2
1 ,

the norm k·kp being that of the unweighted space Hp (−1, 1) . As the weight
ω (x) ≥ 1, ∀x ∈ (−1, 1) we can write successively

ku− PN,4ukp ≤ ku− PN,4ukp,ω , ∀p ≥ 0,

|PN,4u (±1)| ≤ C ku− PN,4uk
1
2
0,ω ku− PN,4uk

1
2
1,ω .

The inequality (2.15) for k = 0, 1 implies

|PN,4u (±1)| ≤ CN
1
2−m kukm,ω , (2.16)

and similarly we can obtain

|PN,4u (±1)| ≤ CN
3
2−m kukm,ω . (2.17)

As the polynomial PN,4u does not satisfy necessarily the homogeneous boundary
conditions, we introduce a polynomial p ∈ P3 which interpolates the values of
PN,4u and its derivative on ±1. The coefficients of this polynomial depend lin-
early on the values PN,4u (±1) and PN,4u (±1) , and consequently the quantity
kpk24,ω will be a quadratic form of these values. In this context the inequalities
imply

kpk24,ω ≤ C
³
N

3
2−m kukm,ω

´2
, (2.18)

the constant C being independent of p and u. We can now define the operator
RNu ∈ XN as RNu := PN,4u − p. With (2.15) for k = 4 and (2.18) we can
write successively

ku−RNuk4,ω = ku− PN,4u+ pk4,ω ≤ C1N
4−m kukm,ω + C2N

3
2−m kukm,ω ,

ku−RNuk4,ω ≤ CN4−m kukm,ω .
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The last inequality and (2.8) lead to the optimal error estimation, namely°°u− uN
°°
4,ω
≤ CN4−m kukm,ω .

Example 34 Let us consider the 1D Helmholtz problem½
−u00 + λ2u = f, x ∈ (−1, 1)

u (±1) = 0. (2.19)

We search a solution uN ∈ PN in the form

uN =
NX
k=0

bukTk.
Expressing the first and second order derivatives of uN with the formulas (1.30)
and (2.37) , after boundary conditions are imposed, we get algebraic system forbuk⎧⎪⎪⎨⎪⎪⎩

PN
k=0 buk (−1)k = 0,PN

k=0 buk = 0,
− 1

ck

PN
p=k+2

p+k=even
p
¡
p2 − k2

¢ bup + λ2buk = bfk, k = 0, 1, 2, ..., N − 2. (2.20)

Example 35 The Chebyshev tau solution of the problem½
u00 + u = x2 + x, x ∈ (−1, 1)

u (±1) = 0,

is depicted in Fig. 2.1. It is obtained using the MATLAB code Chebyshev tau.m
from the Appendix MATLAB codes. When the order N was N = 128, the
precision attained the value 3.8858e− 016 !

At the end of this section we have to observe that the tau method was
exposed in its classical form. There exists also an operator technique (see [158],
[61], [111] and [27]) as well as a recursive technique (see [157]). All these
techniques are equivalent but sometimes there exists the possibility of a more
efficient implementation from the point of view of numerical stability (see also
[27]).

The applicability of this method for singularly perturbed problem was stud-
ied, for example, in [33] and in our previous paper [81].

The manoeuvrability of boundary conditions in the framework of tau method
is a real advantage of this method. The possibility to obtain sparse matrices is
another one. Anyway, its applicability in case of nonlinear problems and partial
differential equations is quite tedious.
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Figure 2.1: A Chebyshev tau solution

2.4 Collocation spectral methods (pseudospec-
tral)

It seems that this category of spectral methods is the most frequently used in
practical applications. The numerical approximation uN (x) of the solution u (x)
to the problem (LP ) is searched again in a space of algebraic polynomials of
degree N, but this space will be constructed such that the equation is satisfied
in a specified number of points, called collocation points, of the interval (−1, 1) .
When we make use of the Chebyshev-Gauss-Lobatto interpolation nodes (1.34),

the method is called Chebyshev collocation (CC for short). We observe that
for this method, in spite of the fact that the discrete operators {LN , N ∈ N∗}
act in PN , they can be different from the operator L.

The “strong form” of this method reads as follows:

(CC)

⎧⎨⎩ find uN ∈ PN such that
LNu

N (xi) = f (xi) , xi ∈ (−1, 1) , i = 1, 2, . . . , N − 1,
BNu

N (xi) = 0, ∀xi ∈ {−1, 1}
(2.21)

The abscissas xi are just the collocation points (1.34), and the discrete boundary
operator BN can be identical with B or constructed like LN .

Hereafter we use the following two spaces:

• XN := {v ∈ PN | Bv (xk) = 0, ∀xk ∈ {±1}} ,

• YN := {v ∈ PN | v (xk) = 0, xk ∈ {±1}} .
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If we use the Lagrangian basis {lk (x)}Nk=0 , lk (x) ∈ PN , associated with the
(CGaussL) nodes, then we have

lk (xj) = δkj , k, j = 0, 1, 2, . . . , N

where δkj stands for Kronecker symbol.
The space YN is generated by a subset of this basis made up by those

polynomials which vanish in ±1. For (CGaussL) formula this set is

{lk, k = 1, 2, . . . , N − 1} .

The projection operator QN is in fact the Lagrangian interpolation polyno-
mial corresponding to nodes inside (−1, 1) (just in case of (CGaussL): xk,
k = 1, 2, . . . , N − 1) and which vanish for the others, ±1.
Consequently, we search a solution uN (x) of the form

uN (x) :=
NX
k=0

ujlj (x) , (2.22)

with uj := uN (xj) , j = 0, 1, . . . , N, which satisfies (2.21), i.e.,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
NX
k=0

ukLN (lk (xj)) = f (xj) , xj 6= ±1,

NX
k=0

ukBN (lk (xj)) = 0, xj = ±1.
(2.23)

We have now to solve this system of algebraic equations for unknowns
uk, k = 0, 1, . . . ,N. Its matrix will be obtained by means of pseudospectral
derivative. The strong collocation method is quite difficult to be analyzed from
the theoretical point of view. The weak form of Chebyshev collocation was in-
troduced by Canuto and Quarteroni in their work [31]. For the linear problem
(LP ) it reads ½

uN ∈ XN ,¡
LNu

N , lk
¢
N
= (f, lk)N , k = 0, 1, 2, ..., N,

(2.24)

or equivalently ½
uN ∈ XN ,¡

LNu
N , v

¢
N
= (f, v)N , ∀v ∈ YN ,

(2.25)

where (·, ·)N is the discrete scalar product defined by (1.35) .

Remark 36 The analysis of spectral collocation methods is based on a “inf-
sup” type condition. The strong form of Chebyshev collocation was analyzed by
Heinrichs in [106]. The weak form was considered by Canuto and Quarteroni
in the above quoted paper and in [33]. In the special case where all boundary
conditions are of Dirichlet type, i.e., Bv := v, the method is a particular case
of Galerkin method (XN = YN ) and the Lax-Milgram lemma is the essential
ingredient.
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Example 37 Let us consider again the problem 1D Helmholtz problem (2.19).
The strong form of (CC) method replaces the derivatives with the pseudodiffer-
ential matrices, i.e., the equations (2.21) or (2.23) areµ

−
³
D
(1),C
N

´2
+ λ2IN

¶
· u = f, (2.26)

where D
(1),C
N is the differentiation matrix of order N +1, defined by (1.52) and

corresponding to (CGaussL) nodes (1.34), IN is the identity matrix of the same
order,

u :=
¡
uN (x0) uN (x1) ...u

N (xN )
¢T
and f := (f (x0) f (x1) ...f (xN ))

T .

Due to the Dirichlet boundary conditions, the values of solution are known at the
end points ±1 and we can eliminate these from the system (2.26). We carry out
this operation by extracting the submatrices corresponding to rows and columns
1, 2, ..., N − 1. Consequently, to solve the problem (2.19) by (CC) method we
have to solve the system of equations 1, 2, ..., N − 1 from (2.26). Two short
observations are in order at this moment. First, the discrete operators LN are
in fact defined by

LN :=

µ
−
³
D
(1),C
N

´2
+ λ2IN

¶
, N ∈ N,

and, second, an efficient technique, designed to introduce Robin (mixed) bound-
ary conditions and based on Hermite interpolation, is available in [204], Sect.
4. In order to obtain the computational form of the weak (CC) method we start
up with the familiar variational problem associated with (2.19), namely½

find u ∈ V such that
aω(u, v) = (f, v)ω , ∀v ∈W,

(2.27)

where the bilinear form aω(u, v) is defined

aω(u, v) :=

µ
u0,
1

ω
(vω)0

¶
ω

+ λ2 (u, v)ω ,

and V =W = H1
ω,0 (−1, 1) . Our aim is to show that the weak (CC) method can

be seen as Galerkin method in which the weight scalar product (·, ·)ω is replaced
by discrete scalar product (·, ·)N . To this end we notice that the interpolating
polynomial of a polynomial is the polynomial itself and consequently there does
not exist an approximation process in computing the nodal values of the deriva-
tives of this special type of functions. Consequently, to simplify the writing we

denote D := D
(1),C
N , and the equation (2.25) becomes¡
−D2uN + λ2uN , v

¢
N
= (f, v)N , ∀v ∈ XN .
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For uN ∈ XN v PN one has D2uN ∈ PN−2 and for any v ∈ XN ,
¡
D2uN

¢
v ∈

P2N−2. Consequently, the quadrature formula (CGL) , the integration by parts
and boundary conditions imply¡
−D2uN , v

¢
N
=
PN

j=0

¡
−D2uN · v

¢
(xj) · ωj =

R 1
−1−D2uN (x) v (x)ω (x) dx =

=
R 1
−1
¡
DuN

¢
(x)D (vω) (x) dx.

But, we can writeZ 1

−1

¡
DuN

¢
(x)D (vω) (x) dx =

µ
DuN ,

1

ω
D (vω)

¶
ω

,

and v ∈ XN , so in fact v (x) =
¡
1− x2

¢
p (x) , p (x) ∈ PN−2. In this situation

we have successively

1

ω
D (vω) = Dv + v

Dω

ω
= Dv + v

xω3

ω
= Dv + xp ∈ PN−1.

More than that, one hasµ
DuN ,

1

ω
D (vω)

¶
ω

=

µ
DuN ,

1

ω
D (vω)

¶
N

,

due to the fact that DuN · 1ωD (vω) ∈ P2N−2 and due to the order of accuracy of
the (CGL) quadrature formula. All in all, the weak form of (CC) method reads½

find uN ∈ XN such that
aN (u

N , v) = (f, v)N , ∀v ∈ XN ,
(2.28)

where

aN (u
N , v) :=

µ
DvN ,

1

ω
D (vω)

¶
N

+ λ2
¡
uN , v

¢
N
.

Remark 38 Let us consider the partition

−1 = x0 < x1 < x2 < ... < xN−1 < xN = 1, (2.29)

of the interval [−1, 1] such that the nodes are symmetrically located around
x = 0. Thus xj = −xN−j , 1 ≤ j ≤ N/2, and there is a node at x = 0 if

and only if N is even. Let also denote by eD(2) ∈ RN−1×RN−1 the second order
differentiation matrix which is obtained by deleting the first and last rows and
columns from D(2). This matrix corresponds to Dirichlet boundary conditions
for second order differential operator. The matrix eD(2) is nonsingular and cen-
trosymmetric (see the paper [4] for the definition of such matrices). It means

that eD(2) = −R eD(2)R, where R is the permutation matrix with ones on the cross

diagonal (bottom left to top right) and zero elsewhere. Its inverse
³ eD(2)

´−1
has

the same property of centrosymmetry and its norms, for three specific distribu-
tions of the collocation points, (2.29) are studied in [182]. Some properties of
centrosymmetric matrices are displayed in [4].
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Figure 2.2: The Gibbs phenomenon

Remark 39 The aliasing, sometimes called Gibbs effect, is the penalty that
we endure for attempting to approximate a non-periodic solution with trigono-
metric polynomials (see [119], P. 141 or for a very intuitive explanation [154]
P. 1122 and [156] in the context of spectral methods). It is well known that
the spectral methods yield exponential convergence in the approximation of glob-
ally smooth functions. If a function has a local discontinuity, spectral accuracy
is no longer manifested as the convergence is at most O (1) in the L∞ norm.
We will not pay more attention to this phenomenon, but remark that several
methods have been developed to deal with Gibbs effect. These methods roughly
fall into two different categories; projection theories and direct-inverse theory.
These methods which recover spectral accuracy from the Fourier data up to the
discontinuity, i.e., the resolution of the Gibbs phenomenon, are exam-
ined, for instance, in the paper of Jung and Shizgal, [122]. However, for the
discontinuous map sign (x) and its Fourier approximation

SN (x) =
4

π

NX
n=1

sin[(2n− 1)x]
2n− 1 ,

this effect is visualized in Fig. 2.2. The Fourier representation shows spurious
oscillations near the discontinuity at x = 0 and the domain boundaries x = ±1.

Example 40 Here, we solve a problem of the type which arises when dealing
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Figure 2.3: The solution to a large scale oscillatory problem

with a frequency domain equation for the vibrating string, namely½
u00 (x) +

¡
k2 + 5

¢
· u (x) = 5 · sin (k · x) , 0 < x < 1,

u (c) = sin (k · c) , u (d) = sin(k · d).
For c = −1 and d = 1 the problem is considered in the paper of Greengard
and Rokhlin [98], P. 443. In order to demonstrate the performance of (CC)
method on large-scale oscillatory cases, we solved the problem for k ranging
from 50 to 630 and N between 100 and 1200. It was observed that reliable
results can only be expected under the assumption that scale resolution is
small, i.e., that k/N < 1. In this situation the error in approximating the exact
solution u = sin (k · x) is of order O

¡
10−13

¢
. The case k = 200 and N = 256

is illustrated in Fig. 2.3.

Example 41 We solve the singular perturbation problem½
ε · u00 − u0 = 0, −1 < x < 1, 0 < ε << 1,

u(−1) = 1, u (1) = 2.
The solution of this problem has an extremely sharp boundary layer near the
right end of the interval [−1 1], causing severe numerical difficulties when stan-
dard algorithms are used (see for standard Galerkin the monograph of C. John-
son [121], P. 180). The strong (CC) method succeeded in solving this problem
fairly accurate, i.e., the error with respect to the exact solution

u (x, ε) = a+ 3/2− b exp

µ
x− 1
ε

¶
, b = 1/ (exp (−2/ε)− 1) , a = b+ .5,
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Figure 2.4: The solution to a singularly perturbed problem

is of order O
¡
10−12

¢
for .1 ≤ ε ≤ 10−4 but unfortunately drops to O

¡
10−3

¢
for

ε = 10−5. The solutions are depicted in Fig. 2.4.

2.4.1 A class of nonlinear boundary value problems

In this section we consider boundary value problems of the form½
−u00 = λF (u) , 0 < x < 1, λ > 0,

u(0) = A, u (1) = B,
(2.30)

where the nonlinear function F (u) is assumed to have a power series represen-
tation.
The Green’s function is well known and is given by

g (x, s) =

½
s (1− x) , 0 ≤ s ≤ x,
x (1− s) , x ≤ s ≤ 1.

Consequently, the nonlinear problem (2.30) can be represented in an integral
form as

u (x) = λ

1Z
0

g (x, s)F (u(s))ds+ (1− x)A+ xB.

This nonlinear integral equation was solved by a decomposition method in [45].
We shall show the capabilities of pseudospectral methods by solving some prob-
lems of the form (2.30).
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Example 42 (Troesch’s problem [45] and [142]) In this example we consider
the nonlinear boundary value problem,½

u00 = λ sinh(λu), 0 ≤ x ≤ 1,
u (0) = 0, u (1) = 1.

This problem can be reformulated as follows½
u0 = v, v0 = λ sinh(λu), 0 ≤ x ≤ 1,

u (0) = 0, u (1) = 1.

Its Jacobian matrix

J =

µ
0 k2 cosh (kx)
1 0

¶
,

is characterized by the following eigenvalues

λ1,2 = ±k
p
cosh (kx),

which, at the endpoints, become

λ (0) = ±k, λ (1) = ±k
p
cosh (k).

It means that the matrix is highly non normal! However, for relatively low values
of k, the eigenvalues are small, and the problem can be solved by conventional
methods (finite differences or finite elements). On the other hand, for relatively
large values of k, the eigenvalues are large, becoming λ (1) = ±1049 for k = 10.
Thus, the use of some special techniques becomes desirable. We solved this
problem by Chebyshev collocation technique and for the solution to nonlinear
algebraic system

D
(2),C
N · U = λ sinh(λU), U := (0, u(x1), ..., u(xN−1), 0)

T
,

we employed the MATLAB code fsolve. We observe that the problem was
first translated into a homogenous one and consequently the first and the last
component of U equal zero. For N = 128, and k = 10 the result is depicted in
Fig. 2.5.The residual provided by fsolve equals 6.260285523111991e− 020.

Example 43 Let us solve a nonlinear two-point boundary value problem. The
boundary value problem ½

u00 + u3 = 0, 0 < x < L,
u (0) = u (L) = 0,

has a unique positive solution, u (x) > 0, 0 < x < L, which represents from the
physical point of view the average temperature in a reaction-diffusion process. In
our previous paper [86] we solved this problem by a classical Galerkin method. A
Chebyshev collocation solution is shown in Fig. 2.6 and it agrees fairly well with
that quoted above (up to O

¡
10−8

¢
). It is worth noting that the nonlinear system

of algebraic equations obtained by Chebyshev collocation discretization was solved
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using the MATLAB code fsolve and the initial guess (data) was u0 (x) :=¡
1− x2

¢2
. The iterative process was convergent. This fact was confirmed by the

output argument exit flag which took the value 1. More than that, the residual
of this process lowered to the value 5.1091e− 025.

Remark 44 It is known that, in general, the global methods are more sensitive
to the boundary treatment than local methods. Solomonoff and Turkel exam-
ined in their paper [183] the influence of boundary conditions on the accuracy
and stability of pseudospectral methods. They also consider the effect of the
location of the collocation points on both the accuracy and the stability of the
scheme and its effect on the allowable time step for an explicit time integration
algorithm. Eventually they show that when Chebyshev points (nodes) are used
to solve differential equations the error will be essentially uniform through the
domain.

Example 45 (Bratu’s problem [8], p.89) Consider the problem½
−u00 = λeu, 0 < x < 1,

u (0) = u (1) = 0,
(2.31)

where λ > 0 is a parameter. Substituting a function of the form

u (x) = −2 log
µ
cosh((x− .5)

θ

2
)/ cosh

µ
θ

4

¶¶
,

which satisfies the boundary conditions, into differential equation, we find that
u is a solution if

θ =
√
2λ sinh

µ
θ

4

¶
.

This nonlinear algebraic equation for θ has two, one or no solutions when λ <
λc, λ = λc, or λ > λc, respectively. The critical value λc satisfies

1 =
1

4

p
2λc sinh

µ
θ

4

¶
.

A diagram of bifurcation for this problem is also available in the monograph
of Asher, Mattheij and Russell, [8], P. 491. If, for instance, λ = 1, then
we have two locally unique solutions whose initial slopes are s∗ = 0.549 and
s∗ = 10.909. The numerical solution corresponding to the first slope is depicted
in the Figure 2.7. The maximal error with respect to the exact solution equals
1.718136466433151e− 010.

2.5 Spectral-Galerkin methods

They are in fact genuine Galerkin methods which use Chebyshev polynomials in
order to construct the bases of finite dimensional spaces and consequently their
theoretical analysis is well established. The difficulties appear whenever quite
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Figure 2.7: The solution to Bratu’s problem N = 128

complicated boundary conditions have to be enforced into the basis functions.
Thus with the exception of periodic boundary conditions the most studies con-
fine to theoretical aspects. In our paper [164], we succeeded in overcoming some
of these difficulties.
For the ”classical”Chebyshev-Galerkin method (CG for short) we choose:

X := L2ω (−1, 1) , XN = YN := {v ∈ PN | Bv = 0} , LN = L,

and the projection operator QN represents the orthogonal projection with re-
spect to scalar product (1.1).
The discrete variational problem (formulation) reads as follows:

(CG)

½
find uN ∈ XN such that¡
LuN , v

¢
= (f, v) ∀v ∈ XN .

