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ON THE CONVERGENCE
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Abstract. Convergence results are stated for the variational iteration method
applied to solve an initial value problem for a system of ordinary differential
equations.
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1. INTRODUCTION

The Ji-Huan He’s Variational Iteration Method (VIM) was applied to a
large range of problems for both ordinary and partial differential equations.
The main ingredient of the VIM is the Lagrange multiplier used to improve
an approximation of the solution of the differential problem [2].

The purpose of this paper is to prove a convergence theorem for VIM applied
to solve an initial value problem for a system of ordinary differential equations.

The convergence of the VIM for the initial value problem of an ordinary
differential equation may be found in D.K. Salkuyeh, A. Tavakoli [6]. For a
system of linear differential equations a convergence result is given by D.K.
Salkuyeh [5].

A particularity of the VIM is that it may be implemented both in symbolic
(Computer Algebra System) and numerical programming environments. In
the last section there are presented some results of our computational expe-
riences. To make the results reproducible we provide some code. In [I] there
is a pertinent presentation of the issues concerning the publishing of scientific
computations.

2. THE CONVERGENCE OF VIM FOR A SYSTEM OF ORDINARY DIFFERENTIAL
EQUATIONS

Consider the following system of ordinary differential equations
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) (t) = fi(t,zi(t), ..., om(t)) z1(to) = 29

(1)

() = fults1(t)see e Tlt)) Emlte) = 22,

where t € [tg, ty] with ¢y <ty < oc.
We shall use the notations

m

x=(z1,...,Zm), |Ix|1= Z A
j=1

x = x(t), [xloe = max [x(D)].

Thus, any equation of may be rewritten as
zi(t) = fi(t,x(t)), i€ {l,...,m}.

The following hypothesis are introduced:

e The functions fi, ..., f, are continuous and have first and second order

partial derivatives in 1, ..., Tx,.
e There exists L > 0 such that for any i € {1,...,m}

|filt,x) = it )| S LY lvj—yjl = LIx = yllh, Vxye€eR™
j=1

As a consequence

‘afla(;;’X)’ = |flzj (t,X)| <L, V(t,X) S [tO,tf] X Rm, VZ,] € {1,,m}
J

According to the VIM the sequences of approximations are

(2)  ungri(t) = una(t) + tAi(S)(u;,z-(S) = fils,un(s)))ds, neN,

to
i€{l,...,m} and where u, = (up1,...,Unm)-
It is supposed that u, ;(to) = 29 and that Up,; is a continuous differentiable
function for any i € {1,...,m}.

In this case the VIM is a little trickier: the Lagrange multiplier attached to

the i-th equation will act only on z; [5].
Denoting x(t) = (x1(t),...,xm(t)) the solution of the initial value problem

, if wp i (t) = xi(t) + Oun i (t) and upi1,:(t) = zi(t) + duny1,i(t) but uy, ;(t) =
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xj(t), for j # i, then implies
dup41,4(t) =
t

= Oup,i(t) + \ Ai(s) (x;(s) + Oty ;(5)—

—fi(s,z1(s), ..., xi—1(5), zi(8) + 0uni(s), Tit1(8), ..., Tm(s)))ds =
= 0uni(t) + [ Xi(s) (x;(s) + Ouy, ;(s) — fi(s,x(s)) — fia, (s,x(s))dunﬂi(s)) ds+

to

+ O((dun,)?) =

= Sunat) + [ Ni(s) (8up,i(5) = fie, (5, %(5))tni(5) ) ds + O((Jun 5)?)-

to

After the integration by parts the above equality becomes
Oun+1,i(t) =

(14 Xi(t))oun,i(t) — /tt ()\;(3) + fi,, (s, x(s))A,;(s)) dupi(s)ds + O((dun)?).

In order that u,41; be a better approximation than w, ;, it is required that A;
is the solution of the following initial value problem

(3) N(s) = —fi,(5:x(s))A(5), s € [to, 1],
(4) At) = —1.

Because x(s) is an unknown function, the following problem is considered

instead of —

(5) )‘/(8) = —fx(s,un(s)))\(s), Se[tO’t]’
(6) At) = —1

with the solution denoted )‘n,i(s, £). The solution is
An7i(87 t) = —efst fiz, (run(r))dr
and
|An,i(s, )] < ellt=9) < et Vig<s<t<tyand T =ty —to.

