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NEWTON TYPE ITERATIVE METHODS
WITH HIGHER ORDER OF CONVERGENCE
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Abstract. Newton type iterative methods with higher order of convergence are
obtained. The order of convergence is further increased by amalgamating these
methods with the standard secant method. The methods are compared to the
similar recent methods.
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1. INTRODUCTION

Quite often, we come across numerous nonlinear equations which need to
be solved. If the equation is not a polynomial equation, then it is not always
easy to deal with such equations. To this end, one or the other numerical
iterative method is employed. One such classical standard method is the
Newton method

xn+1 = xn − f(xn)
f ′(xn)

which is quadratically convergent. Over the years, a lot of methods have
appeared, each one claims to be better than the other in some or the other
aspect. We mention here the method given by Weerakoon and Fernando [8]
which is based on the Newton’s theorem

f(x) = f(xn) +
∫ x

xn

f ′(λ) dλ

and the integral involved is approximated by the trapezoidal rule, i.e.,∫ x

xn

f ′(λ) dλ = (x−xn)
2

(
f ′(x) + f ′(xn)

)
.
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As a result, Weerakoon and Fernando obtained the following iterative method
for solving the nonlinear equationf(x) = 0 :

(1) xn+1 = xn − 2f(xn)
f ′(xn)+f ′(zn+1) ,

where zn+1 = xn − f(xn)
f ′(xn) .

The method so obtained is of third order. In the present paper, the aim
is to modify method (1). In fact, in (1), f ′ is a function of the previously
calculated iterate. In our modification, f ′ would be a function of some other
convenient point. It is proved that the corresponding method has order of
convergence 5.1925. We follow the technique of McDougall and Wotherspoon
[7] who modified Newton’s method in a similar way yielding the order of
convergence of their method as 1 +

√
2.

Further, in [3], it was proved that if any method for solving nonlinear equa-
tion is used in conjunction with the standard secant method then the order
of the resulting method is increased by 1. We shall show, in this paper (see
Theorem 3.2), that this order can be increased by more than 1. In fact, we
prove that if our own method (which is of order 5.1925) is combined with the
secant method than the new method is of order 7.275.

2. THE METHOD AND THE CONVERGENCE

We propose the following method:
If x0 is the initial approximation, then

(2)

x∗0 = x0

x1 = x∗0 −
2f(x∗0)

f ′(x∗0)+f ′(z1) ,

where z1 = x0 − f(x0)
f ′(x0)

x∗1 = x1 − 2f(x1)
f ′(x1)+f ′(z∗1 ) ,

with z∗1 = x1 − f(x1)
f ′[ 1

2 (x0+x∗0)]
= x1 − f(x1)

f ′(x0) .


Subsequently, for n ≥ 1, the iterations can be obtained as follows:

(3)

x∗n = xn − 2f(xn)
f ′(xn)+f ′(z∗n) ,

where z∗n = xn − f(xn)
f ′[ 1

2 (xn−1+x∗n−1)]

xn+1 = x∗n −
2f(x∗n)

f ′(x∗n)+f ′(zn+1) ,

with zn+1 = xn − f(xn)
f ′[ 1

2 (xn+x∗n)]
.


Below, we prove the convergence result for the method (2)–(3).
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Theorem 1. Let α be a simple zero of a function f which has sufficient
number of smooth derivatives in a neighborhood of α. Then the method (2)–(3)
is convergent and has the order of convergence 5.1925.

Proof. Let en and e∗n denote respectively the errors in the terms xn and x∗n.
Also, we denote cj = fj(α)

j!f ′(α) , j = 2, 3, 4..., which are constants. The error
equation for the method (1) as obtained by Weerakoon and Fernando [8] is
given by

en+1 = ae3
n,

where a = c2
2 + 1

2c3 and we have neglected higher power terms of en. In
particular, the error e1 in x1 in the equations (2) is given by

(4) e1 = ae3
0.