(2.32)

The applicability of (CG) method depends essentially on the existence of the
basis functions which satisfy boundary conditions. Consequently, for a linear
second order differential operator and homogeneous Dirichlet boundary condi-
tions we will review the most known choices.

• In the monographs [90] and [33] for such problems is used the basis

Φk :=

½
Tk − T0, k = even,
Tk − T1, k = odd.

(2.33)

and consequentlyXN = span {Φ2,Φ3, ...,ΦN} .A solution to 1D Helmholtz
problem (2.19) has the form

uN (x) :=
NX
k=2

ukΦk (x)
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and then the variational equation (2.32) becomes

λ2

Ã
NX
k=2

ukΦk,Φi

!
ω

−
Ã

NX
k=2

ukΦ
00
k ,Φi

!
ω

= (f,Φi)ω , i = 2, 3, ..., N,

which means a linear algebraic system

A · u = f , (2.34)

with the entries Aki = λ2 (Φk,Φi)ω − (Φ00k ,Φi)ω , k, i = 2, 3, ..., N, of the

matrix A, fi = (f,Φi)ω , f = (f2...fN )
T , u := (u2...uN )

T .

• J. Shen introduced in [175] and [176] different basis functions using Legen-
dre and respectively Chebyshev polynomials. In the later case he defined

Φk (x) := Tk (x)− Tk+2 (x) , k = 0, 1, 2, ..., N. (2.35)

The following result is due to Shen [176].

Lemma 46 For k, j = 0, 1, 2, ..., N the subsequent equalities hold

a)
¡
Φk,Φ

00
j

¢
ω
=

π

2
akj , akj =

⎧⎨⎩ 4 (k + 1) (k + 2) , j = k,
8 (k + 1) , j = k + 2, k + 4, ...,

0, otherwise,

b) (Φk,Φj)ω =
π

2
bkj , bkj =

⎧⎨⎩ ck + 1, j = k,
−1, j = k ± 2,
0, otherwise.

A solution to 1D Helmholtz problem (2.19) has again the form

uN (x) :=
NX
k=0

ukΦk (x) ,

but uN (x) ∈ XN defined with the Shen’s basis functions (2.35), namely

XN = YN := {Φ0 (x) , ...,ΦN (x)} .

The variational equation (2.32) turns into the algebraic system¡
−A+ λ2B

¢
·u = f , (2.36)

where
A =(akj) , B =(bkj) ,

and

fi = (f,Φi)ω , f = (f0...fN )
T , u := (u0...uN)

T , k, j = 0, 1, 2, ..., N.

We will resort to our previous book [83] and to the monograph [33] in order
to carry out the analysis of this problem.
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2.6 Problems

1. If uN is the polynomial

uN :=
NX
k=0

buk · Tk (x) ,
then its second derivative is¡

uN
¢00
=
2

ck

N−2X
k=0

bu(2)k · Tk (x) , (2.37)

where

bu(2)k =
NX

p=k+2
p+k=even

p (p− 2) bup, k = 0, 1, 2, ..., N − 2.N
2. Justify the formula (2.10).N

3. [103] Let us consider the first order problem½
u0 = f, x ∈ (−1, 1)

u (−1) = 0,

and search for that a solution in the form u (x) = (1 + x)
PN

p=0 apTp (x) .

Show that u0 (x) =
PN

p=0 rpTp (x) where

rp = (p+ 1) ap +
1

cp

NX
k=p+1

(2k) ak.N

4. [103] Show that for arbitrary constants ap we have the equality

−
Ã

NX
p=0

ap(1− x2)Tp (x)

!00
=

NX
p=0

bpTp (x) , (2.38)

and
NX
p=0

ap(1− x2)Tp (x) =
N+2X
p=0

dpTp (x) , (2.39)

where

bp = (p+ 1) (p+ 2) ap +
1

cp

NX
k=p+2

k+p=even

(6k) ak,

and

dp = −
cp−2
4

ap−2 +
4− cp−1 − cp

4
ap −

1

4
ap+2.N

In the last equalities, if the index p does not belong to the set {0, 1, 2, ..., N} ,
the coefficient ap is considered zero.
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5. [103] Let vN(x) :=
PN

p=0 apTp (x) ; then

−
¡
1− x2

¢ ¡
vN(x)

¢00
=

NX
p=0

σpTp (x) , (2.40)

and ¡
1− x2

¢ ¡
vN (x)

¢0
=

N+1X
p=0

τpTp (x) , (2.41)

where

σp = p(p− 1)ap −
1

cp

NX
k=p+2

k+p=even

(2k) ak,

and

τp =
p− 1
2

ap−1+
p+ 1

2
ap+1, p = 0, 1, 2, ..., N+1; a−1 = aN+1 = aN+2 = 0.N

6. [187] Solve by various spectral methods the problem½
u00 (x) + 400 · u (x) = −400 · cos2 (πx)− 2π2 cos (2πx) , 0 < x < 1,

u (0) = u (1) = 0.

Hint The problem is a difficult one due to the presence of rapidly growing
solutions of the corresponding homogeneous equation. First, rewrite the
problem on [−1 1] using the change of variables x ∈ [−1 1] ⇔ y ∈
[a b], y = 1

2 [(b− a)x+ (a+ b)] . The solution is depicted in Fig. 2.8.N

7. [98] Solve by spectral collocation methods the following problem corre-
sponding to Bessel equation, namely½

u00 (x) + 1
x · u0 (x) +

x2−υ2
x2 · u (x) = 0, 0 < x < 1,

u (0) = 0, u (600) = 1

for υ = 100. Hint The difficulty of this problem is due to the fact that the
two linearly independent solutions of the above equation are Jυ (x) and
Yυ (x), i.e., Bessel functions of the first and second kinds, respectively. It
is well known that Jυ (x) behaves like x

υ as x → 0 and Yυ (x) behaves
like x−υ. Most numerical algorithms have serious trouble in finding the
decaying solution. In addition, this is a very large-scale computation, since
the interval [0 600] contains almost 100 wavelengths of the solution of the
problem. More than that, the coefficients of the equation are singular at
the ends of its interval of definition. In spite of all these inconveniences
the spectral methods perform fairly well.N

8. Solve by Chebyshev tau, Chebyshev Galerkin and Chebyshev collocation
methods the boundary value problem ( [39], P. 74-105)½

−u00 + tu =
¡
−t2 + 2t+ 1

¢
et + t2 − t, 0 < t < 1,

u (0) = u (1) = 0.
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Figure 2.8: Rapidly growing solution

Hint The (CC) solution is depicted in Fig. 2.9 and agrees with the exact
solution with an error equal to 3.3307e − 015. It is advisable to solve
this problem by classical finite element method with linear elements and
compare the errors. N

9. Observe the Runge’s phenomenon for the Runge’s function

f (x) := 1/
¡
1 + x2

¢
,

by comparing the errors in the Lagrangian polynomial of interpolation
and Chebyshev interpolation of this function. Hint (see for instance Quar-
teroni and Saleri, [170], P. 80).N

10. Solve comparatively, by pseudospectral and Chebyshev Galerkin methods,
the following boundary value problems ([62]):⎧⎨⎩ u(iv) = −2ex + 3u, 0 < x < 1,

u (0) = 1, u (1) = e,
u0 (0) = 1, u0 (1) = e,

with the exact solution u (x) = ex, and the nonlinear problem⎧⎨⎩
u(iv) = 6e−4u − 12

(1+x)4
, 0 < x < 1,

u (0) = 0, u (1) = ln 2,
u0 (0) = 1, u0 (1) = 0.5,
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which has the exact solution given by u (x) = ln (1 + x) . Hint First,
rewrite the problems on the interval [−1 1] and then reformulate the prob-
lems into standard form, i.e., homogenize the boundary conditions. These
conversion techniques are quite elementary, and many of them are men-
tioned, for instance, in the paper of Ascher and Russell [7].N

11. Solve the following homogeneous Dirichlet problem (see [209]):½
εu00 − u = −1, 0 < x < 1, 0 < ε << 1,

u (0) = u (1) = 0,

whose solution has a boundary layer in the neighborhoods of the points
x = 0 and x = 1. Hint The exact solution is given by

u (x) =
2 sinh (x/2ε) sinh ((1− x) /2ε)

cosh (1/2ε)
.

N



Chapter 3

Spectral methods for p. d.
e.

3.1 Parabolic problems

Roughly speaking, any numerical method for the general linear parabolic prob-
lem

ut = Lu,

where u (x, ·) ∈ H, L : H → H, is a linear spatial operator, i.e.,

Lu := (p (x)ux)x − σ (x)u (x, t) + h (x) , p (x) > 0, σ (x) ≥ 0, −1 < x < 1,

and H is a Hilbert space, consists of three steps.
The first one is to choose a finite dimensional subspace of H, say XN , and

the second is to choose a projection operator QN : H → XN . Consequently, the
spatial discretization to our problem reads

∂uN/∂t = QNLu
N , uN ∈ XN . (3.1)

There are three ways which have been used previously in order to choose the
operator PN , namely Galerkin, tau and collocation.
The last step is to solve the finite dimensional (N dimensional) system of

differential equations (3.1).
To be more specific let us consider the 1D initial-boundary value problem (i.

b. v. p.)

(2P )

⎧⎨⎩ ut = S (x)uxx, x ∈ (−1, 1)
u (±1, t) = 0, t > 0,
u (x, 0) = u0 (x) ,

(3.2)

where S (x) > δ > 0.
In (CG) method we can choose

φn = Tn − T0, n even; (3.3)

φn = Tn − T1, n odd,

55
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and consequently the approximate solution uN (x, t) :=
NX
j=2

aj (t)φj (x) satisfies

the boundary conditions for any t > 0. The system (3.1) becomesµ
∂uN

∂t
− LuN , φn

¶
0,ω

= 0, n = 2, 3, . . . , N,

and has the explicit formZ 1

−1
[
∂uN

∂t
− S (x)

∂2uN

∂x2
]

φn√
1− x2

dx = 0, n = 2, 3, . . . , N.

It is readily seen that for non-constant S (x) it is difficult, or at least time
consuming, to solve this system for coefficients {aN} .
In (CT ) method, we set

uN (x, t) :=
N+2X
j=0

aj (t)Tj (x) ,

and require µ
∂uN

∂t
− LuN , Tn

¶
0,ω

= 0, n = 0, 1, 2, 3, . . . , N.

Explicitly, the system (3.1) means the system of differential equationsZ 1

−1
[
∂uN

∂t
− S (x)

∂2uN

∂x2
]

Tn√
1− x2

dx = 0, n = 2, 3, . . . , N,

together with the boundary conditions (restrictions)

N+2X
j=0

ajTj (1) =
N+2X
j=0

aj = 0,

N+2X
j=0

ajTj (−1) =
N+2X
j=0

(−1)j aj = 0.

Unfortunately, we face at least the same complications for getting the coefficients
as we had for the Galerkin method.
A word of caution: in both forms of uN above, the dependence on t (of aj

) is not explicit in each and every line!
In (CC) method, we set

uN (x, t) :=
NX
j=0

aj (t)φj (x) ,
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with φj defined in (3.3), and demand

∂uN

∂t
− S (x)

∂2uN

∂x2
= 0, at x = xj , j = 1, 2, . . . ,N − 1, (3.4)

for some nodes xj . If these nodes xj are chosen to be Chebyshev-Gauss-Lobatto
nodes, (1.34), i.e., cos (πj/N) , j = 0, 1, 2, . . . , N − 1,N, so that the boundary
values are included, there is an efficient way to solve (3.4), by taking into account
the orthogonality of trigonometric functions. Explicitly, if we set (we “hide”
again the dependence on t)

uN (x) :=
NX
n=0

anφn (x) ,

then

an =
2

Ncn

NX
k=0

1

ck
uN (xk) cos

πnk

N
, c0 = cN = 2, ck = 1, 1 ≤ k ≤ N − 1.

We know that
∂2uN (xj)

∂x2
=

NX
n=0

bnTn (xj) ,

where the coefficients bn may be found from

cnbn =
NX

p=n+2
p+n even

p
¡
p2 − n2

¢
ap.

We then go back to the physical space and solve the system of N − 1 ordinary
differential equations:

∂uN

∂t
(xj)− S (xj)

∂2uN

∂x2
(xj) = 0, j = 1, 2, . . . , N − 1, (3.5)

uN (x0) = uN (xN ) = 0.

This procedure is very efficient and may be generalized without any difficulty
to nonlinear problems. We will make use exclusively of this procedure.
However, in practice we would use the Chebyshev polynomials to interpolate

u spatially and then to evaluate the spatial derivatives at the desired points xj .
Finally, the solution of the system of ordinary differential equations (3.5) would
be advanced in time, starting with initial data u (x, 0) = u0 (x) , u0 (±1) = 0.
We use some finite difference scheme for the original differential equation to
find the time derivatives at points xj in physical space.

Remark 47 J. Butcher in his monograph [24], and more recently in the survey
paper [25], provides a detailed perspective of Runge-Kutta methods as well as
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multistep methods used to solve different types of systems of differential equa-
tions including the stiff case. L. Shampine in [173] and [174] discusses the
design of software for such systems that is easy to use for simple problems but
still capable of solving complicated problems.

Remark 48 For a more general problem, i.e., the nonlinear i. b. v. p.⎧⎪⎪⎨⎪⎪⎩
ut = (a (x)ux)x + f (x, u) , 0 < x < L, 0 < t < s,

u (x, 0) = u0 (x) , 0 ≤ x ≤ L,
α0u (0, t)− (1− α0)ux (0, t) = β0, 0 < t < s,
α1u (L, t)− (1− α1)ux (L, t) = β1, 0 < t < s,

where a (x) > 0 is sufficiently smooth on [0, L] and also f : [0, L] × R → R is
a smooth function with 0 ≤ αi ≤ 1, i = 1, 2 H. Matano shows in [137] that
any solution that neither blows up in a finite time nor grows up as t → ∞
should converge to some equilibrium solution as t→∞. We try to approximate
numerically exclusively this type of solutions.

Example 49 Let us consider the i. b. v. p. for heat equation⎧⎨⎩ ut = 3uxx, 0 < x < L, t > 0,
u(0, t) = u (L, t) = 0, t > 0,

u (x, 0) = L
¡
1− cos 2πxL

¢
, 0 ≤ x ≤ L,

(3.6)

with the close solution

u (x, t) =
∞X
n=1

−16L
(2n− 1)π

h
(2n− 1)2 − 4

i sin (2n− 1)πx
L

exp
−3 (2n− 1)2 π2t

L2
.

First, we use the linear map y = L
2 (x+ 1) to re-write the problem in the range

[−1, 1] and then the MATLAB code Heat2 in order to solve the attached (3.5)
using Runge-Kutta scheme (ode45 MATLAB code).

The output of this code is presented in Fig. 3.1.

Remark 50 We observe in the second sub-picture some wiggles (oscillations
of order O

¡
10−7

¢
) of the solution at final moment of time, near the endpoints.

They illustrate the aliasing or Gibbs-phenomenon. If we had used a genuine
spectral method (tau or Galerkin) and the boundary conditions had been periodic,
the error would have decayed at an exponential rate.

Example 51 Let us consider a nonlinear i. b. v. p. which contains Burgers’
equation with artificial viscosity ε 6= 0. It reads⎧⎨⎩

∂u
∂t + u∂u∂x = ε∂

2u
∂x2 , |x| < 1, t > 0,

u (±1, t) = 0,
u(x, 0) = − sinπx,

(3.7)
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Figure 3.1: The solution to heat initial boundary value problem

and is also carefully analyzed in the paper of [12]. Its stationary counterpart is
considered in [132]. The form of boundary conditions, i.e., Dirichlet homoge-
nous, suggest to solve the problem by Chebyshev collocation method. In order
to advance in time we used Runge-Kutta method (ode45 MATLAB code). The
output of this MATLAB code is depicted in Fig. 3.2. The solution curves be-
come steeper and steeper as the time proceeds. They confirm the results from
the paper [12].

Remark 52 If we consider the Burgers equation on the entire real line and
require that the solution goes to zero as x → ±∞, the Hermite collocation
method becomes suitable. The solution which starts with the initial data u0 (x) :=
0.5 sech (x) is available in Fig. 3.3. In spite of the large N used it is affected
by the numerical noise of the method.

The last example in this section refers to a reaction-convection-diffusion
equation.

Example 53 (Fischer’s problem [113], [168]) Consider the reaction-convection-
diffusion problem⎧⎨⎩ ut + aux = buxx + u (1− u) , 0 < x < 1, 0 < t <∞,

u (0, t) = u (1, t) = 1, 0 < t <∞,
u (x, 0) = φ (x) , 0 < x < 1.

(3.8)

Higham and Owren show in [113] that if the initial data φ (x) belongs to C1 and
satisfies either 0 ≤ φ (x) ≤ 1 for 0 ≤ x ≤ 1, or φ (x) ≥ 1 for all 0 ≤ x ≤ 1,
then the solution u (x, t) is bounded for all t > 0 and converges pointwise to the
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3.2. CONSERVATIVE P. D. E. 61

-1 0 1
0

0.5

1

x

u(
x,

0)

-1 0 1
0.5

1

1.5

x

u(
x,

0.
15

)
-1 0 1

0.5

1

1.5

x

u(
x,

0.
3)

-1 0 1
0.5

1

1.5

x

u(
x,

0.
45

)

Solution to Fischer equation

Figure 3.4: The solution to Fischer’s equation on a bounded interval

steady state u (x, t) = 1 as t→∞. Using a Chebyshev pseudospectral method in
order to discretize the spatial operator and the Runge-Kutta method (MATLAB
ode45) in order to advance in time, we verify extremely easy this theoretical
result. The Fig. 3.4 contains the proof and shows the rapidity of convergence.

3.2 Conservative p. d. e.

In this section we shall consider three very important types of parabolic nonlin-
ear equations, namely the Schrödinger equation, the Ginzburg-Landau equation
and the Körteveg- de Vries equations. They all can be seen as Hamiltonian sys-
tems. The numerical techniques for Hamiltonian ordinary differential equations
can be found in a large number of articles as well as in some monographs, but
the partial differential equations case has not been completely developed.
The nonlinear Schrödinger equation (NLS for short) has important appli-

cations in nonlinear optics, deep water waves and also plasma physics (see for
instance [56] p. 285). It reads

i · ut + uxx + |u|2 u = 0, (3.9)

and is supplemented with various boundary conditions. When the boundary
conditions mean a bounded solution for large x, i.e., |u (x, t)|→∞ as |x|→∞
and the initial data decay with respect to x (see [202])

u (x, 0) = sech (x/2) exp(ix),

the solution we obtain is shown in the Fig. 3.5. The above boundary conditions
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imposed the use of Hermite differentiation matrices in the collocation method.
The equation (3.9) along with periodic boundary conditions

u (x+D) = u (x) , D > 0,

is an infinite dimensional integrable Hamiltonian system with the Hamiltonian

H (u, u∗) =

DZ
0

µ
|ux|2 −

1

2
|u|4

¶
dx.

The equation bears its name because it corresponds to the quantum Schrödinger
equation with |u|2 as the potential.
The complex Ginzburg-Landau equation (GL for short) reads

ut = u− (1 + iR) |u|2 u+ (1 + ib)uxx, 0 < x < l, (3.10)

where the parameters R, b and l are real and the field u (x, t) has complex values.
Several types of boundary conditions are attached to this equation. There is a
huge literature gathered around this equation. We refer only to the papers [23],
[123], [200] and the monograph of Drazin [56], P. 286.
This is an amplitude equation governing the time evolution of the most un-

stable mode of perturbation around an equilibrium state. We also find the 3.10
equation as a model of superconductivity. In both cases the unknown variable
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Figure 3.6: The solution to Ginzburg-Landau equation

of the equation denotes a complex-valued order parameter and it characterizes a
macroscopic physical state. In this work we consider the following GL equation
with periodic boundary conditions ([123]):(

ψt = ψxx + λ
³
1− |ψ|2

´
ψ, λ > 0,

ψ(x, t) = ψ (x+ 2π, t) , x ∈ R.
(3.11)

It is easily seen that this equation gives a gradient flow of the energy func-
tional

E (ψ) :=

2πZ
0

½
1

2
|ψx|

2 +
λ

4

³
1− |ψ|2

´2¾
dx. (3.12)

Thus any solution to 3.11 converges to a set of equilibrium solutions, which are
given by solving the problem(

ψxx + λ
³
1− |ψ|2

´
ψ = 0, λ > 0,

ψ(x, t) = ψ (x+ 2π, t) , x ∈ R.
(3.13)

The periodicity of boundary conditions lets us solve the problem 3.11 by
a Fourier pseudospectral method. The solution corresponding to initial data
ψ(x, 0) := sin (x) and N = 64 is depicted in Fig. 3.6, a), b). The variation of
the functional (3.12) can be observed in the same figure at the point c). It is
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important to notice that at t = 4 the solution oscillates around the null solution
with a precision of order O

¡
10−3

¢
.