The recurrence formula becomes

(1) tnra®) = wng®) + [ A1) 1(5) — fils, un(s)))ds, n N,

to

for any i € {1,...,m}.
The convergence result is:

THEOREM 1. If the hypotheses stated above are wvalid, then the sequence
(up)nen defined by converges uniformly to x(t), the solution of the initial
value problem .
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Proof. Subtracting the equality

n0) = 2+ [ a0 () = s, x(5)) ds

from leads to

rralt) = ensl) + [ Au(5,0) (chils) = (s, 1a(s)) — fils,x(5)))) .

to

where ey, ;(t) = up i(t)—xi(t), i € {1,...,m} and e, (t) = (en,1(t), ..., enm(t)) =
u,(t) —x(t), neN.
Again, an integration by parts gives

t
enral) = [ Aualsit) (i (5. 0a(8))ens(s) = (s, ua(s)) = fils. x(s))) ) d.
The hypothesis on f; implies the inequality

Jiz, (8, 0n(s))en,i(s) = (fi(s,un(s)) — fi(svx(s))’ < Llen,i(s)| + Lllen(s)[lx

and consequently
rr [*
lent1i(t)| < Le /t (leni(s)| + llen(s)[l1)ds.
0
Summing these inequalities, for ¢ = 1 : m, we find
t
® leasa(®)ly < (m+ DL [ e (s)ads.
0

Let M = (m + 1)LeXT. From (8) we obtain successively:
Forn =10

t
lex(®)]lr < M/t leo(s)llids < M(t —to)[l€olloc = [[€1]lcc < MT[|€o]oo-
0

Forn=1

t 2(4— 412 22
lea(ll <01 [ fler()lhds < G ey = fezfoe < 257 o]
0
Inductively, it results that
n!

t n(4__ n nm
lea(®ll < M [ flen-1()lds < LU fegllog = el < 2T eo]c
0

and hence lim,,_, |len|lcc = 0. O

A numerical implementation requires the usage of a quadrature method to
compute the integral in and the Lagrange multipliers.
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3. COMPUTATIONAL RESULTS

The target of the given examples is twofold: to exemplify the convergence of
the VIM and to obtain some clues about the usage of numerical vs. symbolical
computations of VIM.

EXAMPLE 1.
2'(t) =2x(t) +t
z(0)=0
The solution z(t) = 3(e* — 2t — 1) is obtained in an iteration with the Math-
ematica code provided in Appendix [A] O
EXAMPLE 2.
(1) =1 —22(t)
z(0) =0
The initial value problem has the solution z(t) = zzz—j& The code used

previously does not give an acceptable result in a reasonable time.
Moving on numerical computation we obtain practical results. The relation
@ is transformed into

O wnsrat) = |

to

t

t
(5, 0n(5) = fi, (5, n(5))n 5(5)) ot i, (ran ()T g
t
i fgrnnar o

Let (t;)o<i<r be an equidistant grid on [tg,t¢] and denote by u; an approxima-
tion of x(;). Furthermore, the recurrence relation (9)) is used only to compute
u;4+1 from wu;, i.e. on a [t;, t;+1] interval. The integrals in @ will be computed
with the trapezoidal rule using a local equidistant grid.

The iterations are done until the distance between two consecutive approx-
imation of u;; is less then a given tolerance.

The final approximate solution is a first order spline function defined by the
points (ti, ui)ogigj.

This procedure requires a single passage from g to t;.

All our numerical results were computed using the Scilab code presented in
Appendix B [I1].

For t; =1, I =100 we obtained maxo<;<r |u; — x(t;)| = 0.4 x 106, O

EXAMPLE 3. [5]

il = 4£L’1 + 6$2 + 61’3 .Tl(O) =7
To = x1 + 312 + 223 .TQ(O) =2
i‘g = —T1 — 5.%'2 — 2.%3 x3(0) = —%
The solution is z1(t) = 4e! + 3(1 + t)e?, xo(t) = et + (1 +t)e?, x3(t) =

—3e! — (3 4 2t)e*.
For ty =1, I =100 we found maxo<;<s [[u; — x(¢;)|| ~ 0.8363 x 1073. O
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ExXAMPLE 4.

Ty (t) = w2(t),  11(0) =

xX CC2
zh(t) = Tl aa(0) =

The solution is x1(t) = sin (t + §), 2(t) = cos (t + ).
For ty = %, I =100 the result is maxo<i<r [Ju; —x(t;)|| = 0.62 x 107°. O

ExXAMPLE 5. Van der Pol equation

@ (t) = z2(1), 21(0) =
wh(t) = (1 — 2{(t))2(t) — 21(t), 22(0)
2"(t) — (1 —22(t))z'(t) + z(t) =0
<  z(0)=05
2'(0) =0
In this case we do not have a closed form of the solution. We compare the
VIM approximation with the solution v obtained with ode, a Scilab numerical
integration function.

0.5 N
0

The obtained results are given in Table O

ty I' | maxo<<y [|ui — vi|
10| 100 0.0001988
20 | 100 0.0033857
30| 100 0.0142215
40| 100 0.0384137
50 | 100 0.0777549

100 | 100 0.6410885

100 | 1000 0.0069729

Table 1. Numerical results for the Van der Pol equation.

4. CONCLUSIONS

Despite the convergence properties of the method the amount of the com-
putation is greater than of the usual methods (e.g. Runge-Kutta, Adams type
methods). Even so the numerical solution can be taken into consideration.
The numerical implementation can be improved by an adaptive approach and
using some parallel techniques (e.g. OpenCL / CUDA) in an appropriate
environment.

Although the VIM may be implemented for symbolic computation our ex-
periments show disappointing results.

The VIM offers a way to obtain a symbolic approximation of the solution
of the initial value problem. But such an approximation may also be obtained
from a numerical solution with the Fureqa software [10], [7]. A better symbolic
implementation would be useful.
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APPENDIX A. MATHEMATICA CODE

The Mathematica procedure used to solve an initial value problem.

