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INEQUALITIES OF JENSEN TYPE FOR AH-CONVEX FUNCTIONS*

SILVESTRU SEVER DRAGOMIR'

Abstract. Some integral inequalities of Jensen type for AH-convex functions
defined on intervals of real line are given. Applications for power and logarithm
functions are provided as well. Some inequalities for functions of selfadjoint
operators in Hilbert spaces are also established.
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1. INTRODUCTION

Let (2, A, 1) be a measurable space consisting of a set 2, a o-algebra A of
parts of €2 and a countably additive and positive measure p on A with values
in RU{oo} . For a p-measurable function w : Q@ — R, with w (z) > 0 for p-a.e.
(almost every) x € Q, consider the Lebesgue space

Ly, (Qp) = {f : Q — R, fis y-measurable and /Qw (@) |f (z)|dp (x) < oo}.

For simplicity of notation we write everywhere in the sequel [, wdpu instead of

Joyw () dia ().
If f, g: Q — R are p-measurable functions and f, g, fg € Ly, (2, p), then
we may consider the Cebysev functional

(1.1) T (f.9) = [ whodp~ [ widn [ wgdn
Q Q Q
The following result is known in the literature as the Griiss inequality
(1.2) Tw (f,9)l < 1 (T =) (A =4),
provided
(1.3) —co<y< f(z)<T<oo, —00<d<g(x) <A<

for p-a.e. (almost every) = € Q.
The constant % is sharp in the sense that it cannot be replaced by a smaller
constant.
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If we assume that —oo < v < f(z) <T < oo for p-a.e. = € Q, then by the
Griiss inequality for g = f and by the Schwarz’s integral inequality, we have

(1.4) Jwls = [ wtdn]dn <

[wran-( [ wfdu>2

In order to provide a reverse of the celebrated Jensen’s integral inequality
for convex functions, S.S. Dragomir obtained in 2002 [6] the following result:

2

<3T—7).

THEOREM 1.1. Let ® : [m, M] C R — R be a differentiable convex function
on (m, M) and f : Q — [m, M] so that o f, f, ® o f, (o f)f € Ly (Qpu),
where w > 0 p-a.e. (almost everywhere) on Q with [ wdp = 1. Then we have
the inequality:

(1.5) 0§/ﬂ(<1>of)wdu—<1></ﬂfwdp>
§/Q(<I>'of)fwd,u—/ (@' o f) wdu/gwfd,u
<h0 00 - )] [w|f- [ fudddg.

For a generalization of the first inequality in without the differentia-
bility assumption and the derivative ® replaced with a selection ¢ from the
subdifferential 0®, see the paper [18] by C. P. Niculescu.

If u(Q) <ocand o f, f,® o f, (Pof) - feL(Qu), then we have the
inequality:

(1.6) 0< M—)/ (Pof)du— <I>( Q)/fdu>
Sﬁm/ﬂ( "o f) fdu— oy /(‘1"Of)du-%)/9fdu
<3000~ ()] iy [ |7 = by [ s

The following discrete inequality is of interest as well.

COROLLARY 1.2. Let ® : [m, M] — R be a differentiable convex function on
(m,M). If x; € [m,M] and w; >0 (i=1,...,n) with W, := > w; =1,
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then one has the counterpart of Jensen’s weighted discrete inequality:

i=1 1=1
i=1 i=1 i=1

<1 [@(M)-2 (m) Zwi T — ijxj :
i=1 Jj=1

REMARK 1.3. We notice that the inequality between the first and the second
term in ((1.7) was proved in 1994 by Dragomir & Ionescu, see [12]. O

On making use of the results (1.5) and (|1.4)), we can state the following
sequence of reverse inequalities

(1.8) Og/gl(@of)wdu—tﬁ(/g)fde)
/Q(Cb’of) fwdp — /Q (@' o f) wdu/ﬂfwdu
/wfd,u‘wd,u

[@" (M [ fPrwdp — / fwdu)zr

[ (M) — )] (M

IN

IN

2 (¥ (M) =@ (m)] |

N |—

<

=

provided that ® : [m,M] C R — R is a differentiable convex function on
(m, M) and f : Q = [m, M] so that @ o f, f, & o f, (¥ 0 f) f € Ly (Qp),
where w > 0 p-a.e. on Q with [, wdp = 1.