The third important example is the so called Korteweg-de Vries equation,
(KdV for short) which reads

ut + u · ux + uxxx = 0. (3.14)

It is a nonlinear partial differential equation arising in the study of a number
of different physical systems, e.g., water waves, plasma physics, anharmonic
lattices, and elastic rods. MathSciNet already lists more than 1000 articles
on this subject. R. Miura in his paper [144] gives very interesting historical
remarks on this equation. Thus, Korteweg and de Vries in 1857 obtained the
model equation

∂η

∂t
=
3

2

r
g

l

∂

∂x

µ
1

2
η2 +

2

3
αη +

1

3
σ
∂2η

∂x2

¶
, (3.15)

in one space dimension and time, where η is the surface elevation above the
equilibrium level l, α is a small arbitrary constant related to the uniform mo-
tion of liquid, g is the gravitational constant, and σ = l3/3−T l/ρg with surface
capillary tension T and density ρ. From the original equation (3.15), the trans-
formations

t0 :=
1

2

r
g

lσ
t, x0 := −x

σ
, u := −1

2
η − 1

3
α,

give us
ut − 6u · ux + uxxx = 0,

where we have dropped the primes. Moreover, this equation is Galilean invari-
ant, i.e., is unchanged by the transformation

t0 := t, x0 := x− ct,

where c is some constant. This corresponds to going to a steady moving reference
frame with a velocity c. We solve numerically this equation in the form

ut = V 0 (u)x + νuxxx, V (u) :=
α

3
u3 +

ρ

2
u2, (3.16)

on the spatial domain [−1, 1], with periodic boundary conditions and initial
condition u (x, 0) = cos (πx) . We used

α = −3
8
, ρ = − 1

10
and ν = −2

3
× 10−3.

These values were used in [119], Ch. 14 and [9]. Their important feature is
that |ν| << 1. We solved the equation (3.16) using the Fourier pseudospectral
method in order to discretize the spatial operators and the Runge-Kutta method
of order 4 to progress in time. Our results are depicted in Fig. 3.7. The initial
data breaks up into a train of solitons which repeatedly interact.
For the same values of α and ρ but ν = −10−6 a shock develops well before

t reaches the value 0.5. This behavior is shown in Fig. 3.8. This behavior is
analogue with that of Burgers’ equation (see Fig. 3.2).
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Figure 3.7: Numerical solution for KdV equation by Fourier pseudospectral
method, N=160
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Remark 54 The KdV equation in its Hamiltonian form reads

ut =
∂

∂x

δH

δu
, with H :=

Z ³
V (u)− ν

2
(ux)

2
´
dx,

where δ () /δu represents the Frechet derivative. It is also fairly important to
know to what extent a numerical scheme, in this case RK for time evolution and
Fourier pseudospectral, conserve the Hamiltonian. In Fig. 3.9 the evolution of
numerical Hamiltonian corresponding to (3.16) is shown (log10(relative error
in H) vs. time). It is not surprising that the Hamiltonian is not constant but
this means that the dynamics of the differential system and that of the attached
discrete system are no longer equivalent as time proceeds.

Remark 55 It was shown (see for instance P D Lax [129] and [128]) that the
KdV equation (3.14) possesses an infinite sequence of conservation laws of the
form

Fn =

Z
Pndx,

where Pn is a polynomial in u and its derivatives up to order n − 1. Three of
them are classical:

F0 (u) =

Z
3udx,

F1 (u) =

Z
1

2
u2dx,

F2 (u) =

Z µ
1

6
u3 − 1

2
u2x

¶
dx.
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Figure 3.10: The solution to a first order hyperbolic problem, o (CS) solution
and - exact solution

3.3 Hyperbolic problems

First, we shall consider the first order scalar equation

ut + a (x)ux = 0, t > 0, 0 ≤ x ≤ 2π, (3.17)

where a (x) > 0 is assumed periodic on (0, 2π) and u (x, t) satisfies periodic
boundary conditions. Gottlieb and Turkel in [91] solve this problem by a Fourier
collocation (pseudospectral) method coupled with leap-frog or second order RK
method and show the stability of this algorithm.
We solved this problem for a (x) := 1/ (2 + cos(x)) when the exact solution

is u (x, t) = sin (2x+ sin (x)− t) . For the time interval [0, 2.5] the absolute
value of the error at the half time is 1.3565e− 006 and it increases at the value
7.7932e − 004 at the final moment. The solution carried out is shown in Fig.
3.10
Second, D. Gottlieb solves in [92] a quite similar problem, namely⎧⎨⎩ ut + x · ux = 0, t > 0, |x| ≤ 1,

u (x, 0) = f (x) , |x| ≤ 1,
u (±1, t) = 0, t > 0,

(3.18)

and shows that the Chebyshev collocation (pseudospectral) method is stable. We

solved this problem with initial data f (x) :=
¡
x2 − 1

¢3
, as did Tal-Ezer in [191]

and the numeric result are reported in Fig. 3.11.
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Figure 3.11: The solution to a particular hyperbolic problem

Our numerical results seem to be superior to those reported in [191].

Let us consider the second order wave equation together with Dirichlet
boundary conditions, i.e.,⎧⎪⎪⎨⎪⎪⎩

utt = uxx, (x, t) ∈ (−1, 1)× (0, .T ]
u (±1, t) = 0, t ∈ (0, .T ]

u (x, 0) = u0 (x) , −1 ≤ x ≤ 1,
ut (x, 0) = v0 (x) , −1 ≤ x ≤ 1.

(3.19)

Introducing a new variable v := ut the problem reduces to a system of differen-
tial equations in the variable t for the unknown vector w := [u; v]. The spatial
derivative is discretized by Chebyshev pseudospectral derivative and the homo-
geneous Dirichlet boundary conditions are introduced, as usual, deleting the
first and the last rows and columns. The solution corresponding to the initial
data u (x, 0) = sin (πx) and ut (x, 0) = cos (πx) is drawn in Fig. 3.12.

Remark 56 The examples above illustrate the fact that the type of boundary
conditions implies the choice of interpolation polynomials in spectral collocation
method.

Let us consider, at the end of this section, a nonlinear hyperbolic equation
defined on the entire real axis, i.e., the so called sine-Gordon equation. It reads
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Figure 3.12: The solution to the wave equation

(see for nonlinear Klein-Gordon equations [44])

⎧⎨⎩ utt = uxx − sin(u), (x, t) ∈ R× (0, .T ]
|u (x, t)|→ 0, |x|→∞,

u (x, 0) = u0 (x) , ut (x, 0) = v0 (x) , x ∈ R,
(3.20)

and is related to the KdV and cubic NLS equations in the sense that all these
equations admit soliton solutions. The equation describes nonlinear waves in
elastic media, and it also has applications in relativistic field theory. Being
completely integrable, this equation is solvable, at least in principle by the
method of inverse scattering. In practice, however, this method of solution
is curbersome to execute when arbitrary initial data u (x, 0) and ut (x, 0) are
prescribed.

However, the solitons were discovered by Zabuski and Kruskal in 1965. They
found that solitary wave solutions had behavior similar to the superposition
principle, despite the fact that waves themselves were highly nonlinear! They
dubbed such waves solitons.

As the differential equation is defined on the entire real axis, we discretized
the term uxx by second order Hermite pseudo differential operator (matrix) of

dimension N , i.e., D
(2),H
N . This way, the initial value problem for a partial

differential equation (3.20) becomes an initial value problem for a system of
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ordinary differential equations, namely½
UN
tt (t) = D

(2),H
N · UN (t) , t ∈ (0, T ],

UN (0) = u0, UN
t (0) = v0,

(3.21)

where UN (t) is a vector valued map defined as

UN (t) := (u (x1, t) u (x2, t) ...u (xN , t))
T
,

corresponding to a prescribed mesh {xi}i=1,...,N applied to the spatial interval
of integration.
In fact, the equation in (3.20) is a nonlinear wave equation (NLW for short)

which has also a Hamiltonian structure, in the sense that we can rewrite it as
(see for instance [79])½

ut = v,
vt = uxx − V 0 (u) , V (u) = − cos(u).

The Hamiltonian has the expression

H =

Z µ
1

2
(ut)

2
+
1

2
(ux)

2
+ V (u)

¶
dx. (3.22)

The numerical integration of a large class of Hamiltonian partial differential
equations by standard symplectic integrators is discussed in the paper of McLach-
lan [139] as well as in a series of papers of Omelyan, Mryglod and Folk [151],
[152] and [153]. A brief survey of the theory and performance of symplectic
integrators is also available in the paper of D. Markiewicz, [136].
Symplectic integrators, or geometric numerical integrators, have a remark-

able capacity for capturing the long-time dynamics of Hamiltonian systems cor-
rectly and easily. Consequently, we used the following symplectic and symmetric
integrators to advance in time in (3.20), or in other words, to solve the system
(3.21):

1. implicit Runge-Kutta methods; the so called Gauss methods (Hairer &
Hairer, [101], p.15);

2. partitioned multistep methods ([101], p.16);

3. composed Störmer/Verlet method (leap-frog method, [101], p.35);

In order to check the accuracy of the numerical integrator, we consider the
problem (3.20) with the known solution (the so-called “breather” solution)

u (x, t) = 4 tan−1

Ã
sin
¡
t/
√
2
¢

cosh
¡
x/
√
2
¢! ,

and extract the corresponding initial conditions

u (x, 0) = 0, ut (x, 0) = 2
√
2 sech

³
x/
√
2
´
.
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Figure 3.13: The “breather” solution to sine-Gordon equation

The Hermite pseudospectral-Störmer/Verlet solution of the problem is shown in
Fig. 3.13. The error with respect to the above exact solution was 3.4265e−09 for
N = 128 irrespective of the used symplectic method. When the classical Runge-
Kutta method of order 4 (ode45 code in MATLAB) was used the situation was
worse, i.e., the error attained only 1.7178e − 05! For larger N in the spectral
approximation, i.e., N = 200 and using a fourth order compose Störmer/Verlet
the error was much better, i.e., it attained the value 2.0305e− 011. We have to
mention that in all the above computations the scaling factor was b = 0.545.

Remark 57 In order to discretize the spatial operator uxx in (3.20) as well as
in wave equation we used alternatively the the Fourier pseudodifferential operator

D
(2),F
N and the sinc pseudodifferential operator D

(2),s
N but the numerical results

were inferior. For instance, in case of Fourier method the error increased to the
value 0.0084 irrespective of time integration scheme.

Remark 58 The conservation of the Hamiltonian (3.22), when a fourth order
Störmer/Verlet method was used to advance in time, is depicted in Fig. 3.14.
This behavior is specific to symplectic methods and is better when compared with
the non symplectic methods (see comparatively Fig. 3.9).

Remark 59 Gottlieb and Hesthaven, in a recent paper [95], review the current
state of Fourier and Chebyshev collocation methods for the solution of hyper-
bolic problems with the emphasis on basic questions of accuracy and stability of
numerical approximations.
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Figure 3.14: The variation of numerical sine-Gordon Hamiltonian

3.4 Problems

1. Solve the nonlinear parabolic problem [46]

ut −
¡
u2x
¢
x
= f (x, t) , (x, t) ∈ (0, 1)× (0, .24]

u (x, 0) = sin (x) , x ∈ (0, 1) ,

with f (x, t) and natural Neumann boundary conditions chosen so that
the solution is u (x, t) = et sin (x) . N

2. Solve the initial-boundary value problem for heat equation of order four
(clamped boundary conditions)⎧⎪⎪⎨⎪⎪⎩

ut = uxxxx, −1 < x < 1, t > 0,
u(−1, t) = u (1, t) = 0, t > 0,
u0(−1, t) = u0 (1, t) = 0, t > 0,

u (x, 0) = 1− cosπ (x+ 1) , −1 ≤ x ≤ 1,

using a pseudospectral method in order to discretize the spatial differential
operator and Runge-Kutta of order 4 (ode45, MATLAB code) in order to
progress in time. Answer The solution is depicted in Fig. 3.15.N

3. Solve numerically by Fourier pseudospectral method the (3.17) problem
with a (x) := 1. Hint The analytic solution is u (x, t) = sin (x− t) .N

4. Solve numerically by Chebyshev pseudospectral method the (3.18) prob-
lem with f (x) := exp(1/(x2 − 1)). N

5. Solve numerically by Chebyshev pseudospectral method the (3.19) prob-
lem with Neumann boundary conditions instead of Dirichlet boundary
conditions, i.e.,

ux (±1, t) = 0, t ∈ (0, .T ],
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Figure 3.15: The solution to the fourth order heat equation

and the initial data u (x, 0) = cos (πx) and ut (x, 0) = sin (πx) . Answer
The solution is drawn in Fig. 3.16. N

6. Solve the Schrödinger equation (3.9) with the |u (x, t)| → ∞ as |x| → ∞
boundary conditions and “shock” data initial conditions, i.e.,

u(x, 0) := A · exp (−iµ |x|) , A ∈ R, µ > 0.

Hint For A = µ = 1, the solution is represented in Fig. 3.17.N

7. Solve the Schrödinger equation (3.9) with the initial data

u (x, 0) :=
1

2

Ã
1 + ε cos

Ã√
2

4
x

!!
, ε = 0.1,

which means a perturbation of plane wave solution (see [13], P. 3). The
solution is depicted in Fig 3.18. N

8. Solve the wave equation, i.e., utt = uxx, (x, t) ∈ R× (0, .T ] by a Hermite
pseudospectral-Störmer/Verlet method starting with the initial data

u (x, 0) = 0, ut (x, 0) = 2
√
2 sech(x/

√
2).

Hint The solution is depicted in Fig. 3.19.N

9. Solve by Fourier pseudospectral method the KdV equation (3.16) with
periodic boundary conditions u (−L) = u (L), L > 0. Use the following
values of the parameters: α = −6, ρ = 0, and ν = −1. For the initial data
take u0 (x) := 6 sech

2x. Hint The soliton solution is shown in Fig. 3.20.N
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Figure 3.16: The solution to wave equation with Neumann boundary conditions

-40
-20

0
20

40

0

10

20
0

5

10

15

20

x

Solution to shock data Schroedinger equation N=200

t

|u
(x

,t)
|2

Figure 3.17: The solution to “shock” data Schrödinger equation
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Figure 3.18: Perturbation of plane wave solution to Schrödinger equation

Figure 3.19: The solution to wave equation on the real line
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Figure 3.20: The soliton solution for KdV equation

10. Solve the Fischer’s initial-boundary value problem on the real line(see for
instance [143]) ⎧⎨⎩ ut = uxx + u (1− u) , t > 0

u(x, 0) = sinx,
u (x, t)→ 0, x→ ±∞, t > 0.

Hint For a large positive L transform the interval [−L L] into [0 2π] and
apply the Fourier pseudospectral method in order to discretize the spatial
operator and Runge Kutta method to advance in time. The corresponding
solution is displayed in Fig. 3.21. This solution blows up for t > 1, i.e.,
becomes unbounded. Compare this result with the numerical solution to
Fischer’s problem on a bounded interval, i.e., problem (3.8).N
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Chapter 4

Efficient implementation

The aim of this part is to consider some results concerning the efficient imple-
mentation of some spectral methods. The chapter refers mainly to Chebyshev-
tau and Chebyshev-Galerkin methods, i.e., to those methods which search the
solutions in the transformed space or spectral space. In other words, we obtain
the coefficients of the truncated series which represents the numerical solution,
instead of the values of that in some points, as it is the case for collocation
methods.

4.1 Second order Dirichlet problems for o. d. e.

Let us consider the second order linear and homogeneous Dirichlet problem½
Lu (x) = f (x) , x ∈ (−1, 1) ,

u (±1) = 0, (4.1)

where the differential operator L is defined as

L () :=
d2 ()

dx2
+ eL () ,

and eL () is a first order linear differential operator.
First of all, we have to remark that a second order non-homogeneous Dirichlet

problem ½
Lu (x) = f (x) , x ∈ (−1, 1) ,

u (−1) = a, u (1) = b,

can be transformed in a homogenous one with the substitution

v (x) := u (x)− p (x) ,

where

p (x) :=
b− a

2
x+

b+ a

2
.
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Consequently, we take into account exclusively the problem (4.1) and we focus
our attention on the choice of the bases of our finite dimensional spaces such
that the linear algebraic system obtained through discretization exhibit “good”
properties such as well conditioning, spartness, low non-normality, etc.
Spectral methods involve representing the solution to a problem in terms of

a truncated series of smooth global functions. In other methods such as finite
elements and finite differences, the underlying expansion involves local repre-
sentations (interpolator) such as piecewise polynomials. In practice, this means
that the accuracy of spectral methods is superior. For instance, the rates of con-
vergence associated with problems with smooth solutions are O (exp (−cN)) or
O
³
exp

³
−c
√
N
´´

, where N is the number of degrees of freedom in the expan-

sion. In contrast, finite differences and finite elements yield rates of convergence
that are only algebraic in N, typically O

¡
N−2

¢
or at most O

¡
N−4

¢
. However,

there is a price to be paid for using spectral methods instead of finite differences
or finite elements, because:

• sparse matrices are replaced by full matrices;

• symmetric (normal) matrices are replaced by non-symmetric (non-normal)
matrices;

• matrices with condition number O(N2) are replaced by worse conditioned
matrices with condition number O

¡
N4
¢
.

More than that, stability restrictions may become more severe and computer
implementation, particularly for problems formulated on irregular domains, may
not be fairly straightforward. Nevertheless, provided the solution is smooth
enough, the rapid convergence of the spectral methods often compensates these
shortcomings.
The issue of non-normality of matrices associated with the spectral approx-

imations will be addressed in the second part of the work. Now we consider the
conditioning of these matrices.
In his paper [103] Heinrichs derived an improved type of spectral methods

with an O
¡
N2
¢
condition number. The main idea was to employ as trial func-

tions polynomials fulfilling the homogeneous boundary conditions. Thus, he
introduced the basis

XN :=
©¡
1− x2

¢
Tk (x) , k = 0, 1, 2, ..., N

ª
, (4.2)

and searched a solution of the form

uN (x) =
NX
k=0

ak
¡
1− x2

¢
Tk (x) .

From the formulas (2.38) and (2.39) it becomes obvious that the matrices B ∈
R(N+1)×(N+1) and D ∈ R(N+1)×(N+1) with

b = B · a, (4.3)
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and
d = D · a, (4.4)

where a = (a0 a1...aN )
T , b = (b0 b1...bN )

T , d = (d0 d1...dN )
T have spe-

cial structures (remember that bk.and dk are respectively the coefficients of¡
uN (x)

¢00
and uN (x) with respect to system TK). Thus, B is a positive upper

triangular matrix with eigenvalues (p+ 1) (p+ 2) , p = 0, 1, ..., N and hence an
O
¡
N2
¢
condition number is expected. The system (4.3) can be solved in about

O (N) arithmetic operations. The matrix D is a band one with semibandwidth
equals 3. Unfortunately, it is not symmetric but very close to, the first three
rows being responsible for this inconvenient.
The (CT ) method for 1D Helmholtz equation (2.19) with XN using Hein-

richs’ basis (4.2) and Chebyshev polynomials as test functions reads¡
B + λ2D

¢
· a = f, (4.5)

where as usual f contains Chebyshev coefficients of function f (x) .
The strong form of (CC) method for the same problem readsÃ

NX
k=0

bkTk

!
(xj) = f (xj) , j = 0, 1, 2, ...,N, (4.6)

where the xj are (CGaussL) nodes xj = cos (jπ/N) .
Another attempt was made to improve the properties of the matrix of the

system (2.20) in the classical (unmodified) (CT ) method. Thus, if the solution
has the form

uN =
NX
k=0

bukTk,
and its derivatives are denoted

¡
uN
¢(ν)

=
NX
k=0

bu(ν)k Tk,

the next general result can be proved by simple algebraic manipulations.

