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BALL CONVERGENCE FOR AN AITKEN-NEWTON METHOD

IOANNIS K. ARGYROS∗, MUNISH KANSAL† and VINAY KANWAR‡

Abstract. We present a local convergence analysis of an eighth-order Aitken-
Newton method for approximating a locally unique solution of a nonlinear equa-
tion. Earlier studies have shown convergence of these methods under hypotheses
up to the eighth derivative of the function although only the first derivative ap-
pears in the method. In this study, we expand the applicability of these methods
using only hypotheses up to the first derivative of the function. This way the
applicability of these methods is extended under weaker hypotheses. Moreover,
the radius of convergence and computable error bounds on the distances involved
are also given in this study. Numerical examples are also presented in this study.
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1. INTRODUCTION

Let X, Y be Banach spaces and D be a convex subset of X. Let also L(X,Y )
denote the set of bounded linear operators from X into Y . Many problems
can be written in the form

(1) F (x) = 0

using Mathematical Modelling [1], [6], [7], [9], [23] where F : D ⊆ X → Y is a
Fréchet-differentiable operator. Most solution methods for finding a solution
x∗ of equation (1) are iterative, since closed form solutions can be found only
in special cases [1]-[23]. In this paper, we study the local convergence of
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Aitken-Newton method [21] defined for each n = 0, 1, 2, . . . by

(2)



yn =xn − F ′(xn)−1F (xn),
zn =yn − F ′(yn)−1F (yn),

xn+1 =zn − [zn, yn;F ]−1F (zn)
− [yn, zn;F ]−1[zn, yn, yn;F ][yn, zn;F ]−1F (zn)F ′(yn)−1F (yn),

where [·, · ;F ], [·, ·, · ;F ] are divided differences of order one and two, respec-
tively and

(3) [x, y;F ] =
∫ 1

0
F ′(y + θ(x− y))dθ.

The above method (2) attains eighth-order of convergence using five func-
tional evaluations, viz. F (xn), F ′(xn), F (yn), F ′(yn) and F (zn), per iteration.
Therefore, the efficiency index [23] of the proposed method is E = 5√8 ≈ 1.51,
when X = Y = R. The convergence of method (2) was shown in [21] using
Taylor expansions and hypotheses reaching up to the eighth derivative of the
function F although only first derivative appears in the method. We will show
that method (2) is well-defined and convergent using hypotheses only on the
first derivative in the more general setting of a Banach space. Notice that the
method (2) was not shown to be well defined in [21]. However, the eighth or-
der of convergence was shown assuming that method (2) is well defined which
may not be the case. These hypotheses limit the applicability of method (2).

As a motivational example, define function F on D = [−1
2 ,

5
2 ] by

F (x) =
{
x3 ln x2 + x5 − x4, x 6= 0,
0, x = 0.

We have x∗ = 1,

(4)
F ′(x) = 3x2 ln x2 + 5x4 − 4x3 + 2x2,

F ′′(x) = 6x ln x2 + 20x3 − 12x2 + 10x,
F ′′′(x) = 6 ln x2 + 60x2 − 24x+ 22.

Clearly, function F ′′′(x) is unbounded on D. Hence, the results in [21] cannot
be applied to solve equation F (x) = 0, where F is given by (4). Moreover,
the results in [21] do not provide computable convergence radii, error bounds
on the distances |xn − x∗| and uniqueness of the solution results. We address
all these problems using only hypotheses on the first derivative. We use the
computational order of convergence (COC) to approximate the convergence
order (which does not depend upon the solution x∗). Moreover, we present
the results in a more general setting of a Banach space.

The rest of the paper is organized as follows: In Section 2, we present the
local convergence of method (2). The numerical examples are presented in the
concluding Section 3.
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2. LOCAL CONVERGENCE ANALYSIS

We present the local convergence analysis of method (2) in this section using
some scalar functions and parameters.

Let L0 > 0, L > 0, K > 0, and M ≥ 1 be given parameters. Define
function g1 on the interval [0, 1

L0
) by

g1(t) = Lt
2(1−L0t) ,

and parameter r1 by
r1 = 2

2L0+L .