In[l]:=
VIM[f-, U0-, m_] := Module[{V, U = U0, df, Lambda},
df[t., x-] = D[f[t, x], x];
Lambda[U_] := —Exp]|
Integrate [df[w, x] /. {x —> U, t —> w}, {w, s, t}]];
For[i = 0, i < m, i++,
V=U+
Integrate [Lambda[U] ((D[U, t] — f[t, U]) /. t —> s), {s, 0, t}];
U =V; Clear[V]]; U]

For Example [1| the calling sequence is

In[2]:= f[t., x-] = {2 x[[1]] + t}
In[3]:= U0 = {0}

In[4]:= VIM[{,U0,1]
Out[4]={(1/4)*(—1 + E"(2xt) — 2xt)}
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APPENDIX B. SCILAB CODE

The code used to obtain numerical results

function [t,u,info]=vim(f,df,x0,t0,tf ,n,nmi, tol)

// Computes the solution of an initial value problem
// of a system of ordinary differential equations
// using the Variational Iteration Method —

// Dispatcher function.

//

// Calling Sequence

// [t,u,info]=vim(f,df,x0,t0,tf ,n,nmi, tol)

// Output arguments

// t : a real vector, the times at which the solution is computed.
// u : a real vector or matrix, the numerical solution.

// info: an integer, error code (0 — OK).

// Input arguments

// f : a Scilab function, the right hand size of the

// differential system.

// df : a Scilab function, df=(df_1/dx.1,df_2/dx.2,...).

// x0 a real vector, the initial conditions.

// t0 a real scalar, the initial time.

// tf a real scalar, the final time.

// n a positive integer , the global discretization parameter.
// nmi : maximum allowed number of local iterations iteration.
// tol : a positive real number, a tolerance.

//

t=linspace (t0,tf ,n)
d=length (x0)

u=zeros (d,n)

u(:,1)=x0"

m=10 // the discretization parameter on [t_i,t_{i+1}]
u0=x0

errorMarker=%t

for i=1:n—-1 do // the passage from t_.0 to t_f
// Computes u0:=u_{i+1} from u-i
[u0,eM, iter|=vimstep (f,df,u0,t(i),t(i+1),m,nmi, tol)
u(:,i+l)=u0’
errorMarker=errorMarker & eM

end

if errorMarker then
info=0

else
info=1

end

endfunction
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function [u,eM,iter]=vimstep (f,df,x0,t0,tf ,n,nmi, tol)
// Variational Iteration Method.

//

// Output arguments

// u : a real vector or matrix, the numerical solution.

// eM : a boolean value, error marker, (%t — OK).

// iter : an integer, the number of local performed iterations.
// Input arguments

// f : a Scilab function, the right hand size of the

differential system.
// df : a Scilab function, df=(df_1/dx.1,df.2/dx.2,...).

// x0 a real vector, the initial conditions.

// t0 a real scalar, the initial time.

// tf a real scalar, the final time.

// n a positive integer, the local discretization parameter.
// nmi : maximum allowed number of local iterations iteration.
// tol : a positive real number, a tolerance.

//

t=linspace (t0, tf ,n)
h=(tf—-t0)/(n—1)
d=length (x0)
u_old=zeros(d,n)
u_old (:,1)=x0"
sw=2%t
iter=0
while sw do
iter=iter+1
u_new=zeros (d,n)
u_new (:,1)=x0"’
f0=zeros(d,n)
df0=zeros(d,n)
for j=1:n do
p=u-old (:,]
a=f(t(j),p)
dg=df(t(j),p)
f0 (2, j)=a
dfo (:,j)=dq
end
for i=2:n do
z=zeros (d,n)
for j=i—-1:—1:1 do
z(:,j)=0.5xh*(df0 (:,j)+df0(:,j+1))+z(:,j+1)
end
w=(f0—df0.*xu_old).+xexp(z)
s=zeros (d,1)
s=w(:,1)+w(:,1)
if i>2 then
for j=2:i—1 do
s=s+2xw(:,j)
end
end
u_new (:,1)=0.5xhxs+exp(z(:,1)).*x0’
end
nrm=max (abs (u_-new—u_old))
u-old=u_new

)
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if nrm<tol | iter>=nmi then
sw=%f
end
end
u=u.old (:,n)
if nrm<tol then
eM=%t
else
eM=%f
end
endfunction

)

The calling sequence for Example [4] is

deff ("a=f(t,p) ",
[’x1=p (1), ’x2=p(2)’,’q(1)=x2",q(2)=x1.%x2.72.0./(x1."2-1)"])

deff(’q=df(t,p)’,
[’x1=p(1)’,’x2=p(2)’,’q(1)=0","q(2)=2%x1.%x2./(x1."2—-1)"])

x0=[0.5,0.5xsqrt (3)]

t0=0

tf=%pi/3

n=100

nmi=>50

tol=le—5

[t,u,info]=vim(f,df,x0,t0,tf,n,nmi, tol)
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