Lemma 60 For the coefficients buk, bu(1)k , bu(2)k hold

(i) ckbu(1)k − bu(2)k+2 = 2 (k + 1) buk+1, k = 0, 1, . . . , N − 1,
(ii)

ck−2bu(1)k−2
4k (k − 1) −

bu(1)k

2 (k2 − 1) +
bu(1)k+2

4k (k + 1)
=

buk−1 − buk+1
4k

, k = 0, 1, . . . , N − 2,

(iii) ckbu(2)k − bu(2)k+2 = 2 (k + 1) bu(1)k+1, k = 0, 1, . . . , N − 2,

(iv)
ck−2bu(2)k−2
4k (k − 1) −

bu(2)k

2 (k2 − 1) +
bu(2)k+2

4k (k + 1)
= buk, k = 0, 1, . . . ,N − 2.
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To obtain a quasi-triangular form for the matrix of the (2.20) system, Dennis
and Quartapelle [47] suggest to successively substrate the fourth row from the
second, the fifth from the third and so on, and then each and every equation
to be respectively divided by 2(k + 1) k = 0, 1, 2, ..., N − 2. Only the first two
rows, corresponding to the boundary conditions, remain fully populated and
consequently the matrix is improved. For the problem (2.19) the system can
be solved directly. However, the condition number of the matrices generated by
this procedure remains O(N4).
A variant of (CG) method, the so-called Petrov-Galerkin method, leads to

banded matrices with condition number of order O(N2). The trial and test
spaces are respectively

XN := span
©
Ψk| Ψk (x) =

¡
1− x2

¢
Tk (x) , k = 0, 1, 2, ..., N

ª
YN := span {Φk| Φk(x) = Tk (x)− Tk+2 (x) , k = 0, 1, 2, ..., N} .

(4.7)

They both satisfy Dirichlet boundary conditions. To apply this method to
problem (4.1) the following lemma is very handy.

Lemma 61

a)
¡
Φk,Ψ

00
j

¢
ω
=

π

2
akj , akj =

⎧⎨⎩ ck (k + 1) (k + 2) , j = k,
k (k + 1) , j = k + 2,

0, otherwise
(4.8)

b)
¡
Φk,Ψ

0
j

¢
ω
=

π

2
bkj , bkj =

⎧⎪⎪⎨⎪⎪⎩
−ck−1 k+12 , j = k − 1,
− ck+3

2 , j = k + 1,
k+1
2 , j = k + 3,
0, otherwise

(4.9)

b) (Φk,Ψj)ω =
π

2
ckj , ckj =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− ck−2

4 , j = k − 2,
−ck−1+2ck+2

4 , j = k,
−34 , j = k + 2,
1
4 , j = k + 4,
0, otherwise.

(4.10)

4.2 Third and fourth order Dirichlet problems
for o. d. e.

Let us consider first the third order boundary value problem, namely½
u000 = f (x) , −1 < x < 1,
u (±1) = u0 (−1) = 0. (4.11)

For the spectral approximation we modified the strong Chebyshev collocation
scheme following an idea of W. Heinrichs from [107]. More exactly, we solved
the discrete problem⎧⎨⎩

find uN ∈ PN such that¡
uN (xi)

¢000
= f (xi) , xi ∈ (−1, 1) , i = 1, 2, . . . , N − 2,

uN (±1) = uN (−1) = 0,
(4.12)
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where the abscissas xi are the Chebyshev Gauss-Lobatto nodes defined by (1.34),
i.e.,

xi := cos
iπ

N − 1 , i = 0, 1, 2, ...,N − 1.

The interpolator uN (x) is defined by

uN (x) :=
N−2X
j=1

u (xj)
1 + x

1 + xj
lj (x) , (4.13)

where lj (x) ∈ PN−1, j = 0, 1, 2, ..., N − 1 is the Lagrangian basis relative to the
above nodes xj , j = 0, 1, 2, ..., N − 1. Since lj (±1) = 0, j = 1, 2, ..., N − 2 the
Dirichlet boundary conditions u (±1) = 0, are automatically satisfied. The fac-
tor (1 + x) in front of lj (x) yields the Neumann boundary condition in x = −1.
Hence uN (x) implicitly contains the boundary conditions. This is the major
difference between the approximation (4.13) and the classical Chebyshev collo-
cation representation (2.22) which does not contain the boundary conditions.
Now, the third derivative is given by

¡
uN (x)

¢000
:=

N−2X
j=1

u (xj)

1 + xj

£
3l00j (x) + (1 + xj) l

000
j (x)

¤
, i = 1, 2, ...,N − 2.

The implementation of this derivative was carried out using the MATLAB code
poldif.m from [204]. Eventually, we solved the linear algebraic system ofN−2
equations ¡

uN (xi)
¢000
= f (xi) , xi ∈ (−1, 1) , i = 1, 2, . . . , N − 2,

for the N − 2 unknowns u (xj), j = 1, 2, ..., N − 2. When the right hand side
term was such that the exact solution is u (x) :=

¡
1− x2

¢
(1− x) exp (−10x),

the solution was found within an error of order O
¡
10−10

¢
. Corresponding to

N = 64 it is depicted in Fig. 4.1 along with the exact solution.

Remark 62 As the solution u (x) of the above problem is an analytic function
and the error committed by the spectral method decays to zero at an exponential
rate, we state that the method works with an exponential accuracy (see the paper
of E. Tadmor [189] about the exponential accuracy of Fourier and Chebyshev
differencing methods). This should be compared with the polynomial decay
rate obtained by finite difference or finite elements methods.

Let us consider the fourth order boundary value problem, namely½
u(iv) + u = f (x) , −1 < x < 1,

u (±1) = u0 (±1) = 0, (4.14)

with f (x) such that the solution is u (x) =
¡
1− x2

¢2
exp (x) . In the (CG)

method we have considered the solution was approximated by

uN :=
NX
k=0

ak
¡
1− x2

¢2
Tk (x) ,
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Solution u(x)=exp(-10*x)(1-x 2)(1+x) to a third order b v p

CCsol
Exsol

Figure 4.1: A Chebyshev collocation solution for a third order b. v. p.

and the trial functions have been
¡
1− x2

¢2
Tk (x) . All these functions satisfy

the boundary conditions. The algebra of this method is much more tedious
than the algebra of the (CS) method. The only positive computational aspect
is the fact that the matrix of the left hand side of the algebraic system for
unknown coefficients ak, is quasi symmetric, i.e., the Henrici number equals
5.159131440655628e−001 (see for the definition of this measure of non-normality
6.3).

Remark 63 It is worth noting at the end of this chapter that Legendre-Galerkin
method for linear elliptic problems leads to symmetric and simpler linear systems
than Chebyshev counterpart. Unfortunately, its efficiency is limited by the lack
of fast transformation between physical space and transformed space. Further-
more the Legendre-Gauss-Lobatto nodes (LGL) are not available in an explicit
form and their evaluation for large N may introduce significant rounding errors.
(cf. J Shen, [177]).

4.3 Problems

1. Solve the second order differential linear eigenvalue problem which is a
regular one that looks singular(

− (w (x)u0)0 = λw (x)u, (−1, 1) , w (x) :=
¡
1− x2

¢−1/2
,

u (±1) = 0,
(4.15)

by (CT ) , (CC) and (CG) methods. Estimate in each and every case the
condition number of “stiffness” matrix A associated with the numerical
scheme. Hint A weak formulation reads as follows:½

find u ∈ H1
ω,0(−1, 1) such that

(u0, v0)ω = λ (u, v)ω , ∀v ∈ H1
ω,0(−1, 1).
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Solution u(x)=((1-x 2)2)*exp(x) of a fourth order b v p

CCsol
Exsol

Figure 4.2: The (CG) solution to a fourth order problem, N = 32

Eventually, we get λ0 = 3.559279966, λ9 = 258, 8005854 , λ24 = 1572.635284
results confirmed by J. D. Pryce in [167].

2. Solve by the same numerical methods the second order differential linear
eigenvalue problem which is a regular one with oscillatory coefficients (see
[167] and also [166])½

−u00 + q (x)u = λu, x ∈ (−1, 1) ,
u
¡
±π
2

¢
= 0,

(4.16)

where the potential q (x) is the so -called Coffey-Evans potential defined by
q (x) = −2β cos 2x+β2 sin2 2x, β = 20.; 30.; 50. Observe the dependence
of eigenvalues on the parameter β.

3. Solve the singular eigenvalue problem½
−u00 + q (x)u = λu, x ∈ (−1, 1) ,

u (±L) = 0, (4.17)

where the potential q (x) is the so-calledMorse potential defined by q (x) =
β exp(−2x) − 2β exp(−x), β = 9, and observe the dependence of the
spectrum on L when L→∞.

4. Use a Chebyshev type method in combination with the change of variables

t :=
x− 2
x

,
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Solution u(x)=1+cos( πx) of a third order b v p; N=32

CCsol
Exsol

Figure 4.3: Another solution for the third order problem

in order to solve the non-standard eigenvalue problem½
−u00 + q (x)u = λu, x ∈ [1,∞),

λu (1) + u0(1) = 0, u (x)→ 0, as x→∞,

where q (x) = − 1
4x2 . Hint This problem has a continuous spectrum (0,∞)

with a single eigenvalue λ0 = 0.0222989949.

5. Solve the problem (4.11) when the exact solution is given by u (x) := 1 +
cos (πx) . In order to observe the spectral accuracy use the above modified
(CC) method. Hint The rounding error accuracy is already reached for
N = 32, i.e., norm((CCsol − Exsol), inf) = 3.743672039036028e − 013.
The solution is represented in Fig. 4.3.N



Chapter 5

Eigenvalue problems

In solving linear eigenvalue problems by a spectral method using
(N+1) terms in the truncated spectral series, the lowest N/2 eigen-
values are usually accurate to within a few percent while the larger
N/2 numerical eigenvalues differ from those of differential equation
by such large amounts as to be useless.

J P Boyd’s eigenvalue rule-of-thumb, [19], P. 132

As it is well known, the main trouble with numerical methods for differential
eigenvalue problems consists in the appearance of spurious eigenvalues. This
chapter is devoted to such problems. Standard as well as non-standard prob-
lems, i.e., eigenvalue problems with boundary conditions depending on spectral
parameter, are in turn examined using spectral methods.
In a series of works, Golub and Wilkinson [87], Golub and Ortega [90] and

more recently Golub and van der Vorst [89], it is observed that the computing of
eigenvalues and vectors is essentially more complicated than solving linear sys-
tems. Research in this area of numerical linear algebra is very active, since there
is a heavy demand for solving complicated problems associated with stability
and perturbation analysis for practical applications. For standard problems,
powerful tools are available, but there still remain many open problems.
J. P. Boyd in [18] makes several observations about the traps and snares

in eigenvalue computations, but concludes that with a bit of care the pseu-
dospectral method is a very robust and efficient method for solving differential
eigenproblems, even with singular eigenmodes.

5.1 Standard eigenvalue problems

The advantages of spectral methods in solving differential eigenvalue problems
were underlined for the first time by S. Orszag in his seminal paper [155]. There
exist situations, for example in hydrodynamic stability, when the accuracy of

87
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the numerical method is essential. In the paper quoted above the following
standard Orr-Sommerfeld problem is analyzed:

(OS)

½
Φ(iv) − 2α2Φ00 + α4Φ = iαR

£
(U − λ)

¡
Φ00 − α2Φ

¢
− U 00Φ

¤
, x ∈ (−1, 1) ,

Φ (±1) = Φ0 (±1) = 0,
(5.1)

where (λ,Φ (x)) is the unknown eigenpair and the parameters α, R and function
U (x) have physical signification, are arbitrary but fixed. The efficiency of the
Chebyshev-tau method was overwhelming even for small order N of approxi-
mation.
The superiority of spectral approximation in approximating the spectrum of

a differential operator was underlined also by Weideman and Trefethen in their
paper [203]. They were concerned with the classical second order eigenvalue
problem ½

u00 (x) = λ · u (x) , x ∈ (−1, 1) ,
u (±1) = 0, (5.2)

which has the eigenvalues in the closed form λk = −k2π2

4 , k = 0, 1, 2, . . . .
In order to emphasize the capabilities of spectral methods in solving differ-

ential eigenvalue problems we consider other four special problems:
a) the clamped road problem, i.e., the fourth order eigenvalue problem (see

Funaro and Heinrichs [76])½
Φ(iv) (x) = λ · Φ (x) , x ∈ (−1, 1) ,

Φ (±1) = Φ0 (±1) = 0,

b) a fourth-order eigenvalue problem with a third derivative term½
Φ(iv) (x) +R · Φ000 (x) = λ · Φ00 (x) , x ∈ (−1, 1) ,

Φ (±1) = Φ0 (±1) = 0, (5.3)

where R is a real parameter and the eigencondition reads

¡
R2 + 4λ

¢1/2 ⎡⎣1− cosh
³¡
R2 + 4λ

¢1/2´
cosh (R)

⎤⎦+ 2λ sinh
³¡
R2 + 4λ

¢1/2´
cosh (R)

= 0;

c) a third order problem, namely½
u000 (x) = λu (x) , x ∈ (−1, 1) ,

u (±1) = 0, u0 (−1) = 0, (5.4)

with the eigencondition

e3λ
1/3 − 2 sin

³√
3λ1/3 +

π

6

´
= 0,

which implies the following approximative values for eigenvalues

λk = −
½µ

k +
1

6

¶
π√
3

¾3
, k = 1, 2, ... .
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d) and the Orr-Sommerfeld problem (5.1) with U (x) := 1 − x2, i.e., corre-
sponding to Poiseuille flow.
The first three problems were solved using modified Chebyshev collocation

methods. The difference with respect to the classical (CC) method consists in
the fact that each and every trial function satisfies the boundary conditions.
Consequently, for the first two problems we use as trial functions the product

of the weight
¡
1− x2

¢2
and the cardinal functions, i.e.,¡
1− x2

¢2
lj (x) , j = 0, 1, 2, ..., N.

They satisfy all boundary conditions. The pseudospectral derivative matrices
are, as usual, obtained from the paper of Weideman and Reddy, [204], p.479. It
is worth noting at this moment that the cardinal functions are rewritten in the
form (see [71], P. 15)

lj (x) =
(−1)j

cj

1− x2

(N − 1)2
T 0N−1 (x)

x− xj
,

where c1 = cN = 2 and c2 = ... = cN−1 = 1 and

xj = cos

µ
(j − 1)π
N − 1

¶
, j = 1, 2, ..., N,

are the (1.34) nodes, i.e., the Chebyshev points of the second kind or, equiva-
lently, the extreme points on [−1, 1] of TN−1 (x) .
The first 14th eigenvalues of the problem a), for N = 16, are displayed in

the Table 1.
N = 16
1.71337968904269× 1.0e+ 007
1.62401642422808
0.03856105241227
0.03597677558196
0.00711035649235
0.00603075735206
0.00305369477203 l
0.00193928004466
0.00108631975968
0.00055710074688
0.00024964874758
0.00009136018866
0.00002377210675
0.00000312852439× 1.0e+ 007

Table 1 The first eigenvalues for problem a)
The matrix associated with this problem is quasi fully populated as can be

seen in the Fig. 5.1 where the locations of nonzero elements are plotted.
The first two exact eigenvalues for the second problem with R = 0, are

−9.8696044 and −20.1907286. They are exactly reproduced by our computa-
tions. For such R the problem is self-adjoint and all the eigenvalues are real
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Figure 5.1: The sparcity pattern for the (CC) matrix
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Figure 5.2: The sparsity pattern for matrices A and B; (CC) method

and less than zero. The eigenvalue problem is a generalized one this time, i.e.,
of the form

A · x = λB · x,
and the sparsity patterns of A and B are depicted in Fig. 5.2. The matrices
remain fully populated.When the R is non-zero the problem is not self-adjoint
and the eigenvalues are no longer real, though the real part is negative. For R =
4, the exact eigenvalues are −17.9129218± 9.45840144 and they are reproduced
accurately by our computations. All eigenvalues of this problem are depicted in
Fig. 5.3. It may also be shown that λ = −R2/4 is not an eigenvalue.

Remark 64 This problem was solved by Gardner, Trogdon and Douglas using
a laborious modified Chebyshev-tau method in their paper [80]. They used the
EISPACK driver RG on a Cray-2 supercomputer with single precision (64 bit)
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Figure 5.3: The set of eigenvalues when N=20 and R=4

arithmetic. No spurious eigenvalues are reported in their paper and the conver-
gence is clearly indicated by magnitudes of the tau coefficients. Our numerical
experiments were carried out on more modest computing equipment but in spite
of this no spurious eigenvalues were observed. We used the EIG and EIGS codes
from MATLAB. For R = 0 the problem is also solved in the paper of McFadden,
Murray and Boisvert, [138], P. 229.

The problem c) is the eigenvalue problem attached to problem (4.11). The
(CC) approach for that reads

⎧⎨⎩
find uN ∈ PN such that¡

uN (xi)
¢000
= λuN (xi) , xi ∈ (−1, 1) , i = 1, 2, . . . , N − 2,

uN (±1) = uN (−1) = 0.

Hence we have N − 2 inner collocation and 3 boundary conditions. These
are N + 1 conditions which uniquely determine the spectral approximation uN

defined again by (4.13).
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N = 64
−2.524068539853232e+ 004
−2.081344964224966e+ 004
−1.696640042472849e+ 004
−1.362044995037454e+ 004
−1.362044995037454e+ 004
−8.308798671337761e+ 003
−6.270519503199299e+ 003
−4.596233100588465e+ 003
−3.250141182185935e+ 003
−2.196440035490058e+ 003
−1.399326817084188e+ 003
−8.229985429508488e+ 002
−4.316522518291442e+ 002
−1.894849798380508e+ 002
−6.069365841193836e+ 001
−9.482406935491648e+ 000
Table 2 The first 16th eigenvalues of the problem c)

We have to notice that only the first 16th eigenvalues of this problem were
computed with a reasonable accuracy. They are represented in Table 2 and
suggest that the Boyd’s rule-of-thumb is too optimistic.
The fourth problem, (5.1), was solved in [164] by a modified Chebyshev

Galerkin approach. More specifically, as trial basis was used the following Hein-
rich’s basis ([105])

Ψk (x) :=
¡
1− x2

¢2
Tk (x) , k = 0, 1, 2, ...,N

and as a test basis, the Shen’s basis ([176])

Φk (x) := Tk (x)−
2 (k + 2)

k + 3
Tk+2 (x) +

k + 1

k + 3
Tk+4 (x) , k = 0, 1, 2, ...,N.

This approach leads to banded matrices, as results from the lemma below.

Lemma 65 [163] For Ψk (x) and Φk (x) defined as above we have
³
Φi,Ψ

(k)
j

´
2
:=

2
πa

k
ij , where

a4ij =

⎧⎪⎪⎨⎪⎪⎩
ci (i+ 1) (i+ 2) (i+ 3) (i+ 4) , j = i,
−2i (i+ 1) (i+ 2) (i+ 4) , j = i+ 2,

i (i+ 1)2 (i+ 2) , j = i+ 4,
0, otherwise,

(5.5)

a2ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ci−2(i+1)(i+2)
4 , j = i− 2,

−2i(i+3)+4ci−3(ci−1−di−1)2 , j = i,
3(i+2)(i+1)

2 + δi0
2 , j = i+ 4,

− (i+ 1) (i+ 2) , j = i+ 4,
(i+1)(i+2)

4 , j = i+ 6,
0, otherwise,

(5.6)
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Figure 5.4: The sparsity of (CG) method

aij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ci−4
16 , j = i− 4,

− ci−2(3i+8)−3(ci−3−di−3)
8(i+3) , j = i− 2,

15i+35ci−22(ci−1−di−1)+5(ci−2−di−2)
16(i+3) , j = i,

−5i+6+4ci−ci−1+di−14(i+3) , j = i+ 2,
15i+22+3ci
16(i+3) , j = i+ 4,

− 3i+4
8(i+3) , j = i+ 6,
i+1

16(i+3) , j = i+ 8,

0, otherwise,

(5.7)

where δm,n is the Kronecker symbol, ci are defined as in (1.2) and

di :=

½
0, if i < 0,
1, if i ≥ 0. .