We have that g1(r1) = 1 and 0 ≤ g1(t) < 1 for each t ∈ [0, r1). Define
functions p1 and hp1 on the interval [0, 1

L0
) by

p1(t) = L0g1(t)t

and hp1(t) = p1(t)− 1.
We get that hp1(0) = −1 < 0 and hp1(t)→ +∞ as t→ 1−

L0
. It follows from

the intermediate value theorem that function hp1 has zeros in the interval
(0, 1

L0
). Denote by rp1 the smallest such zero. Moreover, define functions g2

and h2 on the interval [0, rp1) by

g2(t) = Lg2
1(t)t3

2(1−p(t))

and h2(t) = g2(t)− 1.
We get that h2(0) = −1 < 0 and h2(t) → +∞ as t → r−p1 . Denote by r2

the smallest zero of function h2 in the interval (0, r2). Furthermore, define
functions p2 and hp2 on the interval [0, rp1) by

p2(t) = L0
2

(
g1(t) + g2(t)

)
t

and hp2(t) = p2(t)− 1.
We have that hp2(0) = −1 < 0 and hp2(t)→ +∞ as t→ r−p1 . Denote by rp2

the smallest such zero of function hp2 in the interval (0, rp1). Finally, define
functions g3 and h3 on the interval [0, rp2) by

g3(t) =
(
1 + M

1−p2(t) + KM2g1(t)t
(1−p2(t))2(1−p1(t))

)
g2(t)

and h3(t) = g3(t)− 1.
We obtain that h3(0) = −1 < 0 and h3(t) → +∞ as t → r−p2 . Denote by

r3 the smallest zero of function h3 in the interval (0, rp2). Define the radius of
convergence r by

(5) r = min{ri}, i = 1, 2, 3.

Then, we have that

(6) 0 < r ≤ r1 <
1
L0
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and for each t ∈ [0, r)

(7) 0 ≤ gi(t) < 1, i = 1, 2, 3

and

(8) 0 ≤ pj(t) < 1, j = 1, 2.

Let U(z, ρ) and Ū(z, ρ) stand respectively for the open and closed balls in
X with center at z ∈ X and of radius ρ > 0. Next, the local convergence
analysis of method (2) shall be presented using previous notations.

Theorem 1. Let F : D ⊆ X → Y be a Fréchet-differentiable operator.
Let [·, · ;F ], [·, ·, · ;F ] are divided differences of order one and two on D,
respectively. Suppose there exist x∗ ∈ D and L0 > 0, such that for each x ∈ D

(9) F (x∗) = 0, F ′(x∗)−1 ∈ L(Y,X)

and

(10) ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ L0‖x− x∗‖.

Moreover, suppose there exist L > 0, K > 0 and M ≥ 1 such that for each
x, y ∈ D0 := D ∩ U

(
x∗, 1

L0

)
, we have

(11) ‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ L‖x− y‖, ,

(12) ‖F ′(x∗)−1F ′(x)‖ ≤M,

(13) ‖F ′(x∗)−1[x, y, y;F ]‖ ≤ K,

and

(14) Ū(x∗, r) ⊆ D,

where radius of convergence r is defined by (5). Then, the sequence {xn}
generated for x0 ∈ U(x∗, r)-{x∗} by method (2) is well defined, remains in
U(x∗, r) for each n = 0, 1, 2, . . . and converges to the solution x∗. Moreover,
the following error estimates hold

(15) ‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r,

(16) ‖zn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖

and

(17) ‖xn+1 − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖,

where the “gi, i = 1, 2, 3” functions are defined previously. For T ∈ [r, 2
L0

), the
limit point x∗ is the only solution of equation F (x) = 0 in D1 := D∩ Ū(x∗, T ).
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Proof. We shall show using mathematical induction that sequence {xn}
of iterates generated by (2) is well defined, remains in U(x∗, r) and satisfies
estimations (15)–(17). By hypothesis, x0 ∈ U(x∗, r) − x∗, (6) and (10), we
have that
(18) ‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖ ≤ L0‖x0 − x∗‖ < L0r < 1.
It follows from estimate (18) and the Banach lemma on invertible operators
[6, 9, 20, 22, 23] that F ′(x0)−1 ∈ L(Y,X) and
(19) ‖F ′(x0)−1F ′(x∗)‖ ≤ 1

1−L0‖x0−x∗‖ .

Hence, y0 is well defined. Using (6), (7), (11), (19) and the first substep of
method (2) for n = 0, we get in turn that

‖y0 − x∗‖ ≤

(20)

≤ ‖x0 − x∗ − F ′(x0)−1F ′(x0)‖

≤ ‖F ′(x0)−1F ′(x∗)‖
∥∥∥ ∫ 1

0
F ′(x∗)−1[F ′(x∗ + θ(x0 − x∗))− F ′(x0))](x0 − x∗)dθ

∥∥∥
≤ L‖x0 − x∗‖2

2(1− L0‖x0 − x∗‖)
= g1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,

which shows (15) for n = 0 and y0 ∈ U(x∗, r). Then, we have as in (18) that
(21)
‖F ′(x∗)−1(F ′(y0)− F ′(x∗))‖ ≤ L0‖y0 − x∗‖ ≤ L0g1(‖x0 − x∗‖)‖x0 − x∗‖

= p1(‖x0 − x∗‖) < p1(r) < 1,

so F ′(y0)−1 ∈ L(Y,X). Therefore, we have
(22) ‖F ′(y0)−1F ′(x∗)‖ ≤ 1

1−p1‖x0−x∗‖

and as in (20)