We now proceed to calculate the error e∗1 in x∗1. By using Taylor series expan-
sion and binomial expansion, we get

f(x1)
f ′(x0) = f(α+e1)

f ′(α+e0)

=
(
e1 + c2e

2
1 + c3e

3
1 +O(e4

1)
)(

1 + 2c2e0 + 3c3e
2
0 +O(e3

0)
)−1

= e1 − 2c2e0e1 +O(e5
0)

so that
x1 − f(x1)

f ′(x0) = α+ 2c2e0e1 +O(e5
0).

Consequently, by Taylor series expansion, it can be calculated that

f ′(z∗1) = f ′(α)
(
1 + 4c2

2e0e1 +O(e5
0)
)
.

Also
f ′(x1) = f ′(α)

(
1 + 2c2

2e1 + 3c3e
2
1 +O(e3

1)
)

so that

(5) f ′(x1) + f ′(z∗1) = 2f ′(α)
(
1 + c2e1 + 2c2

2e0e1 +O(e5
0)
)
.

Now, using (4) and (5), the error e∗1 in x∗1 in the equation (2) can be calculated
as

e∗1 = e1 −
(
e1 + c2e

2
1 +O(e3

1)
)(

1 + c2e1 + 2c2
2e0e1 +O(e5

0)
)−1

= 2c2
2e0e

2
1

= ba2e7
0,

where b = 2c2
2. Using e∗1, we now compute the error e2 in the term

x2 = x∗1 −
2f(x∗1)

f ′(x∗1)+f ′(z2) ,

where
z2 = x1 − f(x1)

f ′
(x1+x∗1

2
) .
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Now

f ′
(x1+x∗1

2
)

= f ′
(
α+ e1+e∗1

2
)

= f ′(α)
(
1 + c2e1 + c2e

∗
1 + 3

4c3e
2
1 +O(e9

0)
)

so that
f(x1)

f ′
(x1+x∗1

2

) =
(
e1 + c2e

2
1 +O(e3

1)
)(

1 + c2e1 + c2e
∗
1 + 3

4c3e
2
1 +O(e9

0)
)−1

= e1 + 1
4c3e

3
1 − c2e1e

∗
1

and therefore
z2 = α− 1

4c3e
3
1 + c2e1e

∗
1,

where the higher power terms are neglected. Thus

f ′(z2) = f ′(α)
(
1− 1

2c2c3e
3
1 + 2c2

2e1e
∗
1
)

and
f ′(x∗1) = f ′(α)

(
1 + 2c2e

∗
1 + 3c3e

∗
1

2).
Using the above considerations, the error e2 in x2 is given by

e2 = e∗1 −
(
e∗1 + c2e

∗
1

2 + c3e
∗3
1
)(

1 + c2e
∗
1 − 1

4c2c3e
3
1
)−1

= −1
4c2c3e

3
1e
∗
1

= ce3
1e
∗
1,

where c = −1
4c2c3. In fact, it can be worked out that for n ≥ 1, the following

relation holds:

(6) en+1 = ce3
ne
∗
n.

In order to compute en+1 explicitly, we need to compute e∗n. We already know
e∗1. We now compute e∗2. We have

x∗2 = x2 − 2f(x2)
f ′(x2)+f ′(z∗2 ) ,

where
z∗2 = x2 − f(x2)

f ′
(x1+x∗1

2
) .

Like above, it can be calculated that the error e∗2 is given by

e∗2 = de1e
2
2,

where d = c2
2 and, again, it can be checked that in general, for n ≥ 2, the

following relation holds:

(7) e∗n = den−1e
2
n.

In the view of (6) and (7), the error at each stage in x∗n and xn+1 are calculated
which are tabulated below:
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n en e∗n
0 e0 e0
1 ae3

0 a2be7
0

2 a5bce16
0 a11b2c2de35

0
3 a26b5c6de83

0 a57b11c13d3e182
0

4 a135b26c32d6e431
0 a296b57c70d14e945

0
5 a701b135c167d32e2238

0
...

...
...