With these bases the condition number of the fourth order differentiation
is reduced to O

¡
N4
¢
. No spurious eigenvalues were obtained and we achieved

an accuracy up to eight digits. In fact, for α = 1.00, R = 10000, N = 48 we
obtained for the first eigenvalue the value λ = 0.23752651907 + 0.00373967171i
and the paper of Orszag [155] furnishes λ = 0.23752648882 + 0.003739677062i.

Remark 66 The problem b) was also solved by a Chebyshev-Galerkin method
with the Heinrich’s basis and the Shen’s basis. The matrices A and B are simpler
this time. The matrix A is upper triangular and the matrix B is banded. For
R = 0 and N = 16 their sparsity patterns can be seen in Fig. 5.4. To get these
patterns we used the MATLAB command spy.
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5.2 Theoretical analysis of a model problem

The aim of this section is to carry out some estimations concerning the numerical
results obtained when the problem½

u(iv) (x) = λ · u (x) , x ∈ (−1, 1) ,
u (±1) = u0 (±1) = 0. (5.8)

is solved by Chebyshev-Galerkin method. We shall use some ideas from the
paper of Weideman and Trefethen [203].
The method means to solve the problem(

find uN ∈ XN ,

such that
³¡
uN
¢(iv)

, v
´
0,ω
= λ

¡
uN , v

¢
0,ω

, ∀v ∈ XN
(5.9)

where XN := PN+4 ∩ H4
ω (−1, 1) ∩ H2

ω (−1, 1) . For the space XN we consider
two distinct bases, namely the Heinrich’s basisn

Φk|Φk (x) :=
¡
1− x2

¢2
Tk (x) , k = 0, 1, 2, ..., N

o
(5.10)

and the Shen’s basis½
Ψk|Ψk (x) := Tk (x)−

2 (k + 2)

k + 3
Tk+2 (x) +

k + 1

k + 3
Tk+4 (x) , k = 0, 1, ..., N

¾
.

(5.11)
Let us take Φk from (5.10) as shape (test) functions and Ψk from (5.11) as trial
functions. It means that

uN (x) :=
NX
j=0

akΦk (x) ,

and the weak formulation (5.9) reads(
find uN ∈ XN ,

such that
³¡
uN
¢(iv) − λuN ,Ψk

´
0,ω
= 0, k = 0, 1, 2, ..., N.

Mathematically, this means an algebraic N + 1 dimensional generalized eigen-
value problem fD4 · x = λeIN+1 · x,
where eIN+1 is the matrix of order N + 1,

eIN+1 := [(Φk,Ψj)0,ω]k,j=0,1,...,N ,
and eD4 is the matrix, of the same order,.defined by

eD4 := [
³
Φ
(iv)
k ,Ψj

´
0,ω
]k,j=0,1,...,N .
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An upper bound for the numerical eigenvalues of the problem (5.9) is given by
the following estimation (cf. I. S. Pop, P. 46)

lim
n→∞

sup |λ| ≤ 2.77 · 10−4 ·N8.

Remark 67 The last estimation is very rough but the main computational diffi-
culty related to this eigenvalue problem lies in the rapid growth in the difference
between the orders of magnitude of the computed eigenvalues. Thus, for N
around 150 results become too large to represent as conventional floating-point
values (overflow).

5.3 Non-standard eigenvalue problems

Let us consider the following differential eigenvalue problem where the eigen-
value parameter λ enters into boundary conditions:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Φ(iv) − 2α2Φ00 + α4Φ = iαR
£
(U − λ)

¡
Φ00 − α2Φ

¢
− U 00Φ

¤
, x ∈ (0, 1) ,

(i) , (ii) Φ (1) = Φ0 (1) = 0,
(iii)

£
Φ00 (0) + α2Φ (0)

¤
(λ− U (0)) +Φ (0)U 00 (0) = 0

(iv) U 00 (0)Φ000 (0) + iα [R (λ− U (0)) + 3iα]U 00 (0)Φ0 (0)−
−iα

£
2 cot (β) + α2Ca+ (λ− U (0))RU 0 (0)

¤ £
Φ00 (0) + α2Φ (0)

¤
= 0.
(5.12)

The problem comes from physicochemical hydrodynamics, with parameters α, β,

τ , Ca and R ranging in specified intervals of real axis and the basic flow is

U (x) :=
¡
1− x2

¢
+ (1− x) τ .

We call this a non-standard Orr-Sommerfeld eigenvalue problem and observe
that the differential operators are identical in (5.1) and (5.12). The difference
appears at the last two boundary conditions, where the spectral parameter λ
enters linearly. It is not easy to implement these boundary conditions in a
collocating or a Galerkin method. In our paper [82] we introduced a modified
Chebyshev-tau method in order to circumvent these difficulties.

For the classical Chebyshev-tau formulation of the problem (5.12) we trans-
form it first (linearly) on the interval (−1 1) and then make use of the following
spaces and the corresponding bases

XN : = PN+4 = span {Tk, k = 0, 1, 2, ..., N + 4} , (5.13)

YN : = PN = span {Tk, k = 0, 1, 2, ...,N} .

This formulation reads⎧⎨⎩
find ΦN ∈ XN ,

such that (LtΦN , ϕ)0,ω = 0, ∀ϕ ∈ YN ,

B.C.0s,
(5.14)
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where Lt denotes the differential operator and by B. C. we mean an explicit
impose of boundary conditions. Replacing ϕ by Tk, k = 0, 1, 2, ..., N succes-

sively and taking ΦN :=
N+4X
j=0

ajTj we get N + 1 equations for the coefficients

aj , j = 0, 1, 2, ...,N +4 and the spectral parameter λ. The remaining four equa-
tions are given by the boundary conditions in ±1. Hence we have obtained a
generalized eigenvalue problem of the form Aa = λBa.
The discretization matrices generated by this method are badly conditioned

and not sparse. This can be illustrated, for example, for the fourth order differ-
entiation matrix corresponding to ΦN , namely

Φ
(iv)
N =

N+4X
j=0

a
(iv)
j Tj ,

where

a
(iv)
j =

1

cj

N+4X
p=j+4,
p+j even

p
h
p2
¡
p2 − 4

¢2 − 3j2p4 + 3j4p2 − j2
¡
j2 − 4

¢2i
ap. (5.15)

Thus, even though this method has theoretically a spectral accuracy, it is
strongly affected by round off errors. Moreover, for our eigenvalue problem
it generates two spurious eigenvalues.
The difference between this classical method and the modified version con-

sists in the spaces involved in the discretization process. We define the functions

Θi (x) :=
¡
1− x2

¢
Ti (x) , i ≥ 0,

and approximate the solution Φ by ΦN :=
N+2X
j=0

ajΘi. Clearly,

eXN := span {Θi, i = 0, 1, 2, ..., N + 2} = {v ∈ PN+4|v (1) = v0 (1) = 0} ,

and therefore each and every ΦN ∈ eXN satisfies the boundary conditions in 1.
For the definition of test functions we use the functions below

Ψ1i (x) :=
2

π
dNi

∙
2i+ 3

4 (i+ 1)
Ti (x)− Ti+1 (x) +

2i+ 1

4 (i+ 1)
Ti+2 (x)

¸
, i ≥ 0,

where dNi = 1 if 0 ≤ i ≤ N and dNi = 0 otherwise. Now let

Ψk+1i (x) :=
1

2i+ k + 2

¡
Ψki (x) +Ψ

k
i+1 (x)

¢
, i ≥ 0, k ≥ 1.

The choice of the test function spaces is justified by the following lemma.
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Lemma 68 [163] For k ≥ 1 we have

eYN := span
©
Ψki , i = 0, 1, 2, ..., N

ª
= {v ∈ PN+2|v (1) = v0 (1) = 0} .

Proof. The case k = 1 is obvious. For k > 1 the mathematical induction can
be applied easily.
With the two spaces defined above we can proceed with the discretization

of the problem (5.12). The new formulation reads⎧⎨⎩
find ΦN ∈ eXN ,

such that (LtΦN , ϕ)0,ω = 0, ∀ϕ ∈ eYN ,
B.C.0s,

but now B. C. stands only for the two boundary conditions in−1, which still have
to be imposed explicitly. For this discretization we take Ψ5i , i = 0, 1, 2, ..., N
as test functions and construct the corresponding discretization matrices. The
choice of these test functions is justified by the following lemma.

Lemma 69 [163] Let Θi (x) and Ψ
5
i as above. For i = 0, 1, 2, ..., N and j ≥ 0

we have
³
Ψ5i ,Θ

(iv)
i

´
0,ω
= dN+2j aij , where

aij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i+4

4(2i+5) , j = i+ 2,

− (i+2)(i+4)
(2i+5)(2i+7) j = i+ 3,

i+2
4(2i+7) j = i+ 4,

0 otherwise.

Proof. These relations can be obtained from orthonormal relations for Cheby-
shev polynomials. The algebra is quite tedious but not difficult, so we do not
reproduce it here.

Remark 70 In this approach, the discretization matrix for the fourth order
derivative is banded. Compared with the one in the classical approach, which,
as revealed in (5.15), is only upper triangular and more difficult to compute,
it is better conditioned and therefore the method features much more stability.
Similar discretization matrices are obtained for lower order derivatives or other
differential operators.

Remark 71 The bases adopted here are suited only for boundary conditions
in (5.12). Analogous ideas can be exploited for other types of (homogeneous)
boundary conditions.

Remark 72 The numerical results reported in our paper [82], which refers to
the most unstable mode, for various values of the physical parameters were con-
firmed in the papers of Greenberg and Marleta [97], P. 1842, [96], P. 380, Malik,
[135], P. 32, and Hill and Straughan, [114], P. 2124.
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5.4 Problems

1. Solve by suitable spectral methods the ”Rossby waves” problems, namely(
u00 +

n
β−U 00

U−c − α2
o
· u = 0, y1 < y < y2,

u (y1) = u (y2) = 0,

where α, β will be taken as constants and the complex (phase velocity)
c = cr + ici is to be found as an eigenvalue so that a mode is unstable if

and only if αci > 0. a) U (y) =
¡
y
π

¢2
, −π ≤ y ≤ π, α2 = .5, β = 1.; b)

U (y) = sin y, −π ≤ y ≤ π, α2 = 1., β = 1.; c) U (y) = y
π , −π ≤ y ≤

π, α2 = 1., β = 1.; d) U (y) = − exp (−y) , 0 ≤ y ≤ ∞, α2 = 1., β = 1.;N

2. [179] [180] A A Shkalikov considers the following eigenvalue problem½
−iε2z00 + q (x) z = λz, |x| ≤ 1,

z (−1) = z (1) = 0,

in order to understand the behavior of the spectrum of the standard Orr-
Sommerfeld eigenvalue problem (5.1) as the Reynolds number tends to
infinity. From the physical point of view it means that the viscous fluid
”tends” to be ideal. Assume that ε2 := (αR)

−1
, q (x) is the same as

in (5.1) and is an analytic monotonous function. In these conditions,
Shkalikov shows that the spectrum of this simplified problem lies in the
closure of the semi-strip

Π = {λ| Imλ < 0, −1 < Reλ < 1} .

Verify numerically this result for q (x) := sin (πx/2) , q (x) := (x+ 1)2 .
For q (x) := x, our numerical results are depicted in Fig. 5.5.N.

3. Prove that the boundary conditions in the problem (5.4) are chosen such
that the eigenvalues λ are real and positive. Hint This can easily be shown

by setting up the energy norm, i.e., kuk2 :=
1Z
−1

u2 (x) dx, and proving that

λ kuk2 ≤ 0. In fact, we can start with the equality
1Z
−1

u (x) · u000 (x) dx =

λ

1Z
−1

u2 (x) dx and then integrate by parts. N

4. Show that all eigenvalues of the clamped road problem are real and posi-
tive. N
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Chapter 6

Non-normality of spectral
approximation

Eigenvalues and eigenvectors are an imperfect tool for analyz-
ing non-normal matrices and operators, a tool that has often been
abused. Physically, it is not always the eigenmodes that dominate
what one has observed in a highly non-normal system. Mathemati-
cally, eigenanalysis is not always an efficient means to the end that
really matters: understanding behavior.

L. N. Thefethen, Pseudospectra of matrices, 1992

The main drawback of Chebyshev spectral methods, tau, Galerkin as well
as pseudospectral, consists in the fact that, due to the non-uniform weight asso-
ciated with the Chebyshev polynomials, they produce non-symmetric matrices
even for self-adjoint elliptic problems. Consequently, it is fairly important to
have a measure of this anomaly. More generally, it means a lack of normality
of Chebyshev approximation.
There are two major concepts with respect to the measure of the non-

normality of square matrices. The first one is due to P. Henrici [108] (see also
Eberlein [59], Elsner and Paardekooper [63] and Chaitin-Chatelin and Fraysse
[36, p.160]) and it provides some scalar measures of non-normality. The sec-
ond, more recently introduced, is that of pseudospectrum of a matrix and is
systematically treated by L. N. Trefethen in a large series of papers from which
we quote only [193], [194] and [195]. As it is well known, the non-normality of
matrices and, consequently, of linear finite dimensional operators assumed, is
responsible for a high spectral sensitivity. This sensitivity leads to a surprising
and sometimes critical behavior of some numerical algorithms and procedures.
We mean by such critical behavior the fact that the eigenvalues of a matrix
A characterize the evolution of related quantities such as kexp (tA)k and kAnk
only in the long run and not in the “transitory regime”, i.e., for “small” t or n.

103
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Unfortunately, this regime is of overwhelming importance, for example, in the
behavior of dynamic systems with non-normal linear part. Such systems could
undertake a catastrophic behavior or become chaotic.

In spite of this, the estimation of non-normality is not yet a routine matter
among scientists and engineers who deal with such matrices. However, a realistic
approach of some important numerical methods (such as spectral type methods)
and problems (mainly those non-self-adjoint) imposes the quantification of the
non-normality of the matrices involved. In this respect, we try to rewrite some
of the results of P. Henrici [108, p.27] on scalar measures of non-normality and
introduce a new one. Consequently, in the second section, after some preliminary
remarks, we introduce an euclidean relative departure from normality of an
arbitrary matrix and derive an upper universal bound for that. The bound
implies two factors. The first one depends solely on the dimension of the matrix,

and is of order O
³
n
3
4

´
, and the second depends mainly on the structure of the

matrix.

Two remarks are in order at this point. First, the structure of the matrix
is intimately related to the numerical method, or shortly, the structure means
the numerical method. Second, the latter factor called the non-normality ratio
is itself a measure of non-normality. For this one we provide an upper bound
which is sharp and at the same time practical. It is crucial to observe that, for
an arbitrary measure of non-normality, the problem of the existence of an upper
bound over the set of non-normal matrices of a specific dimension remains an
open one.

However, the non-normality ratio furnishes a scale on which each and every
matrix can be measured and, eventually, several numerical methods applied to
a specific problem can be compared to one another.

With the measure of non-normality established above, we introduce also a
relative distance of a matrix A to the set of normal matrices and provide an
upper bound for that.

In the third section, we write down the matrices corresponding to a Chebyshev-
Galerkin method with different trial and test basis functions considered in some
of our previous papers [163] and [164]. In the fourth section, we analyze some
particular matrices which come from numerical analysis of second order and
fourth order one-dimensional (1D for short) differential operator. More exactly,
we take into account the above quoted (CG) method, a (CG) method intro-
duced by J. Shen in [176] (CGS for short), and two variants of the classical
Chebyshev-tau method. For typical choices of parameters in these problems the
ratios of non-normality are worked out. They show the efficiency of this mea-
sure of non-normality in detecting this anomaly even when the pseudospectrum
fails.

For the particular case of complex Schroedinger operator, which is considered
as highly non-normal, we make use also of Chebyshev collocation method to
discretize it and compare the non-normality of matrices involved with the non-
normality of the three methods above.
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6.1 A scalar measure of non-normality

In his seminal paper [108], P. Henrici introduced the following departure from
normality of an arbitrary n× n matrix A with complex entries (A ∈ Cn×n) :

∆ν (A) := inf
A = U (Λ+M)U∗| {z }
(Schur decomposition)

ν (M) , (6.1)

where U is unitary and Λ is diagonal and is made up of the eigenvalues of A. The
symbol ∗ denotes as usual the conjugate transpose of a vector or a matrix, while
ν stands for a norm of A (see for example [188, p.116] for the equivalence of
various norms). The main result from the above quoted paper reads as follows:

∆ε(A) ≤
µ
n3 − n

12

¶1/4
(ε(A∗A−AA∗)1/2, (6.2)

where ε stands for the Frobenius (euclidian) norm of A.
In order to quantify more rigorously the non-normality we introduce a new

scalar measure with the next definition.

Definition 73 For any A ∈ Cn×n, A 6= O- the null matrix, we define an eu-
clidean relative departure from normality of a matrix A with the equality

depε (A)

ε (A)
:=
∆ε(A)

ε (A)
,

and the map

H : Cn×n → R+, H (A) :=

p
ε (A∗A−AA∗)

ε (A)
(6.3)

called the non-normality ratio.

Remark 74 This map is itself a scalar measure of non-normality in the sense
of definition from [63, p.108], i.e., H (A) = 0 iff A is normal (A∗A−AA∗ = 0) .

The main result is contained in the following theorem. It extends our previ-
ous result reported in [83].

Theorem 75 For any A ∈ Cn×n the non-normality ratio satisfies the inequality

0 ≤ H (A) ≤ 2 14 , (6.4)

and the euclidean relative departure is bounded by

depε (A)

ε (A)
≤
µ
n3 − n

12

¶1/4
H (A) . (6.5)
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Moreover, for the eigenvalues λi of a non-normal matrix A we have the inequal-
ity

Ã
1−

µ
n3 − n

12

¶ 1
2

(H (A))2
!
≤

X
i

|λi|2

ε2 (A)
≤
µ
1− 1

2
(H (A))4

¶ 1
2

. (6.6)

Proof. The double inequality (6.4) is due to P. J. Eberlein [59, p.996]. In fact,
she showed that

ε (A∗A−AA∗) ≤
√
2ε2 (A) . (6.7)

This inequality is sharp, i.e., the right hand side equality holds iff the matrix
A has the special form

A = α (vw∗) (6.8)

where v and w are orthonormal (column) vectors and α ∈ C is arbitrary and
α 6= 0. The left hand side equality holds, of course, iff the matrix is normal. The
bound in (6.5) is a simple consequence of (6.2) and the definition of the map H.
The left hand side and the right hand side inequalities in (6.6) are respectively
direct consequences of inequalities from [108, p.28], see also [124, p.110] and
[124, p.109].

Corollary 76 Incidentally, the inequality (6.6) shows that any matrix A 6= O
which satisfies (6.8) has the property that every eigenvalue equals zero. It is a
very suggestive description of the most non-normal matrices.

Remark 77 For an arbitrary matrix, the previous bound (6.5) furnishes a fairly
direct and practical estimation of its departure from normality. This bound
holds together with that from [130, p.466]. Moreover, we have for the relative
distance to the set N of normal matrices the estimation

dist (A,N )
ε (A)

≤ depε (A)

ε (A)
≤
µ
n3 − n

12

¶1/4
H (A) .

Remark 78 The Bauer-Fike theorem (see for instance the monograph of P.
G. Ciarlet [39] P. 59 or that of Stoer and Burlirsch [187] P. 388) bounds the
pseudospectra in terms of the condition number of a matrix of eigenvectors (a
scalar measure of non-normality in some sense!). In fact, in [39] the following
theorem is proved:

Theorem 79 (Bauer-Fike) Let A be a diagonalizable matrix, P a matrix such
that

P−1AP = diag (λi) := D,

and k·k a matrix norm satisfying

kdiag (di)k = max
i
|di|,
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for every diagonal matrix. Then, for every matrix δA and for each and every
eigenvalue λ of the matrix A+ δA there exists at least one index i such that

|λ− λi| ≤ cond (P ) kδAk ,

where cond(P ) = kPk
°°P−1°° , and the matrix norms k·k1 , k·k2 , and k·k∞ all

satisfy the hypothesis in the statement of the theorem.