REMARK 1.4. We notice that the inequality between the first, second and
last term from (1.8]) was proved in the general case of positive linear functionals
in 2001 by S.S. Dragomir in [5]. O

The following reverse of the Jensen’s inequality holds [9], [10]:

THEOREM 1.5. Let ® : I — R be a continuous convexr function on the
interval of real numbers I and m, M € R, m < M with [m,M] C I, I is the
interior of I. If f : Q0 — R is u-measurable, satisfies the bounds

(1.9) —oco<m< f(x) <M <oo for p-a.e. v €K
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and such that f,®o f € Ly, (2, 1), where w > 0 p-a.e. on Q with [owdp =1,
then

(1.10) 0< / (® o f)wdp — @ (fou)
Q — —
< (M_f“]’\”z,)_({r?’w_m) sup g (t;m, M)
te(m,M)

(M)~ (m)

(M — ]FQ@) <f_Q,w - m) M—-m
< (M —m)[@ (M) -, (m)],

IN

where fo., = [qw (z) f(z)du(z) € [m, M] and Vg (;m, M) : (m, M) — R
s defined by

\Il@(t7m7M): -

We also have the inequality

(1.11) Oﬁ/ﬂ(@of}wdu—@(fgw) < 1 (M —m) Vg (fng;m,M)
< 1 (M —m)[@_ (M) - @, (m)],

provided that fq., € (m, M).

For a real function g : [m, M] — R and two distinct points a, 5 € [m, M]|
we recall that the divided difference of g in these points is defined by

ol 9B —g(a)
[a7 /87 g} T ﬁ —a .
In what follows, we assume that w : Q@ — R, with w (z) > 0 for py-a.e. z € Q,
is a p-measurable function with [, wdp = 1.
The following result holds [I1]:

THEOREM 1.6. Let ® : I — R be a continuous convex function on the
interval of real numbers I and m,M € R, m < M with [m,M] C I, 1 the
interior of I. If f : Q — R, is u-measurable, satisfying the bounds @ and
such that f, ® o f € Ly (Q, u), then by denoting

Fow e [[wfine
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and assuming that TQM # m, M, we have

(1.12) [ 0(5) = ® (Fo)|s8n 7 ~ Fouu] win] <
< [ @0 wdu=2 (To,)
<3 ([Fouw M: @] = [m, Fa,u:@]) Du ()
<1 ([fg,waMS ‘I)} - :mjg,w;@}) D2 (f)
<3 ([7Q,waM; ‘1’} - :mjmw;@b (M —m),
where
D ()= [ w|f = Fau|du
and

N
Dw,2 (f) = / wf d,u - (fQ,w)
Q
The constant % in the second inequality from is the best possible.

For recent results related to Jensen’s inequality, see [I]-[8], [13]-][23] and the
references therein.

Motivated by the above results, in this paper we establish some Jensen type
inequalities for the class of AH-convez (concave) functions. Some applications
for power and logarithmic functions are provided as well. Some inequalities
for functions of selfadjoint operators in Hilbert spaces are also established.

2. AH-CONVEX FUNCTIONS

Let X be a linear space and C a convex subset in X. A function ¢ : C' —
R\ {0} is called AH-convex (concave) on the convex set C' if the following
inequality holds

(AH)
1 _ <I>(13)(I)(y)
D ((1—Nz+ry) <(>) (1= N iy + Ay (=N @ (y) + & (x)

for any z,y € C' and X € [0, 1].
An important case which provides many examples is that one in which
the function is assumed to be positive for any x € C. In that situation the

inequality is equivalent to

1 1 >) 1
Ox) @y T T e((I-Nz+ )
for any z,y € C and X € [0,1].

Therefore we can state the following fact:

(1—=2)



6 Inequalities of Jensen type for AH-convex functions 133

CRITERION 2.1. Let X be a linear space and C' a convex subset in X. The
function ® : C — (0,00) is AH-convex (concave) on C if and only if 3 is
concave (convex) on C in the usual sense.

In what follows, we assume that w : @ — R, with w(z) > 0 for p-a.e.
z € (), is a p-measurable function with [, wdp = 1.