(23)
‖z0 − x∗‖ ≤ L‖y0−x∗‖2

2(1−L0‖y0−x∗‖)

≤ g2(‖x0 − ξ‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,

which implies that (16) holds for n = 0 and z0 ∈ U(x∗, r).
Next, we show that [y0, z0;F ]−1 exists. In view of the definition of divided

difference [·, ·;F ], (6), (7), (10), (20) and (22) that

‖F ′(x∗)−1 ([z0, y0;F ]− F ′(x∗)
)
‖ ≤(24)

≤ L0
2 (‖z0 − x∗‖+ ‖y0 − x∗‖)

≤ L0
2

(
g1(‖x0 − x∗‖)+g2(‖x0 − x∗‖)

)
‖x0 − x∗‖

= p2(‖x0 − x∗‖) < p2(r) < 1,
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so

(25) ‖[z0, y0;F ]−1 − F ′(x∗)‖ ≤ 1
1−p2‖x0−x∗‖ .

Hence, x1 is well defined. Notice that ‖x∗+ θ(x0−x∗)−x∗‖ ≤ θ‖x0−x∗‖ < r
for each θ ∈ [0, 1], so x∗ + θ(x0 − x∗) ∈ U(x∗, r) for each θ ∈ [0, 1]. Then, by
(9) and (12), we get that

‖F ′(x∗)−1F (x0)‖ =(26)
= ‖F ′(x∗)−1(F (x0)− F (x∗)‖

= ‖
∫ 1

0
F ′(x∗)−1F ′(x∗ + θ(x0 − x∗))(x0 − x∗)‖ ≤M‖x0 − x∗‖

and similarly

(27) ‖F ′(x∗)−1F (y0)‖ ≤M‖y0 − x∗‖ ≤Mg1(‖x0 − x∗‖)‖x0 − x∗‖.

By the last substep of method (2) for n = 0, (5), (6), (20), (22), (23), (25)–(27),
we obtain in turn that

‖x1 − x∗‖ ≤(28)
≤ ‖z0 − x∗‖+ ‖[z0, y0;F ]−1F ′(x∗)‖‖F ′(x∗)−1F ′(z0)‖+

+ ‖[z0, y0;F ]−1F ′(x∗)‖‖[z0, y0;F ]F ′(x∗)−1‖‖[z0, y0;F ]−1F ′(x∗)‖·
· ‖F ′(x∗)−1[z0, y0, y0;F ]−1F ′(x∗)‖‖F ′(y0)−1F ′(x∗)‖‖F ′(x∗)−1F (y0)‖

≤ ‖z0 − x∗‖+ M‖z0−x∗‖
1−p2(‖x0−x∗‖) + KM2‖z0−x∗‖‖y0−x∗‖

(1−p2(‖x0−x∗‖))2(1−p1(‖x0−x∗‖))

=
(
1 + M

1−p2(‖x0−x∗‖) + KM2‖y0−x∗‖
(1−p2(‖x0−x∗‖))2(1−p1(‖x0−x∗‖))

)
‖z0 − x∗‖

≤ g3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,

which implies that (17) holds for n = 0 and x1 ∈ U(x∗, r). By simply replacing
y0, z0, x1 by yn, zn, xn+1 in the preceding estimates, we complete the induction
for estimates (15)–(17). Then, in view of the estimate ‖xn+1 − x∗‖ ≤ c‖xn −
x∗‖ < r, c = g3(‖x0 − x∗‖) ∈ [0, 1), we deduce that limn→∞ xn = x∗ and
xn+1 ∈ U(x∗, r). The proof of the uniqueness follows using standard arguments
[11]. �

Remark 2. 1) It follows from (10) that condition (12) can be dropped, if
we set

M(t) = 1 + L0t

or
M(t) = M = 2, since t ∈

[
0, 1

L0

)
.

2) The results obtained here can also be used for operators F satisfying
autonomous differential equations [6, 9] of the form:

F ′(x) = P (F (x)),
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where P is a continuous operator. Then, since F ′(x∗) = P (F (x∗)) = P (0), we
can apply the results without actually knowing x∗. For example, let f(x) =
ex − 1. Then, we can choose P (x) = x+ 1.
3) The radius r̄1 = 2

2L0+L1
was shown by Argyros [6] to be the convergence

radius of Newton’s method

(29) xn+1 = xn − F ′(xn)−1F (xn), for each n = 0, 1, 2, . . .

under the conditions (9)–(11) on D, where L1 is the Lipschitz constant on D.
We have that L ≤ L1 and L0 ≤ L1, so r̄1 ≤ r1. It follows that the convergence
radius r of the method (2) cannot be larger than the convergence radius r1 of
the second order Newton’s method (29). As already noted in [6], r̄1 is at least
as large as the convergence ball given by Rheinboldt [22]

rR = 2
3L1

.