Due to the fact that normal matrices are diagonalizable by a unitary
matrix in the above estimation we get cond (P ) = 1 for such matrices. However,
the condition number introduced above is called condition number for the matrix
A relative to the eigenvalue problem.

6.2 A C G method with different trial and test
basis functions

Let us consider the second order 1D two-point boundary value problem

u00 + µ · u0 − λ · u = f (x) , u (−1) = u (1) = 0, (6.9)

and the fourth order 1D two-point boundary value problem

u(iv) − µ · u00 + λ · u = f (x) , u (±1) = u0 (±1) = 0. (6.10)

The classical Galerkin method solves such problems using the same basis in

the trial (shape functions space or projection space) and test spaces. In this
respect we refer to the papers of J. Shen [175] and [176], where spectral Galerkin
methods are analyzed in detail for the 1D-3D second and the fourth elliptic
operators by using Legendre and respectively Chebyshev polynomials.
Anyway, it was observed that such Galerkin methods have important in-

conveniences. The most serious drawback seems to be the fact that due to
the increased condition number of the matrices resulting in the discretization
process, the computational round off errors deteriorate the expected theoret-
ical (spectral) accuracy. Several attempts were made in order to circumvent
these disadvantages. In some of our previous papers [82], [164] and [163], we
considered methods involving different trial and test bases. We obtained bet-
ter conditioned banded matrices and the elimination of spurious eigenvalues in
non-standard Orr-Sommerfeld eigenvalue problems.
Thus, following the idea of W. Heinrichs ([105]) we search solutions to prob-

lem (6.9) in the form of the expansion

uN (x) =
NX
k=0

ak · wk (x) , (6.11)

where wk (x) =
¡
1− x2

¢
Tk (x) and Tk (x) is the k

th order Chebyshev polyno-
mial. This basis satisfies apriori the above homogeneous boundary conditions.
As test functions we make use of those from the paper of Shen ([176, p.3]), i.e.,
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vk (x) = dk (Tk (x)− Tk+2 (x)) , k = 0, 1, . . . , N.

The Galerkin formulation for the problem (6.9) requires the following scalar
products

³
w
00

p , vk

´
0,'

=
π

2

⎧⎨⎩ −cp (p+ 1) (p+ 2) , p = k
dk (p− 1) (p− 2) , p = k + 2
0, otherwise

,

³
w
0

p, vk

´
0,'

=
π

4

⎧⎪⎪⎨⎪⎪⎩
−ck−1 (k + 1) , p = k − 1
(3dk − ck) (k + 1) , p = k + 1
−dk (k + 1) , p = k + 3
0, otherwise

,

(wp, vk)0,' =
π

8

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−ck−2, p = k − 1

2ck + 2dk − ck−1, p = k
− (ck + 2dk) , p = k + 2
dk, p = k + 4
0, otherwise

,

p, k = 0, 1, 2, . . . , N, where ' (x) =
¡
1− x2

¢−1
2 is the Chebyshev weight, (·, ·)0,'

stands for the scalar product (w, v)0,' =

1Z
−1

w · v · 'dx in the weighted space

L2' (−1, 1) and the coefficients ck and dk are defined as usual by

ck =

⎧⎨⎩ 0, k < 0
2, k = 0
1, k > 0

, dk =

½
0, k < 0
1, k ≥ 0 .

As far as we know, they were for the first time reported in the work of I. S. Pop
[165, p.29]. Consequently, the (CG) method for (6.9) reads as follows

³
w
00

p , vk

´
0,'
+µ·

³
w
0

p, vk

´
0,'
−λ·(wp, vk)0,' = (f, vk)0,' , p, k = 0, 1, 2, . . . , N.

(6.12)
For the fourth order problem (6.10) we use the following expansion of the solu-

tion

uN =
NX
k=0

ak · ψk,

where the trial (shape) functions ψk (x) =
¡
1− x2

¢2
Tk (x) satisfy the boundary

conditions in (6.10). As test functions we make use of the same test functions
as those used by Shen [176, p.7], namely

ϕk (x) = Tk (x)−
2 (k + 2)

k + 3
Tk+2 (x) +

k + 1

k + 3
Tk+4 (x) .
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In this situation, the (CG) method requires the next three scalar products³
ϕi, ψ

(iv)
j

´
0,ω

,
¡
ϕi, ψ

00
j

¢
0,ω

, and
¡
ϕi, ψj

¢
0,ω

, for i, j = 0, 1, 2, . . . , N . They are

available in the relations (5.5), (5.6) and (5.7) respectively. They generate ma-
trices which are analyzed with respect to their condition number in [165, p.32].
With these scalar products, the (CG) method for (6.10) reads

³
ϕi, ψ

(iv)
j

´
0,ω
−µ·

¡
ϕi, ψ

00
j

¢
0,ω
+λ·

¡
ϕi, ψj

¢
0,ω
= (f, vj)

0,'
, i, j = 0, 1, 2, . . . , N.

(6.13)
This means an algebraic system for the unknowns ak, k = 0, 1, 2, ..., N.
It is well known that whenever µ ≥ 0, λ > 0 the problem (6.10) has a

unique solution in Hs
' (−1, 1) ∩ H2

0,' (−1, 1) for s ≥ 2. The spectral methods
approximate this solution much more exactly than classical finite differences
and finite elements methods.

6.3 Numerical experiments

If you find yourself computing eigenvalues of non-normal matrices, try perturb-
ing the entries by a few percent and see what happens! If the effect on the
eigenvalues is negligible, it is probably safe to forget about non-normality. If the
effect is considerable, the time has come to be more careful.
L. N Trefethen, Pseudospectra of matrices, 1992

6.3.1 Second order problems

First, we consider the Helmholtz problem with a typical choice of λ, namely:

u00 − λ · u = 0, u (−1) = u (1) = 0, λ = N2.

We take into account the discretization matrices (the so-called stiffness matri-
ces) provided by the use of two spectral methods, namely Chebyshev-tau and
Chebyshev-Galerkin. The non-normality ratios of the stiffness matrices involved
are displayed in Table 3. Thus, the first two rows in this Table contain the
non-normality ratios corresponding to the standard (unmodified) Chebyshev-
tau method analyzed by Gottlieb and Orszag [90, p.119] and respectively to the
improved (more numerically stable) quasi-tridiagonal method from the same
monograph [90, p.120].
We refer also to the well known monograph of Canuto, Hussaini, Quarteroni

and Zang [33, p.129], for the mathematics of the spectral methods as well as
for the technique of improving the algebraic system furnished by Chebyshev-tau
method.
The third row displays the non-normality ratios of the matrices involved in

the Chebyshev-Galerkin method proposed by J. Shen [176, p.4], for short CGS
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method, and the fourth row displays the non-normality ratios of the matrices
furnished by the left hand side of (6.12), (see also [82], [163] and [164]). The
superiority of the second method is evident.

N=8 N=64 N=128 N=256 N=512
CT-standard 1.0040 0.9851 0.9847 0.9846 0.9845
CT-improved 0.8071 0.8201 0.8202 0.8202 0.8202

CGS 0.1779 0.0618 0.0432 0.0303 0.0214
CG 0.4345 0.1641 0.1170 0.0831 0.0589

CT-Laplace 1.0584 1.0579 1.0583 1.0585 1.0586
Table 3 The non-normality ratios for stiffness matrix associated to

Helmholtz problem

The second order operator

r
d

dr
(r
du

dr
)− λ · u, λ = N2,

with homogeneous boundary conditions is discretized using only the Chebyshev-
tau method. It has obvious applications to the Laplace’s equation on the unit
disk. A detailed description of the entries of the corresponding matrices is
available in [33, p.132]. The corresponding non-normality ratios are displayed in
the fifth row of the first Table. They confirm the superiority of the Chebyshev-
Galerkin method. This superiority comes from the fact that the boundary
conditions are incorporated into the test and trial functions and do not perturb
the structure of the matrix of the method. At the same time, we have to observe
that, for both equations considered, Chebyshev-tau method leads to extremely

non-normal matrices
³
2
1
4 = 1.1892

´
.

The two variants of CG methods are again compared in the following two
Tables. The problem (6.9) is solved with a typical choice of the parameters λ
and µ, namely λ = N2 and µ = ±N.

N=8 N=64 N=128 N=256 N=512
CGS 0.2449 0.0803 0.0558 0.0391 0.0275
CG 0.4448 0.1562 0.1109 0.0786 0.0556

Table 4 The non-normality ratios corresponding to mu=N

N=8 N=64 N=128 N=256 N=512
CGS 0.4011 0.1303 0.0906 0.0634 0.0446
CG 0.3638 0.1647 0.1187 0.0847 0.0602

Table 5 Non-normality ratios corresponding to mu=-N

Remark 80 For the above mentioned choices of parameters λ and µ, the terms
in Galerkin formulation (6.12) are all of them of the same order, namely O

¡
N2
¢
.

In our report [85] we have considered the situations µ = 0.0, λ = 0.1, and
µ = O (N), λ = 0.1 for the same values of the cut-off parameter N. The qual-
itative behavior of the non-normality ratios of the associated matrices does not
change.
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6.3.2 Fourth order problems

In the next three tables are reported the results obtained for these problems.
For (CT) method , details on entries of associated matrices could be found,
for example, in [165, p.30]. The matrices associated with (CG) method are
furnished by the left hand side of (6.13) and those associated with CGS method
are available in [176, p.7].

N=64 N=128 N=512
CT 1.0032 0.9995 0.9988
CG 0.4014 0.2964 0.1536
CGS 0.1665 0.1212 0.0620

Table 6 The non-normality ratios for µ = 0.1, λ = 0.1

N=64 N=128 N=512
CT 1.0032 0.9999 0.9988
CG 0.1728 0.1190 0.1411
CGS 3.4282e-04 4.5645e-04 8.7946e-04

Table 7 The non-normality ratios for µ = 0.1, λ = 2564;
N=64 N=128 N=512 N=1024

CG 0.2597 0.2097 0.1450 0.1077
CGS 0.0404 0.0384 0.0534 0.0423

Table 8 The non-normality ratios for µ = 2562, λ = 0.1

As a direct relation between scalar measures of non-normality and pseu-
dospectra is still an open problem, the pseudospectra of matrices corresponding
to second column (N = 128) of Table 7 are depicted and compared in the next
three figures.
However, it is apparent from Figures 6.1 and 6.2 that the “amplitude” of

variations (contours) of pseudospectra of the associated matrices decreases at
the same time with the non-normal ratio.
This “amplitude” even vanishes for quasi normal matrices, i.e., those corre-

sponding to the non-normality ratio

H(CGS) = 4.5645e− 04.

The pseudospectrum of such matrices, depicted in Figure 6.3, reduces to a set
of points very close to the real axis.

Remark 81 In all the three figures 6.1, 6.2 and 6.3 the large dots are the eigen-
values. The matrices are non-normal, and their pseudospectra are accordingly
much bigger than the ε−neighborhoods about their spectra.

Remark 82 It is quite surprising that for both Chebyshev-Galerkin methods
considered, the non-normality ratio of the stiffness matrices decreases, as di-
mension N increases, thus improving their normality (see Tables 1-6). Small
fluctuations are observed in Tables 5 and 6 for (CGS) method but they do not
affect the above conclusions.
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Figure 6.1: The pseudospectrum, (CT) method, N = 128, λ = 2564, µ = 0
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Figure 6.2: The pseudospectrum for (CG) method N = 128, λ = 2564
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Figure 6.3: The pseudospectrum, (CGS) method, N = 128, λ = 2564, µ = 0

In the case of tau method the non-normality is mainly caused by the pertur-
bations introduced with direct enforcing of the boundary conditions. For this
method the non-normality of the matrices involved is high and quite constant.
However, with respect to normality, the (CG) methods are far better than

(CT) methods.
We also have to remark the superiority of the (CGS) method considered by

Shen as compared to our (CG) method. It is worth noting that this method
produces quite normal matrices (see Table 7).
As a final remark, it is important to underline that whenever the pseudospec-

trum fails to observe the non-normality, as it is clear from Figure 6.3, our scalar
measure remains an indicator for that.

6.3.3 Complex Schrödinger operators

In his paper [194] L. N. Trefethen considers the following Schrödinger operator

Au (x) := u00 +
¡
cx2 − dx4

¢
u, c = 3 + i3, d =

1

16
. (6.14)

It is discretized by a Chebyshev collocation method on a finite interval
[−L,L] with boundary conditions u (±1) = 0. First, the interval [−L,L] is
approximated by the set of (CGaussL) points

xj := L cos

µ
jπ

N + 1

¶
, j = 0, 1, 2, . . . , N + 1,
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and the operator A is then approximated on this grid by an N × N matrix
AN defined by the following prescription. For any N−vector v, ANv is the
N−vector obtained by two steps:

• let p (x) the unique polynomial of degree ≤ N + 1 with p (±L) = 0 and
p (xj) = vj for j = 1, 2, . . . , N ;

• for j = 1, 2, . . . , N, (ANv)j = p00 (xj) +
¡
cx2j − dx4j

¢
p (xj) .

At the same time with matrixAwe consider a “conditioned” (equivalent) form
of that, namely B :=WAW−1, where the weight matrix W has the structure

W := diag (w1, w2, . . . , wN ) ,

and the weights are

wj :=
π
q
L2 − x2j

2 (N + 1)
.

The fact that the matrix B is more normal than A is apparent from the Table
9.

N H(AN ) H(BN )
64 0.3745 0.1262
140 0.3946 0.1329
160 0.3949 0.1330
200 0.3949 0.1330

Table 9 The non-normality ratios
The non-normality of these matrices is compared with that of discretization

matrices corresponding to (CT), (CG) and (CGS) methods in the Table 10.
N=64 N=256 N=512 N=1024

CT 0.9912 0.9916 0.9844 0.9844
CG 0.2236 0.1161 0.0826 0.0586
CGS 0.1247 0.0637 0.0452 0.0320

Table 10 The non-normality ratios for (CT), (CG) and (CGS)
methods.
Again, the (CGS) method is the best. The pseudospectrum of the (CT)

discretization matrix for N = 16 is displayed in Fig. 6.4. Another aspect of
non-normality is the fact that almost all eigenvalues gather around the origin.

Remark 83 The normality of collocations methods In their paper [196],
Trefethen and Trummer, analyzed the spectra of the Fourier, Chebyshev and
Legendre pseudodifferential matrices with respect to the fact that they determine
the allowable time step in an explicit time integration of parabolic and hyperbolic
partial differential equations. They observe that these eigenvalues are extraor-
dinarily sensitive to rounding errors and other perturbations. Our numerical
experiments thoroughly confirm this assertion. More than that, we observe that
the Fourier pseudodifferential matrix is a circulant matrix and consequently is
a normal one. Our numerical experiments confirmed that their Henrici number
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Figure 6.4: The pseudospectrum for the (CT) method

equals zero. The eigenvalues of such a matrix (denoted D
(1),F
N ) are all complex.

The pseudospectrum and the log of the norm of its resolvent are displayed in
Fig. 6.5. On the other hand, the Henrici number of Chebyshev pseudodifferen-

tial matrices is much larger, i.e., HA(D
(1),C
N ) = 0.8928 and is quite independent

of N. The pseudospectrum and the log of the norm of its resolvent for N = 16
are displayed in Fig. 6.6. Unfortunately, these results do not confirm those
of Trefethen and Trummer, [196], p.1011, but the norm of the resolvent un-
derlines the sensitivity of eigenvalues to the rounding off errors. For Hermite
pseudodifferential matrices we obtained Henrici numbers of order 0.2589.



116 CHAPTER 6. NON-NORMALITY OF SPECTRAL APPROXIMATION

-4 -2 0 2 4
-4

-2

0

2

4

Re λ

Im
 λ

First order Fourier derivative matrix N=8

-5

0

5

-5

0

5
-5

0

5

10

15

20

xy
lo

g1
0(

no
rm

(in
v(

z*
I-A

))
)

Figure 6.5: The pseudospectrum and the norm of the resolvent for D
(1),F
8

-2 0 2
-2

-1

0

1

2

Re λ

Im
 λ

First order Chebyshev derivative matrix

-2
0

2

-2

0

2
8

10

12

14

16

18

xy

lo
g1

0(
no

rm
(in

v(
z*

I-A
))

)

Figure 6.6: The pseudospectrum and the norm of the resolvent for D
(1),C
16 . The

large dots are the eigenvalues.



Chapter 7

Concluding remarks

”Spectral methods are like Swiss watch. They work beautifully,
but a little dust in the gear stops them entirely.”

Philip L. Roe, quoted by J P Boyd, SIAM Rev., 46(2004)

Two main conclusions were drawn after all the numerical exper-
iments were carried out.
The first one refers to the fact that the Chebyshev collocation

method (pseudospectral), in spite of its non-normality, remains the
most feasible and the most implementable spectral method. It suc-
ceeded in the linear and, most important, nonlinear problems of
elliptic, parabolic and hyperbolic types.
The second one underlines the fact that the symplectic methods,

implicit as well as explicit, in conjunction with Chebyshev colloca-
tion methods, perform much better than the conventional methods
in long time integration of Hamiltonian partial differential equations.
They reproduce accurately the structure of the phase space and pro-
duce Hamiltonians with narrow oscillations. This way, they do not
alter the nature of Hamiltonian systems.

117
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Chapter 8

Appendix

8.1 Lagrangian and Hermite interpolation

Let f : [a, b] → R be a sufficiently smooth function and a ≤ x0 ≤ x1 ≤ x2 ≤
... ≤ xN ≤ b a partition of the interval [a, b] .
The well known Lagrangian interpolation formula is

f (x) =
NX
k=0

lk(x)f (xk) +
1

(N + 1)!
Π (x) f (N+1) (ξ) , (8.1)

where lk(x) are Lagrangian basis polynomials, called also cardinal functions,
defined by

lk (x) = Π
N
j=0
k 6=j

µ
x− xj
xk − xj

¶
, k = 0, 1, 2, ..., N.

We observe that the set of interpolating polynomials {lk (x)}Nk=0 satisfies

lk (xj) = δkj .

The Hermite interpolation formula matches not only f (x) but also f 0 (x) at the
same points. It reads

f (x) =
NX
k=0

hk(x)f (xk)+
NX
k=0

h∗k(x)f
0 (xk)+

1

(2N + 2)!
f (2N+2) (ξ)Π2 (x) , (8.2)

where

hk(x) = {1− 2l0k (xk) (x− xk)} l2k (x) , h∗k(x) = (x− xk)l
2
k (x) ,

and in both formulas, Lagrangian and Hermite, ξ is in the range bounded by
extreme values of x and xk. They produce, respectively, Lagrangian quadrature
formulas and Gauss quadrature formulas, whose errors are well established in
classical monographs of numerical analysis (see for instance [43]).

119
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Figure 8.1: The 4th and the 5th order Hermite polynomials

However, we employed a more direct approach of Hermite polynomials. The
Hermite polynomials Hn (x) , its first and second derivatives at x ∈ R satisfy the
following recurrence relations (see for a detailed introduction D. Funaro [73])⎧⎨⎩ H0 (x) = 1,

H1 (x) = 2x,
Hn (x) = 2xHn−1 (x) + 2 (n− 1)Hn−2 (x) , n ≥ 2,

H 0
n (x) = 2nHn−1 (x) , n ≥ 1, and H 00

n (x) = 4n (n− 1)Hn−2 (x) , n ≥ 2.
The roots of the Hermite polynomial of degree N, indexed in ascending order,

x1, ..., xN satisfy the asymptotic estimation −x1 = xN = O
³√

N
´
as N →∞.

This is visible in Fig. (8.1). Each and every spectral collocation method for
solving differential equations is based on weighted interpolants of the form

f (x) ∼= pN−1 (x) =
NX
j=1

α (x)

α (xj)
φj (x) fj , (8.3)

where {xj}j=1,2,...,N is a set of distinct interpolation nodes, α (x) is a weight

function, fi := f (xi) and the set of interpolating functions
©
φj (x)

ª
j=1,2,...,N

satisfies
φj (xk) = δjk.