If A: I — R is continuous concave function on the interval of real numbers
I and m, M € R, m < M with [m, M] C I, I the interior of I, then by taking

q):—Ainweget

185 = 8 (Fau)|sen [ = Fa] win| <
<A (Fau) = [ (Ao nwdy

[, Fowi A = [Fauw M A]) Du ()

[, Fauwi A] = [Fauw M5 A] ) Dua ()
[m»?g,w;ﬁ] - Fﬂ,va%AD (M —m).

(2.1)

IA

IN

IN
B N N
TN TN TN

If ®: 1 — (0,00) is continuous AH-convex function on the interval of real
numbers I and m, M € R, m < M with [m, M] C I, then by taking A = % in

B-1) we get
A

<1-2(Fou) | 3%

(b(?ﬂ,w)
o L

sgn [f — Tg,w} wdu‘ <

< (st o 31:9] = iy [ Tai#]) D 1)
<1 (ﬁ [ﬂw,M; cb} ~ 0 [m,ﬂz,w;fb}) Du2 (f)
< (s [ 9] iy [m.Tiv09]) 01— ),

provided that f : Q@ — R, is p-measurable, satisfying the bounds (1.9) and
such that f,(® o f)* € Ly, (Q, ). As above

fﬂ’w = /wad,u € [m, M]

and we assume that fq ,, 7 m, M,
In the case of functions defined on real line we have:

PROPOSITION 2.2. Let ® : I — (0,00) be defined on the interval 1. The
following statements are equivalent:
(i) The function ® is AH-convez (concave) on I
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(ii) For any x,y € I, the interior of I, then there exists ¢ (y) € [ (y),
' (y)] such that
+

(2.2) igi; -1<(>) gg; (y — =)

holds.

Proof. (i) = (ii). Let @,y € I. Since the function é is concave (convex)

then the lateral derivatives ®’_ (y), ®’, (y) exists for y € I and <é):(+) (y) =
. (P/,H,) (v)
2 (y) -

Since % is concave (convex) then we have the gradient inequality

—_
—_

ORI > (A W) (y—2)=-A(y) (z —y)

with A (y) € —257((5)), —Zg((s)) , which is equivalent to

1 1
23 5w >y Y

with ¢ (y) € [~ (y), ¥, ()]
The inequality (2.3) can be also written as

@) o <

or as

~—

® (y) ey
and the inequality is proved.
“(ii) = (1) Let 2,y € T and A € (0,1). Then (1 — A)z+ Ay € 1. From (2.3)
we have

(2.4)
1 1 (=X z+ \y)
D) D((1- Nzt = (<) (1 Nz +\y) (I=Nz+Ay—2)

p(1=Nz+My)

=M= S ATy o)

Lo . (S)gig:iiiii\z;((1—>\):c+>\y—y)

) (1= Nz +\y)
=~ 0=N=) e a v )

v
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If we multiply (2.4) by 1 — X and (2.5) by A and add the obtained results, we

get
1—A A 1

+ — >(<)0
5 TBl) Ny o
for any A € [0, 2], which shows that ® is AH-convex (concave) on I. O

COROLLARY 2.3. Let ® : I — (0,00) be differentiable on I. Then & is
AH -convez (concave) on I if and only if for any z,y € I, we have

Yoy — ).

If A: 1 — R is differentiable concave functiocn on the interval of real num-
bers I and m, M € R, m < M with [m, M] C I, and f : Q — [m, M] then by
taking ® = —A in (|1.8) we get

(2.7) 0< A (Fou) - /(Aof)wd,u

(2.6)

< Tou [ (&0 fudu— [ (&'0 f) fwdn
< 1 [A (m) — & (M)] Dy ()

< L[A' (m) = A (M)] Do (f)

< 1A (m) = & (1)) (O — ).