In particular, for L0 < L1, we have that

rR < r̄1

and
rR
r̄1
→ 1

3 as L0
L1
→ 0.

That is our convergence ball r̄1 is at most three times larger than Rheinboldt’s.
The same value of rR was given by Traub [23]. 4) It is worth noticing that
method (2) is not changing when we use the conditions of Theorem 1 instead
of stronger conditions used in previous studies. Moreover, we can consider the
semi-computational order of convergence defined by

QL(k) = ln |xn+1−x∗|
ln |xn−x∗|

QΛ(k) = ln
(
|xn+1−x∗|
|xn−x∗|

)
/ ln

(
|xn−x∗|
|xn−1−x∗|

)
,

for which some interesting properties were obtained in [19] and [12]. We can
even compute the (full) computational order of convergence defined by

Q′L(k) = ln |xn−xn−1|
ln |xn−1−xn−2|

Q′Λ(k) = ln
(
|xn−xn−1|
|xn−1−xn−2|

)
/ ln

(
|xn−1−xn−2|
|xn−2−xn−3|

)
,

for which interesting properties were obtained in [12]. We also recommend to
the motivated reader the excellent survey on these notions [13], containing full
proofs and historical aspects.

This way we obtain in practice the order of convergence in a way that avoids
the bounds involving estimates using estimates higher than the first Fréchet
derivative of operator F. Notice also that the computation of ξ∗ does not
require knowledge of x∗. 5) Also, condition (10) can be replaced by

(30) ‖F ′(x∗)−1([x, y;F ]− F ′(x∗))‖ ≤ L̄0
2 (‖x− x∗‖+ ‖y − x∗‖).
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In this case, the choice of the divided difference given by (4) can be dropped.
Moreover, L̄0 and (30) can replace L0 and (10), respectively in the proof of
Theorem 1. �

3. NUMERICAL EXAMPLES

We present numerical examples in this section.

Example 3. Let X = Y = R3, D = Ū(0, 1), x∗ = (0, 0, 0)T . Define
function F on D for w = (x, y, z)T by

F (w) = (ex − 1, e−1
2 y2 + y, z)T .

Then, the Fréchet derivative is given by

F ′(w) =

ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .
We have that L0 = e − 1, L = e

1
L0 , M = e

1
L0 , K = e

1
L0
2 and L1 = e. The

parameters using method (2) are:

r1 = 0.382692, r2 = 0.45738, r3 = 0.38726,
r = 0.38726, r̄1 = 0.324947, rR = 0.245253.

Example 4. Let X = Y = C[0, 1], the space of continuous functions defined
on [0, 1] and be equipped with the max norm. Let D = Ū(0, 1) and B(x) =
F ′′(x) for each x ∈ D. Define function F on D by

(31) F (φ)(x) = φ(x)− 5
∫ 1

0
xθφ(θ)3dθ.

We have that

(32) F ′(φ(ξ))(x) = ξ(x)− 15
∫ 1

0
xθφ(θ)2ξ(θ)dθ, for each ξ ∈ D.

Then, we get that x∗ = 0, L0 = 7.5, L1 = 15, L = 15, K = 15 and M = 2.
The parameters using method (2) are:
r1 = 0.0666667, r2 = 0.114372, r3 = 0.0783549, r = 0.0783549,

r̄1 = 0.0666667, rR = 0.0444444. �

Example 5. Returning back to the motivational example at the introduc-
tion of this paper, we have that L = L0 = 146.6629073, M = 2, L1 = L and
K = 48.3315. The parameters using method (2) are:

r1 = 0.00454557, r2 = .006787, r3 = 0.004991287,
r̄1 = 0.00454557, rR = 0.00454557, ξ∗ = 7.8403. �
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Example 6. Let X = Y = R and define function F on D = R by
(33) F (x) = βx− γ sin (x)− δ,
where β, γ, δ are given real numbers. Suppose that there exists a solution x∗
of F (x) = 0 with F ′(x∗) 6= 0. Then, we have

L1 = L0 = L = |γ|
|β−γ cosx∗| , M = |γ|+|β|

|β−γ cosx∗| and K = |γ|
2|β−γ cosx∗| .

Then one can find the convergence radii for different values of β, γ and δ. As a
specific example, let us consider Kepler’s equation (33) with β = 1, 0 ≤ γ < 1
and 0 ≤ δ ≤ π. A numerical study was presented in [14] for different values of
γ and δ.

Let us take γ = 0.9 and δ = 0.1. Then the solution is given by x∗ =
0.6308435. Hence, for method (2) the parameters are:

�(34)
r1 = 0.202387, r2 = 0.261858, r3 = 0.196578,
r = 0.196578, r̄1 = 0.202387, rR = 0.202387, ξ∗ = 8.0353.
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