Table 1. Successive errors.

It is observed that the powers of e0 in the errors at each iterate form a
sequence

(8) 3, 16, 83, 431, 2238, ...

and the sequence of their successive ratios is

16
3 ,

83
16 ,

431
83 ,

2238
431 , ...

or,

5.3334, 5.1875, 5.1927, 5.1925, ...

This sequence seems to converge to the number 5.1925 approximately. Indeed,
if the terms of the sequence (8) are denoted by {αi }, then it can be seen that

(9) αi = 5αi−1 + αi−2, i = 2, 3, 4...

If we set the limit
αi
αi−1

= αi−1
αi−2

= R,

Then dividing (9) by αi−1, we obtain

R2 − 5R− 1 = 0

which has its positive root as R = 5+
√

29
2 ≈ 5.1925. Hence the order of

convergence of the method is at least 5.1925. �

Next, we give two variants of the method (2)–(3). Note that, in (2)–(3),
the arithmetic average of the points xn, x∗n, n = 0, 1, 2... has been used. We
propose methods in which the arithmetic average is replaced by harmonic as
well as geometric averages. With harmonic average, we propose the following
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method: If x0 is the initial approximation, then

(10)

x∗0 = x0

x1 = x∗0 −
2f(x∗0)

f ′(x∗0)+f ′(z1) ,

where z1 = x0 − f(x0)

f ′
( 2x0x∗0
x0+x∗0

) = x0 − f(x0)
f ′(x0)

x∗1 = x1 − 2f(x1)
f ′(x1)+f ′(z∗1 ) ,

with z∗1 = x1 − f(x1)

f ′
( 2x0x∗0
x0+x∗0

) = x1 − f(x1)
f ′(x0) .


Subsequently, for n ≥ 1, the iterations can be obtained as follows:

(11)

x∗n = xn − 2f(xn)
f ′(xn)+f ′(z∗n) ,

where z∗n = xn − f(xn)

f ′

(
2xn−1x∗n−1
xn−1+x∗n−1

)
xn+1 = x∗n −

2f(x∗n)
f ′(x∗n)+f ′(zn+1) ,

with zn+1 = xn − f(xn)

f ′
( 2xnx∗n
xn+x∗n

) .


For the geometric average of the points xn, x∗n, n = 0, 1, 2..., the following
method is proposed:

(12)

x∗0 = x0

x1 = x∗0 −
2f(x∗0)

f ′(x∗0)+f ′(z1) ,

where z1 = x0 − f(x0)
f ′(
√
x0x∗0 ) = x0 − f(x0)

f ′(x0)

x∗1 = x1 − 2f(x1)
f ′(x1)+f ′(z∗1 ) ,

with z∗1 = x1 − f(x1)
f ′(
√
x0x∗0 ) = x1 − f(x1)

f ′(x0) .


Subsequently, for n ≥ 1, the iteration can be obtained as follows:

(13)

x∗n = xn − 2f(xn)
f ′(xn)+f ′(z∗n) ,

where z∗n = xn − f(xn)
f ′(√xn−1x∗n−1 )

xn+1 = x∗n −
2f(x∗n)

f ′(x∗n)+f ′(zn+1) ,

with zn+1 = xn − f(xn)
f ′(
√
xnx∗n ) .


The convergence of the methods (10)–(11) and (12)–(13) can be proved on

the similar lines as those in Theorem 1. We only state the results below:
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Theorem 2. Let α be a simple zero of a function f which has sufficient
number of smooth derivatives in a neighborhood of α. Then for solving non-
linear equation f(x) = 0, the method (10)–(11) is convergent with order of
convergence 5.1925.

Theorem 3. Let α be a simple zero of a function f which has sufficient
number of smooth derivatives in a neighborhood of α. Then for solving non-
linear equation f(x) = 0, the method (12)–(13) is convergent with order of
convergence 5.1925.