If ®: 71 — (0,00) is continuous AH-convex function on the interval of real
numbers I and m, M € R, m < M with [m, M] C I, then by taking A = %
which is differentiable concave, in (2.7) we get

(2.8) 0< [0(Fau)] - [ 4%

| e = Fo [ drehuwdn
Q

IN

o' (M D' (m

s%[@iM% #nf| Do ()
o' (M o' (m

< 3 [#0 — 320 w2 (/)
(M ' (m

< i [ - wﬁm%MM m),

provided f : Q — [m, M] so that q)of, fs ggz’f)f, ;E’f) Ly, (2, p).
If w>0ae onQ with [wdy =1 and ® : I — (0,00) is continuous

AH-convex on I then
(Po flw

P= 1@ o fwdn
is a weight with [, pdp = 1.
We have
Jo (@ o f) fwdp

Jo (@ o fwdu

fap= /prdu =
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and
pdp 1

0®of  Jo(@o ) wdn
If we use the first inequality in (2.8)) for the weight p we get

o @op) fude\]™ 1
Oglq)(fg(%f)wdu)] To(@o ) wdy’

which is equivalent to

fQ(‘I’Of)fUJdM>
Jo (@0 wdy )

where f:Q — [ and ® : I — (0, 00) is continuous AH-convex so that (® o f),

f7 ((I)Of)f7 ((I)Of) € Lw(Q?:u)
Now, if we use the inequality between the first and last term in (2.8]) we get

(2.9) /Q(cp o fwdy > ® (

Jo (@0 f) fwdu\] ™" 1
e oz o (B - e
L[ (M) @, (m)
=1 (I>2(M)_<I>J2r(m)](M_m)’

where f: Q — [m,M] C I and ® : I — (0,00) is continuous AH-convex so

that (®o f), f, (®o f)f, (®of) € Luy (2 pu).
Similar results may be stated by using various reverses of Jensen’s inequality

as stated in the introduction.

Let ® : [m, M] — R be a AH-convex function on [m, M]. If z; € [m, M]
and w; >0 (i=1,...,n) with W, := > ; w; = 1, then from one has
the weighted discrete inequality:

o wiw () =
ST () izzl

while from ([2.10)) we have
n -1
(2.12) 0< {q) (W)} 1

g Wid(zs) Zi:l w;®(z;)
& (M) @ (m)

<4 | — S| (1 - m).

3. NEW RESULTS

In what follows, we assume that w : Q@ — R, with w(z) > 0 for p-a.e.
x € (), is a p-measurable function with [, wdp = 1.
The following result holds:
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THEOREM 3.1. Let & : I — (0,00) be differentiable on I. If & is AH-convex

(concave) on I and f :Q — I so that ® o f, (q)(b?})f, isf € Ly (2, 1), then

(3.1) 7t [ (@0 Hudu—12 ()

<(2) [ Ehd—a [ Eeheay

for any x € 1.
Moreover, if

d'of) fw
Jo iy

(3.2) Tw E I7
fQ( <I>o]; d
then
(®'of) fwd
(33) [ @opudu<(z)e f”;’—f“
Q Of wd
fQ Pof H

Proof. From ({2.6)) we have for any = € I, that
(3.4) o —1< () 5k (f-2)

almost everywhere on (2.
If we multiply this by w > 0 a.e. on (2 we get

do flw d’o d’o flw
(3-5> (q>(];)) —w < (Z) ( QS}fw —{ q;oj}) xz,

almost everywhere on €.
Integrating the inequality (3.5)) on 2 and taking into account that [, wdu =
1, we get

(36) #h [ (@ wdn—1< ()
d'of) fw d'of)w
<) [ - [ phray

and the inequality (3.1]) is proved.
The inequality (3.3) follows by (3.1]) by taking

Jo S du

(P'o
fQ <I>o];”wd'u“

T = el

0

COROLLARY 3.2. With the assumptions of Theorem and if f : Q —
[m, M] C I and ® is monotonic nondecreasing or nonincreasing on [m, M],

then the inequality holds.
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Proof. Since m < f < M a.e. on €2, then for ® monotonic nondecreasing
we have

m(@(pc;]})w < @q)(;}})wf<M(<I>OJ})

a.e. on {.
Integrating on 2 we get

m/ CI)of)'wd </(<I>of fdM<M/ wd/%
which shows that the condition is satisfied.