It is clear that this formula includes, as some particular cases, the formulas
(8.1) and (8.2). A list of commonly used nodes, weights, and interpolating func-
tions are tabulated in the paper of Weideman and Reddy [204]. These include
the Chebyshev, Hermite, and Laguerre expansions as well as two well known
nonpolynomial cases, namely trigonometric (Fourier) and sinc interpolants.
Associated with an interpolant such as (8.3) is the concept of a collocation

derivative operator or pseudospectral derivative. This operator is generated by
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taking l derivatives of (8.3) and evaluating the result at the nodes {xj}j=1,2,...,N :

f (l) (xk) ∼=
NX
j=1

dl

dxl

∙
α (x)

α (xj)
φj (x)

¸
x=xk

fj , k = 1, 2, ..., N.

The derivative operator may be represented by a matrix D(l) (to be more ex-
plicit, sometimes we add an upper index for the type of expansion, i.e., C, H, L,
F, s and a lower index for the order N of the approximation), the differentiation
matrix, with entries

D
(l)
k,j :=

dl

dxl

∙
α (x)

α (xj)
φj (x)

¸
x=xk

. (8.4)

The numerical differential process may be carried out as the matrix-vector prod-
uct

f (l) = D(l) · f ,
where f (respective f (l)) is the vector of function values (respective approximate
derivative values) at the nodes {xj}j=1,2,...,N .
With respect to Hermite case, we notice that

pN−1 (x) =
NX
j=1

e−x
2/2

e−x
2
j/2

· HN (x)

H 0
N (xj) (x− xj)

· fj ,

which means that the weight function α (x) is

α (x) := e−x
2/2,

i.e., a Gaussian type function.

For a differentiation formula D
(l),H
N we refer to Funaro [73] and for its imple-

mentation in MATLAB environment to Weideman and Reddy [204]. We also
remark that

D
(l),H
N 6=

³
D
(1),H
N

´l
,

and that the accuracy (error analysis) of Hermite interpolation formulas in gen-
eral, is not analyzed.

Remark 84 When a physical problem is posed on an infinite domain, i.e., the
real line, a variety of spectral methods have been developed using the Hermite
polynomials as a natural choice of basis functions because of their close connec-
tion to the physics. With respect to the implementation of Hermite collocation
method we observe that the real line (−∞, ∞) can be mapped to itself by change
of variables

x := b · ex,
where b is any positive real number called scaling factor. Consequently, due
to the chain rule, the first-derivative matrix corresponding to b = 1 should be
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multiplied by b, the second-derivative matrix by b2, etc. At the same time, the
nodes are rescaled to xk/b. It means that the Hermite differentiation process is
exact for functions of the form

e−b
2x2/2p (x) ,

where p (x) is any polynomial of degree N − 1 or less. The freedom offered by
the parameter b can be exploited to optimize the Hermite differentiation process;
see Tang [192] and also P. Anhaouy [162], P. 87.

Remark 85 F. Stenger in [185] and [186] provides a fairly complete summary
of numerical methods based on sinc functions or Whittaker Cardinal functions.
Sinc approximation excels for problems whose solutions have singularities, or
infinite domains, or boundary layers. The sinc function is defined by

sin c (x) :=
sin (πx)

πx
,

and a sinc expansion of f reads

C (f, h) (x) =
X
k∈Z

f (kh) sin c
³x
h
− k

´
, x ∈ R.

The function C (f, h) (x) provides an incredible accurate approximation on R to
functions that are analytic and uniformly bounded, i.e.,

sup
x∈R

|f (x)− C (f, h) (x)| = O
³
e−π/h

´
, h→ 0.

8.2 Sobolev spaces

8.2.1 The Spaces Cm
¡
Ω
¢
, m ≥ 0

Let Ω := (a, b)d , d = 1, 2, 3 and let’s denote by Ω the closure of Ω ,i.e., the closed

poly-interval [a, b]d . For every multi-index α = (α1, ..., αd) of non-negative in-
tegers, set |α| := α1 + ...+ αd and Dav = ∂|α|v/∂xα11 ...∂xαdd .

We denote by Cm
¡
Ω
¢
the vector space of the functions v : Ω→ R such that

for each multi-index α with 0 ≤ |α| ≤ m, Dav exists and is continuous in Ω.
Since a continuous function on a closed bounded poly-interval is bounded there,
one can set

kuk := sup
0≤|α|≤m

sup
x∈Ω

|Dav (x)| .

It means a norm for which Cm
¡
Ω
¢
is a Banach space.

A function belongs to C∞
¡
Ω
¢
iff it belongs to Cm

¡
Ω
¢
for all m > 0.
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8.2.2 The Lebesgue Integral and Spaces Lp (a, b) , 1 ≤ p ≤
∞.

A complete introduction to the Lebesgue integral can be found in many text
books (see, for instance, Adams, R.A.,[3]). We assume known the notions of
Lebesgue measure, measurable sets, measurable functions, and Lebesgue inte-
gral. Since two integrable functions which differ on a set of zero measure have
the same integral, they can be identified from the point of view of the Lebesgue
integration theory, i.e., they belong to the same equivalence class. This identi-
fication is always presumed here an in the sequel.
Let (a, b) be a bounded interval of R and let 1 ≤ p < +∞. We denote by

Lp (a, b) the space

Lp (a, b) := {u : (a, b)→ R;u measurable,R b
a
|u (x)|p dx < +∞

o
Endowed with the norm

kukLp(a,b) :=
ÃZ b

a

|u (x)|p dx
!1/p

,

it is a Banach space.
If p =∞, L∞ (a, b) is the space of measurable functions u : (a, b)→ R such

that |u (x)| is bounded outside a set of measure zero. If M denotes the smallest
real number such that |u (x)| ≤M outside the set of measure zero we define the
norm of this space by

kukL∞(a,b) := ess sup
x∈(a,b)

|u (x)| =M.

L∞ (a, b) is again a Banach space.
The index p = 2 is of special interest because L2 (a, b) is not only a Banach

space but a Hilbert space with the scalar product

(u, v)L2(a,b) :=

Z b

a

u (x) v (x) dx.

The previous definitions can be extended in a straightforward way to more than
one space dimension and we get the spaces Lp (Ω) 1 ≤ p ≤ ∞.

8.2.3 Infinite Differentiable Functions and Distributions

We denote by D (Ω), Ω bounded in Rd, d = 1, 2, 3, the vector space of all
infinitely differentiable functions φ : Ω→ R, for which there exists a closed set
K ⊂ Ω such that φ ≡ 0 outside K. In other words, the function φ has compact
support in Ω. We say that a sequence of functions φn ∈ D (Ω) converges in
D (Ω) to a function φ ∈ D (Ω) as n → ∞ if there exists a common set K ⊂ Ω
such that all the φn vanish outside K and Dαφn → Daφ uniformly on K as
n→∞, for all non-negative multi-indices α.
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a) Distributions

Let T : D (Ω) → R be a linear mapping (form). We shall denote the value
of T on the element φ ∈ D (Ω) by hT, φi . T is said to be continuous if, for
each sequence φn ∈ D (Ω) which converges in D (Ω) to a function φ ∈ D (Ω) as
n→∞, one has

hT, φni→ hT, φi .

A distribution is a linear continuous form on D (Ω) . The set of all the
distributions on Ω is a vector space denoted by D0 (Ω) .

Example 86 (i) Each integrable function f ∈ Lp (a, b) can be identified with a
distribution Tf defined by

hTf , φi :=
Z b

a

f (x)φ (x) dx, ∀φ ∈ D (Ω) .

(ii) Let x0 ∈ (a, b) . The linear form on D (Ω)

hδx0 , φi := φ (x0) , for all φ ∈ D (Ω) ,

is a distribution, which is commonly (but improperly!) called the “Dirac func-
tion”.
We notice that if T1 and T2 are two distributions, then they are called “equal

in the sense of distributions” if

hT1, φi = hT2, φi , for all φ ∈ D (Ω) .

b) The Derivative of Distributions

Let α be a non-negative multi-index and T ∈ D0 (Ω) an arbitrary distribution.
The distribution DαT defined by

hDαT, φi := (−1)|α| hT,Dαφi , for all φ ∈ D (Ω) ,

is called the α− distributional derivative of T.

Remark 87 It is extremely important to observe that each function u (x) from
Lp (Ω) , 1 ≤ p < ∞ is infinitely differentiable in the sense of distribu-
tions, and the following Green’s (or integration by parts) formula holds

hDαu, φi := (−1)|α|
Z
Ω

u (x)Dαφ (x) dx, ∀ φ ∈ D (Ω) .

At the same time, if a function is continuously differentiable (in the classical
sense), it is of course differentiable in the sense of distributions. The converse
statement, generally speaking, is not true!
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In general, the distributional derivative of an integrable function can be an
integrable function or merely a distribution. We say that the α -distributional
derivative of an integrable function u ∈ L1 (Ω) is an integrable function if there
exists g ∈ L1 (Ω) such that

hDαu, φi =
Z
Ω

g (x)φ (x) dx, for all φ ∈ D (Ω) .

Example 88 Consider the function

u (x) =
1

2
|x| , x ∈ (−1, 1) .

Note that u is not classically differentiable at the origin. The first derivative
in the distributional sense is represented by the step function

v (x) =

½
1/2, x > 0,
−1/2, x < 0,

which is an integrable function. Please verify these statements! Hint:

hDu, φi = (−1)
Z 1

−1
uφ0dx =

= −1
2

½
−xφ|0−1 +

Z 0

−1
φdx+ xφ|10 −

Z 1

0

φdx

¾
=

=
1

2

½Z 0

−1
(−φ) dx+

Z 1

0

φdx

¾
=

Z 1

−1
v (x)φ (x) dx.

Example 89 Consider the function v (x) now defined. Note that classical deriva-
tive is zero at all points x 6= 0. The first derivative of v in the sense of distri-
butions is the Dirac distribution δ0 at the origin. This distribution can not be
represented as a function. More exactly, we have

hDv, φi = (−1) 1
2

½
−
Z 0

−1
φ0dx+

Z 1

0

φ0dx

¾
=

= φ (0) = hδ0, φi .
Functions having a certain number of distributional derivatives which can

be represented by integrable functions play a fundamental role in the modern
theory of partial differential equations. The spaces of these functions are named
Sobolev spaces.

8.2.4 Sobolev Spaces and Sobolev Norms

We introduce hereafter some relevant Hilbert spaces, which occur in the numeri-
cal analysis of boundary value problems (see also [38] and [33]). They are spaces
of square integrable functions, which possess a certain number of derivatives in
the sense of distributions, representable as square integrable functions.
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a) The Spaces Hm (a, b) and Hm (Ω) , m ≥ 0

Let (a, b) be a bounded interval of the real line, and let m ≥ 0 be an integer.
We define Hm (a, b) to be the vector space of the following functions

Hm (a, b) :=
©
v ∈ L2 (a, b) ; for 0 ≤ k ≤ m,
dkv
dxk
∈ L2 (a, b)

o
.

Hm (a, b) , endowed with the scalar product

(u, v)
Hm(a,b)

:=
mX
k=0

Z b

a

dkv

dxk
(x)

dku

dxk
(x) dx,

becomes a Hilbert space. The associated norm is

kvkHm(a,b) =

Ã
mX
k=0

Z b

a

°°°°dkvdxk

°°°°2
L2(a,b)

! 1
2

.

The Sobolev spaces Hm (a, b) form a hierarchy of Hilbert spaces in the sense
that

...Hm+1 (a, b) ⊂ Hm (a, b) ⊂ ...H0 (a, b) = L2 (a, b) ,

each inclusion being continuous. Clearly, if a function u has m classical continu-
ous derivatives in [a, b] , then u belongs to Hm (a, b) ; in other words, Cm [a, b] ⊂
Hm (a, b) with continuous inclusion. Conversely, if u belongs to Hm (a, b) for
m ≥ 1, then u hasm−1 classical continuous derivatives in [a, b] , i.e., Hm (a, b) ⊂
Cm−1 [a, b] with continuous inclusion. This is an example of so-called ”Sobolev
Imbedding theorems”.

As a matter of fact, Hm (a, b) can be equivalently defined as

Hm (a, b) :=

½
v ∈ Cm−1 [a, b] ;

d

dx
v(m−1) ∈ L2 [a, b]

¾
,

where the last derivative is considered in the sense of distributions.

Functions in Hm (a, b) can be approximated arbitrarily well by infinitely dif-
ferentiable functions in [a, b] , in the distance induced by the norm of Hm (a, b) .
In other words,

C∞ [a, b] is dense in Hm (a, b) .

Set now Ω := (a, b)
d
, d = 2, 3, which means (a, b)× (a, b)| {z }

d times

. Given a multi-index

α := (α1, ..., αd) of non-negative integers, we set |α| := α1 + ...+ αd and

Dαv :=
∂|α|v

∂xα11 ...∂xαdd
.
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The previous definition of Sobolev spaces can be extended to higher space di-
mensions as follows. We define

Hm (Ω) : =
©
v ∈ L2 (Ω) ; for each non− negative

multi− index α |α| ≤ m,

distributional derivative Dαv ∈ L2 (Ω)
ª
,

the scalar product

(u, v)m :=
X
|α|≤m

Z
Ω

Dαu (x)Dαv (x) dx,

and the induced norm

kvkHm(Ω) :=

⎛⎝ X
|α|≤m

kDαv (x)k2L2(Ω)

⎞⎠1/2

.

In this case, we have a weaker Sobolev inclusion, namely

Hm (Ω) ⊂ Cm−2 ¡Ω¢ , m ≥ 2.
On the other hand, as in the 1D case,

C∞
¡
Ω
¢
is dense in Hm (Ω) .

b) The Spaces H1
0 (a, b) and H

1
0 (Ω)

Dirichlet conditions are among the simplest and most common boundary condi-
tions to be associated with a differential operator. Therefore, the subspaces of
Sobolev spaces Hm spanned by the functions satisfying homogeneous Dirichlet
boundary conditions play a fundamental role.
Since the functions of H1 (a, b) are continuous up to the boundary, by the

Sobolev Imbedding Theorems, it is meaningful to introduce the following sub-
space of H1 (a, b) , namely

H1
0 (a, b) :=

©
v ∈ H1 (a, b) ; v (a) = v (b) = 0

ª
.

This is a Hilbert space with respect to the same scalar product of H1 (a, b) .
It is often preferable to endow H1

0 (a, b) with a different, although equivalent,
scalar product. This is defined as

[u, v] :=

Z b

a

du

dx

dv

dx
dx.

By Poincaré inequality, (1.57) this is indeed a scalar product on H1
0 (a, b) and

the associated norm reads

kvkH1
0 (a,b)

=

ÃZ b

a

¯̄̄̄
du

dx

¯̄̄̄2
dx

!1/2
.
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This norm is equivalent to the H1 (a, b)−norm, in the sense that there exists a
constant C > 0 such that

C kvkH1(a,b) ≤ kvkH1
0 (a,b)

≤ kvkH1(a,b) .

Again, this follows from the Poincaré inequality.
The functions of H1

0 (a, b) can be approximated arbitrarily well in this norm
not only by infinitely differentiable functions on [a, b] but also by infinitely dif-
ferentiable functions which vanish identically in a neighborhood of x = a and
x = b. In other words,

D (a, b) is dense in H1
0 (a, b) .

We now turn to more space dimensions. If again Ω := (a, b)d , d = 2, 3, the
functions of H1 (Ω) need not be continuous on the closure of Ω. Thus, their
pointwise values on the boundary ∂Ω of Ω need not be defined. However, it is
possible to extend the trace operator v → v|∂Ω (classically defined for functions
from C

¡
Ω
¢
so as to be a linear continuous mapping between H1 (Ω) and L2(∂Ω)

(see [3], for the rigorous definition of the trace of functions from H1 (Ω)). With
that in mind, it is meaningful to define H1

0 (Ω) as the space

H1
0 (Ω) :=

©
v ∈ H1 (Ω) ; v|∂Ω = 0

ª
.

This is a Hilbert space for the scalar product ofH1 (Ω) , or for the scalar product

[u, v] :=

Z
Ω

∇u ·∇vdx.

The associated norm is defined by

kukH1
0 (Ω)

=

µZ
Ω

|∇u|2
¶1/2

.

and is equivalent to the H1 (Ω)−norm, by the Poincaré inequality.
Concerning the approximation of functions of H1

0 (Ω) by infinitely differen-
tiable functions, the following result holds

D (Ω) is dense in H1
0 (Ω) .

8.2.5 The Weighted Spaces

Let ω (x) be a weight function on the interval [−1, 1], i.e., a continuous, strictly
positive and integrable function on (−1, 1) . For 1 ≤ p < ∞ we denote by
Lpω (−1, 1) the Banach space of measurable functions u : (a, b) → R such thatR 1
−1 |u (x)|

p ω (x) dx < ∞. Consequently, this space can be endowed with the
norm

kukLpω(−1,1) :=
µZ 1

−1
|u (x)|p ω (x) dx

¶1/p
.
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For p = ∞ we set L∞ω (−1, 1) = L∞ (−1, 1) and for p = 2 the space becomes a
Hilbert one with the scalar product

(u, v)L2ω(−1,1) :=

Z 1

−1
u (x) v (x)ω (x) dx.

In the definition of a Sobolev space, one can require that the function as well
as its distributional derivative be square integrable with respect to a weight
function. This is the most natural background in dealing with spectral methods.
Thus, in a perfect analogous way with the above analysis we can construct the
spaces L2ω (Ω) , H

m
ω (−1, 1) , Hm

ω (Ω) , H
1
ω,0 (−1, 1) and H1

ω,0 (Ω) .

Remark 90 In order to simplify the writing, corresponding to the most im-
portant case p = 2, we adopt the following short notations for the norms and
scalar products in the respective spaces

k·k , (·, ·) , k·kω , (·, ·)ω , L2, L2ω;
k·km , (·, ·)m , k·km,ω , (·, ·)m,ω , H

m, Hm
ω ;

k·k1,0 , (·, ·)1,0 , k·k1,ω,0 , , (·, ·)1,ω,0 , H1
0 , H

1
ω,0.

The domains on which these norms and scalar products are considered result
from context.

8.3 MATLAB codes

In the Appendix B of their monograph [33], Canuto, Hussaini, Quarteroni
and Zang present a listing of self-contained FORTRAN routines for comput-
ing Fourier and Chebyshev collocation derivatives. They are geared towards
applications in multidimensional problems. D. Funaro in [73], using the same
environment, offers a series of basic algorithms in order to allow a smooth start
in the development of more extensive codes.
L. N. Trefethen introduces in his monograph [197] some fairly useful MAT-

LAB codes which implement spectral methods. Weideman and Reddy present
in their paper [204] a software suite which consists of 17 MATLAB functions
for solving differential problems by the spectral collocation methods. These
functions enable the user to generate spectral differential matrices based on
Chebyshev, Fourier, Hermite, Laguerre and sinc interpolants. We used these
functions in the implementation of our collocation methods.
However, in this Appendix we introduce also some MATLAB codes which im-

plement Chebyshev tau and Chebyshev Galerkin methods. Here are the codes.