3. METHODS WITH HIGHER ORDER CONVERGENCE

In this section, we obtain a new iterative method by combining the iterations
of method (2)–(3) with secant method and prove that the order of convergence
is more than 5.1925. Precisely, we propose the following method: If x0 is the
initial approximation, then

(14)

x∗0 = x0

x∗∗0 = x∗0 −
2f(x∗0)

f ′(x∗0)+f ′(z1) ,

where z1 = x0 − f(x0)
f ′(x0)

x1 = x∗∗0 −
x∗∗0 −x

∗
0

f(x∗∗0 )−f(x∗0)f(x∗∗0 ).


Subsequently, for n ≥ 1, the iterations can be obtained as follows:

(15)

x∗n = xn − 2f(xn)
f ′(xn)+f ′(z∗n) ,

where z∗n = xn − f(xn)

f ′
(xn−1+x∗n−1

2
)

x∗∗n = x∗n −
2f(x∗n)

f ′(x∗n)+f ′(zn+1) ,

where zn+1 = xn − f(xn)

f ′
(xn+x∗n

2
)

xn+1 = x∗∗1 −
x∗∗n −x∗n

f(x∗∗n )−f(x∗n)f(x∗∗n ).


Remark 4. In [3], it was proved that if the iterations of any method of order

p for solving nonlinear equations are used alternatively with secant method,
then the new method will be of order p + 1. Thus, in view of that result,
the method (14)–(15) is certainly of order at least 6.1925. However, we prove
below that the order is more.

Theorem 5. Let f be a function f having sufficient number of smooth
derivatives in a neighborhood of α which is a simple root of the equation f(x) =
0. Then method (14)–(15) to approximate the root α is convergent with order
of convergence 7.275.
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Proof. We argue on the lines of that of Theorem 1 and the error equa-
tion of the standard secant method. In particular, the errors e∗0, e∗∗0 and e1,
respectively, in x∗0, x

∗∗
0 and x1 in equations (14) are given by
e∗0 = e0

e∗∗0 = ae3
0, where a = c2

2 + 1
2c3

e1 = λae4
0, where λ = c2.

Also, the errors e∗1 in x∗1 in equation (15) is given by
e∗1 = 2c2

2e0e
2
1

= λ2a2be9
0, where b = 2c2

2

and the error e∗∗1 in x∗∗1 in equation (15) is given by
e∗∗1 = −1

4c2c3e
3
1e
∗
1

= ce3
1e
∗
1,

where c = −1
4c2c3. In fact, it can be worked out that for n ≥ 1, the following

relation holds:
(16) e∗∗n = ce3

ne
∗
n.

In order to compute e∗∗n explicitly, we need to compute en and e∗n. We have
already computed e1 and e∗1. From the proof of Theorem 1

e∗2 = de1e
2
2,

where d = c2
2 and, again, it can be checked that the following relation holds:

(17) e∗n = den−1e
2
n.

Also from (15), it can be shown that
e2 = λe∗1e

∗∗
2 .

Thus, for n ≥ 1, it can be shown that error en+1 in xn+1 in the method
(14)–(15) satisfies the following recursion formula
(18) en+1 = λe∗ne

∗∗
n

Using the above information, the errors at each stage in x∗n, x
∗∗
n and xn are

obtained and tabulated as follows:

We do the analysis of Table 2 as done in the proof of Theorem 1 for Table
1. Note that the powers of e0 in the error at each iterate from the sequence
(19) 4, 30, 218, 1586, 11538, ....
and the sequence of their successive ratios is

30
4 ,

218
30 ,

1586
218 ,

11538
1586 , ...

or
7.5, 7.2667, 7.2752, 7.2749, ....



22 Pankaj Jain, Chet Raj Bhatta and Jivandhar Jnawali 9

n en e∗n e∗∗n
0 e0 e0 ae3

0
1 λae4

0 λ2a2be9
0 λ5a5bce21

0
2 λ8a7b2ce30

0 λ17a15b5c2e64
0 λ42a36b11c6e154

0
3 λ60a51b13c8e218

0 λ128a109b29c17e466
0 λ308a260b68c42e1120

0
4 λ437a369b97c59e1586

0 λ934a789b208c126e3390
0 λ2245a1896b499c304e8148

0
5 λ3180a2685b707c430e11538

0
...