The case of @ is nonincreasing goes likewise and the statement is proved. [

REMARK 3.3. If f: Q — [m, M] C I, then by taking
x :/ fwdp € [m, M]
Q

in (3.1) we get the inequality

(3.7) q>(f9;wdu)/ﬂ(q>of)wdu—1g(z)
(@of)fw 5 / / (@of)w
< (> d d dp. O
_(_)/Q Bof M wau o @or aH

Let ® : [m, M] — R be a differentiable AH-convex (concave) function on
[m,M]. If z; € [m,M] and w; > 0 (i=1,...,n) with W, := > w; =1,
then from (3.1) one has the weighted discrete inequality:

n

=1
- D' ( xl a:zwZ D' (z4)w;
) TEan - xZ B
=1

for any = € [m, M].
In particular, we have

n

3.9 e Y w;® () — 1 < (>
(39 oy 2 ()~ 12 (2)
n
< (2) q:'((g:szzwz szxzz Y xl wl.
=1

Moreover, if ® is monotonic nondecreasing or nonincreasing on [m, M], then
we have the inequality

n n ‘1>’(§i)33m‘
Yowi®(z;) < (>)@ T/(f)ij :
' =1 " (x;)

The following result also holds:
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THEOREM 3.4. Let & : I — (0,00) be differentiable on I. If & is AH-convex
(concave) on I and f :Q — I so that ® o f, (q;?})f, gg}c € Ly (2, 1), then

(3.10) wi [ (@0 £ wdn— | (@0 wdn < (2)

< (Z)/Q(@/of) fwd,u—a?/Q(CI)/of)wdu

for any x € I.
Moreover, if

Jo(@'of) frwdp

(3.11) - @opua: €1
then
Jo(®of)?wdu ( J. (<1>’0f)fwdu>
. =~ (> 29 ),
(3.12) Jo(@ofywdp = (2)® Jo (@0 wdp

Proof. From ({2.6)) we have for any = € I, that
567 (2o f) = o f < (2) (@0 f) (f ~2)

almost everywhere on ().
If we multiply this by w > 0 a.e. on 2 we get

(3.13) G (@of)Pw—(Poflw< (>) (P of) fw— (P o f)ws

almost everywhere on €.
Integrating the inequality (3.13)) on 2 and taking into account that [, wdu =
1, we get

(3.14) wt [ (@0 1 wdn— [ (@0 fjwdn < (2)
< (Z)/Q(q)'of) fwd,u—a:/ﬂ(q)/of)wdu

and the inequality is proved.
If we take
_ Jo(@of) fwdp
—Jo(@efwdn

in (3.10) and do the required calculation, we get the desired result (3.12f). O

COROLLARY 3.5. With the assumptions of Theorem and if f:Q —
[m,M] C I and ® is monotonic nondecreasing (nonincreasing) on [m, M],

then the inequality holds.
REMARK 3.6. If f: Q — [m, M] C I, then by taking

xr = /wadu € [m, M|
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in (3.10) we get the inequality

1 2 _ < (>
<(2) [ @) fudn- /fwdu/ o f) w. O
Let @ : [m, M] — R be a differentiable AH-convex (concave) function on

[m,M]. If z; € [m,M] and w; > 0 (i=1,...,n) with W,, :== 31" jw; = 1,
then from (3.10|) one has the weighted discrete inequality:

@(lz)z:wl sz S —)
<(>) szq), —xZwl (z:)

for any = € [m, M].
In particular we have

(3.17) i e szfb2 Zn: i@ (2;) < (2)
o(3 wiz;)
i=1 i=1 i=1

< (Z) Z w,@' (a:z) €T; — Z W; L5 Z wii" (l’z) .
=1 =1 =1

Moreover, if ® is monotonic nondecreasing or nonincreasing on [m, M], then
we have the inequality

(3.18) 2y Wi (@) <(>)o (W) )

(3.15)

(3.16)

2?21 wﬁb(zi) Z?:l w¢<1>/(zi)
4. SOME EXAMPLES

Consider the function

@, (t)=1t"= tl
(—o0, — ) (0,00) then the function @, (t) =
1,0) then the function ®, (t) =, ¢t > 0 is

if —=p>1lor—p<0, ie. pE€
tP,t > 0 is AM-concave. If p € (—
AM-convex.