1) The MATLAB code Chebyshev tau.m

% Chebyshev-tau method u’’+u=f, u(-1)=u(1)=0, f(x)=x^2+x;

clear all, close all

N=129; % The order of approximation
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k=-1.; % the parameter lambda

A=zeros(N+1,N+1); % the entries of matrix A

A(N+1,:)=1;

i=1:(N+1);A(N,:)=(-1).^(i+1);A(1,1)=-k;

for p=3:2:N+1

A(1,p)=(1/2)*(p-1)^3;

end

for i=2:N-1

A(i,i)=-k;

for p=(i+2):2:N+1

A(i,p)=(p-1)*(((p-1)^2)-((i-1)^2));

end

end\vspace{0.3cm}

% The matrix CI transforms from Chebyshev space to physical space

\vspace{0.3cm}

for j=1:N+1

for k=1:N+1

CI(j,k)=cos(pi*(j-1)*(k-1)/N);

end

end

F=zeros(N+1,1); F(1)=F(1)+1./2.; F(2)=F(2)+1.; F(3)=F(3)+1./2.;

X=A\F; % Solve the algebraic system AX=F

%Transform the Chebyshev tau solution from SPECTRAL SPACE to PHYS-
ICAL SPACE

U=CI*X;

m=1:N+1;XG=cos(pi*(m-1)./N); %(CGaussL) nodes (\QTSN{ref}{CGL})

% THE closed SOLUTION

Sol=XG.^2+XG-2+(1/cos(1.)).*cos(XG)-(1/sin(1.)).*sin(XG);

Diff=U-Sol’;

Maxerror=max(abs(Diff))

fsize=10;

plot(XG,U,XG,Sol), xlabel(’x’,’Fontsize’,fsize)

ylabel(’u(x)’,’Fontsize’,fsize)

title(’u"+u=x^2+x, u(-1)=u(1)=0, N=128’,’Fontsize’,fsize)

legend(’Chebyshev-tau Sol’,’Exact Sol’)

% Obtain Fig. 2.1

2) The MATLAB code LargeScale.m

% Solve the t p b v p u’’+(k^2+3)u=5sin(kx), u(-1)=-sink; u(+1)=sink

% The second order operator u’’ is discretized by Chebyshev-collocation

% L. Greengard, V. Rokhlin, On the Numerical Solution of Two-Point B V P,
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% Communications on Pure and Applied Mathematics, Vol XLIV, 419-452(1991)

% The differentiation matrices from Weideman and Reddy

clear all, close all

pi=4.*atan(1.);

N = input(’ Dimension of the differentiation matrix: N = ? ’);

g=[1 0 0;1 0 0]; % B. C. for CC method

[x,D2t]=cheb2bc(N,g); % Differentiation matrices

kapa=200;

A=D2t+(kapa^2+5)*eye(size(D2t));

F=5*sin(x.*kapa)-x.*(kapa^2+5)*sin(kapa);

v=A\F; % Solve the linear algebraic system

x=flipud(x);v=flipud(v);

x=[-1;x;1];v=[0;v;0];

CCsol=v+x.*sin(kapa);

Exsol=sin(x.*kapa);

MaxDifference=max(abs(CCsol-Exsol)) % The accuracy of computation

plot(x,CCsol,x,Exsol), legend(’CCsol’,’Exsol’)% Plot and compare solutions

axis([-1 1 -1 1])

xlabel(’x’,’FontSize’,10)

ylabel(’CCsol / EXsol’,’FontSize’,10)

% Obtain the Figure 2.3

3) The MATLAB code SingPerturb.m

% Solve the t p b v p eps*u’’-u’=.5, u(-1)=0; u(+1)=0

% The second order operator u’’ is discretized by Chebyshev-collocation method

% L. Greengard, V. Rokhlin, On the Numerical Solution of Two-Point B V P,

% Communications on Pure and Applied Mathematics, Vol XLIV, 419-452(1991)

% The differentiation matrices from Weideman and Reddy

clear all, close all

N = input(’ Dimension of the differentiation matrix: N = ? ’);

g=[1 0 0;1 0 0]; % B. C. for CC method

% Differentiation matrices (first and second orders) with enforced

% boundary conditions

[x,D2t,D1t]=cheb2bc(N,g);

x=flipud(x);y=[-1;x;1];

eps=[.1 .01 .001 .0001 1.e-05];

for i=1:5

A=eps(i)*D2t-D1t; F=.5*ones(size(x));

v=A\F;

v=[0;v;0];v=flipud(v);

CCsol(:,i)=v+y.*.5+1.5;

ac=.5+1/(exp(-2/eps(i))-1);bc=ac-.5;

EXsol=ac+1.5-bc*exp((y-1)/eps(i));

format long

eps(i)
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MaxDifference=max(abs(CCsol(:,i)-EXsol))

clear v ac bc EXsol MaxDifference

end

fsize=10;

plot(y,CCsol(:,1),’-r’,y,CCsol(:,2),’.g’,y,CCsol(:,3),’+b’,y,CCsol(:,4),’-c’...

,y,CCsol(:,5),’-m’)

title(’ A singularly perturbed problem (N=1024)’,’FontSize’,fsize)

legend([repmat(’\epsilon=’,5,1), num2str(eps’)],2)

xlabel(’x’,’FontSize’,10)

ylabel(’u(x,\epsilon)’,’FontSize’,10)

hold off

% Obtain the Figure 2.4

4) The MATLAB code Therm.m

% Solve the t p b v p u’’+u^3=0, u(-1)=u(+1)=0

% The second order operator u’’ discretized by Chebyshev-collocation method

%

clear all, close all

N=64; pi=4.*atan(1.); % Order of approximation

g=[1 0 0;1 0 0]; % B. C. for CC method

[x,D2t,D1t]=cheb2bc(N,g); % Differentiation matrices

u0=(1-x.^2).^2; % Make a starting guess at the solution

lambda=5;

% Solve the nonlinear algebraic system

options=optimset(’Display’,’off’,’LevenbergMarquardt’,’on’)

[u,Fval,exitflag]=fsolve(@therm,u0,options,D2t,lambda) % Call optimizer

sol=[0;u;0]; x=[1;x;-1];fsize=10;

sum(sum(Fval.*Fval))

plot(x,sol)

xlabel(’x’,’FontSize’,fsize)

ylabel(’u(x)’,’FontSize’,fsize)

title(’The solution to average temperature in a r-d process’,’FontSize’,fsize)

% Obtain the Figure 2.5

The function therm is available in the next routine:

function [F,J]=therm(x,D2t,lambda)

%

x1=ones(size(x));

F=D2t*x+lambda.*diag(x1)*(x.^3) ; % objective function

5) The MATLAB code Heat2.m

% MATLAB code Heat2

% Solve ibvp for heat equation du/dt=S(x)u’’(x,t)
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% Initial data u(x,0)=u0, boundary conditions u(-1)=u(1)=0;

clear, clf

N=32; pi=4.*atan(1.); % Order of approximation

g=[1 0 0;1 0 0]; % B. C. for CC method

tfinal=1.; % Final time of integration

[x,D2t]=cheb2bc(N,g); % Differentiation matrix (second order) with enforced b. c.

% Use the routine cheb2bc from Weideman & Reddy

u=zeros(size(x));

u0=1-cos(pi.*(x+1));

subplot(3,1,1); plot(x,u0),ylabel(’u0(x,0)’), title(’Initial data’)

tspan=[0:tfinal/100:tfinal]; % Step size

options=odeset(’RelTol’,1e-04,’AbsTol’,1e-6);

[t,u]=ode45(’parab’,tspan,u0,options,D2t); % Runge-Kutta solver

x=[1;x;-1]; % The spatial grid

% [m,n]=size(u)

ufinal=[0,u(m,:),0];

subplot(3,1,2); plot(x,ufinal),ylabel(’u(x,tfinal)’), title(’Solution at final time’)

u1=zeros(m,1);

u=[u1,u,u1];

subplot(3,1,3); mesh(x,t,u), xlabel(’x’), ylabel(’t’), zlabel(’u(x,t)’),

title(’Solution of heat initial-boundary value problem’)

function dudt=parab(t,w,flag,D2t)

% Function to compute the RHS of heat 1D eq.

dudt=zeros(size(w)); % Preallocate column vector dudt

dudt=D2t*w;

dudt=12.*dudt;

% Obtain Figure 3.1

6) The MATLAB code Burgersibvp.m

% A MATLAB code for Burgers equation using Hermite collocation

% Solving initial boundary value problem for Burgers equation

% du/dt=-(theta/2)*(u^2)’-(1-theta)*uu’)+eps*u’’

% Initial data u(x,0)=u0, boundary conditions u=0 at the end of real line

% !!

clear all; close all;

N=200; pi=4.*atan(1.); % Order of approximation

b=.545; % B. C. for HermiteC method

eps=1/(100*pi); % Difusion coefficient

[x,D]=herdif(N,2,b); % Differentiation matrices

D2t=D(:,:,2); D1t=D(:,:,1); fsize=10;

u0=0.5*sech(x);

subplot(2,2,1),plot(x,u0)

xlabel(’x’,’FontSize’,fsize)

ylabel([’u(x,’,num2str(0),’)’],’FontSize’,fsize)
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title(’Solution to Burgers eq., N=200,\epsilon=1/(300*\pi)’,’FontSize’,fsize)

% Shampine, L. F. and M. W. Reichelt, "The MATLAB ODE Suite,"

% SIAM Journal on Scientific Computing, Vol. 18, 1997, pp 1-22.

options=odeset(’RelTol’,1e-04,’AbsTol’,1e-6);

for i=1:3

t0=(i-1)*5; tf=i*5;

tspan=[t0:tf/200:tf]; % Step size

[t,u]=ode113(’Burgers’,tspan,u0,options,eps,D2t,D1t);

[m,n]=size(u);

ufinal=u(m,:);i1=i+1;

subplot(2,2,i1),plot(x,ufinal)

xlabel(’x’,’FontSize’,fsize)

ylabel([’u(x,’,num2str(tf),’)’],’FontSize’,fsize)

u0=u(m,:);

clear u ufinal

end

xlabel(’x’,’FontSize’,fsize)

ylabel([’u(x,’,num2str(tf),’)’],’FontSize’,fsize)

% Obtain Figure 3.3

function du=Burgers(t,w,flag,eps,D2t,D1t)

% Function to compute the RHS of Burgers eq.

% the convective term has the conservative form (uu/2)’

theta=2/3;

du=zeros(size(w)); % Preallocate column vector du

convterm=zeros(size(w));

convterm=(theta*D1t*(w.*w)/2+(1-theta)*w.*(D1t*w));

du=-convterm+eps*(D2t*w);

7) The MATLAB code FourthEq.m

% Solve a standard fourth order b. v. problem by a

% Chebyshev Galerkin (CG) method

clear all; close all

N = input(’ Dimension of the differentiation matrix: N = ? ’);

c=ones(N,1);c(1)=2;pi=4*atan(1);

m=1:N;a40=c’.*m.*(m+1).*(m+2).*(m+3); size(a40) % Get the matrix A4

m=1:N-2;a42=-2*(m-1).*m.*(m+1).*(m+3);

m=1:N-4;a44=(m-1).*(m.^2).*(m+1);

A4=diag(a40)+diag(a42,2)+diag(a44,4); A4=pi*A4/2;

for k=5:N % Get the matrix A0

a0_4(k-4)=c(k-4)/16;

end

for k=3:N
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a0_2(k-2)=-c(k-2)*(3*(k-1)+8)/(8*(k+2));

end

a0_2(2)=a0_2(2)+1/16;

m=1:N;a00=(15*(m-1)+35*c’)./(16.*(m+2));

a00(2)=a00(2)-22/(16*(2+2));a00(3)=a00(3)+5/(16*(3+2));

for m=1:N-2

a02(m)=-(5*(m-1)+6+4*c(m))/(4*(m+2));

end

a02(2)=a02(2)-1/(4*(2+2));

for m=1:N-4

a04(m)=(15*(m-1)+22+3*c(m))/(16*(m+2));

end

m=1:N-6;a06=-(3*(m-1)+4)./(8*(m+2));

m=1:N-8;a08=m./(16*(m+2));

A0=diag(a0_4,-4)+diag(a0_2,-2)+diag(a00)+diag(a02,2)+diag(a04,4)+...

diag(a06,6)+diag(a08,8); A0=pi*A0/2;

% Get the matrix A in the linear algebraic system A*U=F

A=A4+A0;

% Get the right hand side F in the linear system A*U=F

for n=1:N

Rhsf=@(x)2*(exp(x)).*(1+40*x+34*(x.^2)+8*(x.^3)+(x.^4)).*((1-(x.^2)).^(-1/2)).*...

(cos((n-1)*acos(x))-(2*(n+1)/(n+2))*cos((n+1)*acos(x))+...

(n/(n+2))*cos((n+3)*acos(x)));

Q(n)=quadl(Rhsf,-1,1);

end

tol=1e-09;format long e

maxit=105;y=-1:.01:1;

CGcoef=A\(Q’)

format long e

Exsol=((1-y.^2).^2).*exp(y); % The close solution

CGsol=zeros(size(y));

for n=1:N

CGsol=CGsol+((1-y.^2).^2).*cos((n-1)*acos(y))*CGcoef(n);

end

MaxDifference=max(abs(CGsol-Exsol)) % The accuracy of computation

plot(y,CGsol,y,Exsol), legend(’CCsol’,’Exsol’) % Plot and compare solutions

xlabel(’x’,’FontSize’,10)

ylabel(’u(x)’,’FontSize’,10)

title(’Solution u(x)=((1-x^2)^2)*exp(x) of a fourth order b v p’)

condeig(A)

B=A’*A-A*A’;s=norm(A,1);

Henrici=sqrt(norm(B,’fro’))/norm(A,’fro’) % the non-normality ratio

% Obtain Figure 4.2

Remark 91 We can now compare the implementation of spectral collocation
methods and spectral Galerkin methods. It is clear that whenever reliable codes
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for the differentiation matrices are well established, the collocation methods lead
to more compact, more simple and more flexible codes than Galerkin methods.

8) The MATLAB code Sine Gordon.m

% This script file solves the sine-Gordon equation

% u_tt=u_xx-sin u on the real line using one of the following

% differentiation matrices: (1) Hermite, (2) sinc, or (3) Fourier.

% The solution is displayed as a mesh plot.

clear all; close all

method = input(’ Which method: (1) Hermite, (2) sinc, (3) Fourier? ’)

N = input(’ Order of differentiation matrix: N = ? ’)

tfinal = input(’ Final time: t = ? ’)

if method == 1

b = input(’ Scaling parameter for Hermite method: b = ? ’);

[x,D] = herdif(N,2,b); % Compute Hermite differentiation matrices

D = D(:,:,2); % Extract second derivative

D1 = D(:,:,1); size(x)

elseif method == 2

h = input(’ Step-size for sinc method: h = ? ’);

[x,D] = sincdif(N,2,h); % Compute sinc differentiation matrices

D = D(:,:,2); % Extract second derivative

D1 = D(:,:,1);

elseif method == 3

L = input(’ Half-period for Fourier method: L = ? ’);

[x,D] = fourdif(N,2); % Compute Fourier second derivative

x = L*(x-pi)/pi; % Rescale [0, 2pi] to [-L,L]

D = (pi/L)^2*D;

[x,D1] = fourdif(N,1);

end

Nsteps=1.e+04;

% Integrate in time by a symplectic method

%[T,P,Q]=gni_irk2(’SinG1’,[],[],[],x,D,tfinal);

%[T,P,Q]=gni_lmm2(’SinG1’,[],[],[],x,D,tfinal);

[T,P,Q]=gni_comp(’SinG1’,[],[],[],x,D,tfinal,Nsteps);

% Obtain Figure 3.13

subplot(1,2,1),mesh(x,T,P); view(30,30); % Generate a mesh plot of u

M=length(T);

for k=1:M

for j=1:N

ExSol(k,j)=4*atan(sin(T(k)/sqrt(2))/cosh(x(j)/sqrt(2)));

end

end

Error=max(max(abs(ExSol-P)))

[m,n]=size(P)

fsize=10;

xlabel(’x’,’FontSize’,fsize)
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ylabel(’t’,’FontSize’,fsize)

zlabel(’u(x,t)’,’FontSize’,fsize)

title([’The "breather solution" N=’,num2str(N)],’FontSize’,fsize)

for k=1:m

qd=D1*(Q(k,:))’;

pqd=fourint(qd,x);

Tu=(pqd.^2)/2+((P(k,:)’).^2)/2;

Vu=-cos(Q(k,:)’);

H(k)=trapz(x,Vu)+trapz(x,Tu);

end

H=(H-H(1))/H(1);

subplot(1,2,2),plot(T,log10(abs(H)))

% Obtain Figure 3.14

plot(T,log10(abs(H)))

xlabel(’time’,’FontSize’,fsize)

ylabel(’log10(|\deltaH(u)/H|)’,’FontSize’,fsize)

title(’The conservation of energy functional’,’FontSize’,fsize)

9) The MATLAB code KdVivpFourier.m

% Solve KdV eq by Fourier spectral method with

% periodic boundary conditions

clear all; close all

N=160; tfinal=4*pi; pi=4*atan(1.);t0=0;

[x,D3]=fourdif(N,3);[x,D1]=fourdif(N,1);

u0=zeros(size(x));

u0=cos(x-pi);a=-3/8;ro=-.1; niu=(-2/3)*1.e-03;

fsize=10; figure(1)

subplot(5,1,1); plot(x,u0);ylabel([’u(x,’,num2str(t0),’)’],’FontSize’,fsize);

axis([0 2*pi -1 1.5])

title(’Solutions of KdV i. v. p. for initial data u_0(x)=cos(x-\pi)’,’FontSize’,fsize)

options=odeset(’RelTol’,1e-03,’AbsTol’,1e-4);

for i=1:4

tf=t0+.10;

[t,u]=ode45(@KdVFourier,[t0 tf],u0,options,a,ro,niu,D3,D1);

[m,n]=size(u);i1=i+1;

subplot(5,1,i1); plot(x,u(m,:));ylabel([’u(x,’,num2str(tf),’)’],’FontSize’,fsize);

axis([0 2*pi -1 2.5])

u0=u(m,:);

t0=tf;

end

xlabel(’x’,’FontSize’,fsize);

% Obtain Figure 3.7

for k=1:m

ud=D1*(u(k,:))’;
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pu=fourint(u(k,:),x);

pud=fourint(ud,x);

Tu=-niu*(pud.^2)/2;

Vu=a*(pu.^3)/3+ro*(pu.^2)/2;

H(k)=trapz(x,Vu)+trapz(x,Tu);

end

H=(H-H(1))/H(1);

figure(2)

plot(t,log10(abs(H)))

xlabel(’time’,’FontSize’,fsize)

ylabel(’log10(|\deltaH(u)/H|)’,’FontSize’,fsize)

title(’The conservation of energy functional’,’FontSize’,fsize)

% Obtain Figure 3.9

function du=KdVFourier(t,w,a,ro,niu,D3t,D1t)

% Function to compute the RHS of KdV eq.

% by Fourier spectral methods

pi=4*atan(1.);

theta=0.;

du=zeros(size(w)); % Preallocate column vector du

convterm=zeros(size(w));

convterm=D1t*(pi*ro*w)+a*pi*theta*D1t*(w.*w)+2*a*pi*(1-theta)*w.*(D1t*w);

du=convterm+niu*(pi^3)*(D3t*w);

10) The MATLAB code Fischer Ibvp.m

% This script file solves the Fischer equation

% u_t=u_xx+u(1-u) on the real line using one of the following

% differentiation matrices: (1) Hermite, (2) sinc, or (3) Fourier.

clear all; close all

method = input(’ Which method: (1) Hermite, (2) sinc, (3) Fourier? ’)

N = input(’ Order of differentiation matrix: N = ? ’)

tfinal = input(’ Final time: tf = ? ’)

if method == 1

b = input(’ Scaling parameter for Hermite method: b = ? ’);

[x,D] = herdif(N,2,b); % Hermite differentiation matrices

D = D(:,:,2); % Extract second derivativ

elseif method == 2

h = input(’ Step-size for sinc method: h = ? ’);

[x,D] = sincdif(N,2,h); % Compute sinc differentiation matrices

D = D(:,:,2); % Extract second derivative

elseif method == 3

L = input(’ Half-period for Fourier method: L = ? ’);

[x,D] = fourdif(N,2); % Compute Fourier second derivative

x = L*(x-pi)/pi; % Rescale [0, 2pi] to [-L,L]

D = (pi/L)^2*D;
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end

u0=sin(x);Nsteps=1.e+02;t0=0;

options=odeset(’RelTol’,1e-03,’AbsTol’,1e-3);

tspan=[t0 tfinal];

[t,u]=ode45(@Fischer,tspan,u0,options,D);

mesh(x,t,u); % Generate a mesh plot of solution u

xlabel(’x’,’FontSize’,10);ylabel(’t’,’FontSize’,10);

zlabel(’u(x,t)’,’FontSize’,10);

title(’Solution to Fischer equation’,’FontSize’,10);

% Obtain Figure 3.21

function dw = Fischer(t,u,D)

% The function dw = Fischer(t,w,D) computes the right-hand side

% of the Fischer equation with the aid of an NxN differentiation matrix

% D.

N=length(u);

dw=zeros(N,1);

dw = D*u+u.*(1-u);
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