...
...

...

Table 2. Successive errors.

If the terms of the sequence (19) are denoted by {Ni}, then it can be seen that

Ni = 7Ni−1 + 2Ni−2, i = 2, 3, 4, ....

Thus, as in Theorem 1, the rate of convergence of method (14)–(15) is at least
7.275. �

It is natural to consider the variants of the method (14)–(15), where in
the expression of zn and z∗n, the arithmetic mean is replaced by harmonic
mean as well as geometric mean as done in methods (10)–(11) and (12)–(13),
respectively. Precisely, with harmonic mean, we propose the following method:

(20)

x∗0 = x0

x∗∗0 = x∗0 −
2f(x∗0)

f ′(x∗0)+f ′(z1) ,

where z1 = x0 − f(x0)

f ′
( 2x0x∗0
x0+x∗0

) = x0 − f(x0)
f ′(x0)

x1 = x∗∗0 −
x∗∗0 −x

∗
0

f(x∗∗0 )−f(x∗0)f(x∗∗0 )


followed by (for n ≥ 1)

(21)

x∗n = xn − 2f(xn)
f ′(xn)+f ′(z∗n) ,

where z∗n = xn − f(xn)

f ′

(
2xn−1x∗n−1
xn−1+x∗n−1

)
x∗∗n = x∗n −

2f(x∗n)
f ′(x∗n)+f ′(zn+1) ,

where zn+1 = xn − f(xn)

f ′
( 2xnx∗n
xn+x∗n

)
xn+1 = x∗∗1 −

x∗∗n −x∗n
f(x∗∗n )−f(x∗n)f(x∗∗n )
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and with the geometric mean, we propose the following :

(22)

x∗0 = x0

x∗∗0 = x∗0 −
2f(x∗0)

f ′(x∗0)+f ′(z1) ,

where z1 = x0 − f(x0)
f ′(
√
x0x∗0 ) = x0 − f(x0)

f ′(x0)

x1 = x∗∗0 −
x∗∗0 −x

∗
0

f(x∗∗0 )−f(x∗0)f(x∗∗0 )


followed by (for n ≥ 1)

(23)

x∗n = xn − 2f(xn)
f ′(xn)+f ′(z∗n) ,

where z∗n = xn − f(xn)
f ′(√xn−1x∗n−1 )

x∗∗n = x∗n −
2f(x∗n)

f ′(x∗n)+f ′(zn+1) ,

where zn+1 = xn − f(xn)
f ′(
√
xnx∗n )

xn+1 = x∗∗1 −
x∗∗n −x∗n

f(x∗∗n )−f(x∗n)f(x∗∗n ).


The convergence of the methods (20)–(21) and (22)–(23) can be proved by
using the arguments as used in the proof of Theorem 5. We skip the details
for conciseness.

4. ALGORITHMS AND NUMERICAL EXAMPLES

We give below an algorithm to implement the method (2)–(3):

Algorithm 6. Step 1 : For the given tolerance ε > 0 and iteration N ,
choose the initial approximation x0 and set n = 0.

Step 2 : Follow the sequence of expressions:

x∗0 = x0

x1 = x∗0 −
2f(x∗0)

f ′(x∗0)+f ′(z1) ,

where z1 = x0 − f(x0)
f ′(x0)

x∗1 = x1 − 2f(x1)
f ′(x1)+f ′(z∗1 ) ,

where z∗1 = x1 − f(x1)

f ′
(x0+x∗0

2
) = x1 − f(x1)

f ′(x0)
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Step 3 : For n = 1, 2, 3, . . ., calculate x2, x3, x4, . . . by the following sequence
of expressions:

x∗n = xn − 2f(xn)
f ′(xn)+f ′(z∗n) ,

where z∗n = xn − f(xn)

f ′
(xn−1+x∗n−1

2
)

xn+1 = x∗n −
2f(x∗n)

f ′(x∗n)+f ′(zn+1) ,

where zn+1 = xn − f(xn)

f ′
(xn+x∗n

2
)

Step 4 : Stop if either |xn+1 − xn| < ε or n > N .
Step 5 : Set n = n+ 1 and repeat Step 3.
Example 7. We apply method (2)–(3) on the nonlinear equation

(24) cosx− xex + x2 = 0.
This equation has a simple root in the interval (0, 1). Taking initial approx-
imation as x0 = 1, Table 3 shows the iterations of McDougall-Wotherspoon
method, a third order method (1) and our method (2)–(3).

n W-F Method (1) M-W method (2)–(3) method
1. 1.1754860092539474 0.89033621746836966 0.64406452481689269
2. 0.7117526001461193 0.66469560530044569 0.63915407608296659
3. 0.63945030188514695 0.63928150457301036 0.63915411559451774
4. 0.63915408656045591 0.63915408990276223 0.6391540955014231
5. 0.63915410631623149 0.63915410965853769 0.63915407540832936
6. 0.63915412607200606 0.6391540698096656 0.6391541149198805
7. 0.63915408622313585 0.63915408956544117 0.63915409482678587
8. 0.63915410597891142 0.63915410932121663 0.63915407473369212
9. 0.639154125734686 0.63915406947234454 0.63915411424524327
10. 0.63915408588581579 0.63915408922812 0.63915409415214863
11. 0.63915410564159136 0.63915410898389557 0.63915407405905489
12. 0.63915412539736594 0.63915406913502348 0.63915411357060603
13. 0.63915408554849573 0.63915408889079894 0.6391540934775114
14. 0.63915410530427119 0.63915410864657451 0.63915407338441765
15. 0.63915412506004576 0.63915406879770231 0.6391541128959688
16. 0.63915408521117556 0.63915408855347788 0.63915409280287416
17. 0.63915410496695113 0.63915410830925345 0.63915407270978042
18. 0.6391541247227257 0.63915406846038125 0.63915411222133156
19. 0.6391540848738555 0.63915408821615682 0.63915409212823693
20. 0.63915410462963107 0.63915410797193239 0.63915407203514318

Table 3. Numerical results for different methods.
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Example 8. We consider the same equation (24) but now implement method
(14)–(15) and compare with other methods. Table 4, shows the correspond-
ing iterates. One can also compare the last columns of Table 3 and Table 4
which correspond to methods (2)–(3) and (14)–(15), respectively. This clearly
indicates the fast convergence of (14)–(15).

n W-F Method (1) M-W method (14)–(15) method
1. 1.1754860092539474 0.89033621746836966 0.63919747126530391
2. 0.7117526001461193 0.66469560530044569 0.63915410580338361
3. 0.63945030188514695 0.63928150457301036 0.63915409891807362
4. 0.63915408656045591 0.63915408990276223 0.63915409203276374
5. 0.63915410631623149 0.63915410965853769 0.63915408514745375
6. 0.63915412607200606 0.6391540698096656 0.63915411145121981
7. 0.63915408622313585 0.63915408956544117 division by zero
8. 0.63915410597891142 0.63915410932121663
9. 0.639154125734686 0.63915406947234454
10. 0.63915408588581579 0.63915408922812
11. 0.63915410564159136 0.63915410898389557
12. 0.63915412539736594 0.63915406913502348
13. 0.63915408554849573 0.63915408889079894
14. 0.63915410530427119 0.63915410864657451
15. 0.63915412506004576 0.63915406879770231
16. 0.63915408521117556 0.63915408855347788
17. 0.63915410496695113 0.63915410830925345
18. 0.6391541247227257 0.63915406846038125
19. 0.6391540848738555 0.63915408821615682
20. 0.63915410462963107 0.63915410797193239

Table 4. Numerical results for different methods.
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