If we apply the inequality for ®,, then we get

(4.1) | frwdn < /. ‘;w)p < ()1,

where p € (—1,0) (p € (=00, —1) U (0,00)), and f : Q — (0,00) is such that
2, 5 € Lo (2, 4).
If we use the inequality - ) for ®,, then we get

42) L < o) (el ),

fn frwdp = 2 fQ = twdp
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where p € (—1,0) (p € (=00, —1) U (0,00)), and f : © — (0,00) is such that
f2, 1P, Pl € Ly (2, 10) -
If we use the inequality (3.7)) for ®,, then we have

1 w
(4.3) W/prwdu—lﬁ(2)19[1—/wadu/gfdu],
where p € (—1,0) (p € (=00, —1) U (0,00)), and f : Q2 — (0,00) is such that
P, f, % € Ly (Q,p).

By éebyéev inequality for asynchronous functions we have

1§/fwdu/ Fdp
Q) Q

and then by (4.2 for p € (—oo, —1) we have

1 - o
W/prwd“_lzp_l_/ﬂfwﬂ/gfdu_ >0,

If we denote r = —p € (1,00), then the inequality (4.4 can be written as

(4.5) (/ fwdu)r/g}‘id,u—lzr:/wadu/gl}’du—l: >0

provided 4 77 f, € Ly (p).
Also, if we use the inequality - ) for ®,,, then we have

fﬂfumlu/f%wdu /pr}d/i<( )

< (> pUQ fpwdu—/gfwdu/gfplwdﬂ},

where p € (—1,0) (p € (=00, —1) U (0,00)), and f : © — (0,00) is such that
f2, 0P, 7Y f € Ly (1)
We observe that by Cebysev inequality for synchronous functions we have

(4.4)

(4.6)

forp>1

[ grwdp = [ pwdp [ - twdg

Q Q Q
and by (4.6 we have
4.7 7/ wd / Pwdu >

2p| [ prwdn = [ ude [ plwdu] = 0

Q Q Q

for p > 1.

Now consider the function @y, (t) =Int, t > 1. The function
g(t) = lnt’ t>1

is convex on (1,00). Therefore @y, (¢) = Int, t > 1 is a AM-concave function
n (1,00).
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Let f: ® — (1,00) be so that In f, ﬁ, fl—}lf € Ly (2, 1), then by using
the inequality (3.3|) for ®p, we have

(4.8) / wln fdyu > In (W) .
Q o Tap
Let f: ® — (1,00) be so that (lnf)2, In f, % € Ly (Q, 1), then by 1D

for @y, we get

Jow (In f)* dp
) g = ()

5. APPLICATIONS FOR FUNCTIONS OF SELFADJOINT OPERATORS

Let A be a selfadjoint operator on the complex Hilbert space (H, (.,.)) with
the spectrum Sp (A) included in the interval [m, M| for some real numbers
m < M and let {E\}, be its spectral family. Then for any continuous func-
tion f : [m, M] — [a,b], it is well known that we have the following spectral
representation in terms of the Riemann-Stieltjes integral (see for instance [13]
p. 257)):

M
(1) ey = [ By,
and
2 M 2 2
(52) IF sl = [ 1F WA Bal?,
for any =,y € H.
The function g, , (A) := (Exx,y) is of bounded variation on the interval

[m, M] and
gay (m —0) = 0 while g, (M) = (z,y)

for any z,y € H. It is also well known that g, (\) := (E\x,z) is monotonic
nondecreasing and right continuous on [m, M| for any = € H.

Now, assume that ® : [a,b] C I — (0, 00) is continuous AH-convex function
on the interval of real numbers I, f : [m, M] — [a,b], p: [m, M| — (0,00) are
continuous functions on [m, M| and g : [m, M] — R is monotonic nondecreas-
ing on [m, M].

By and we have the following inequalities for the Riemann-
Stieltjes integral:

Ju' @S O)p D) dg (8) _ o (ﬁ?f ®(f (1) S (B)p(t)dg <t>>
Inp®dg(t) X Le(f@)pt)dg(t) )

(5.3)
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(5.4) 0< |®

—1
L egepsorman ] M p)dg (1)
[ a(f(t)p(t)dg(t)
" (M) P (m)
1 i —
= l@?(M) & (m) | M
Now, if we apply the inequalities (5.3) and (5.4)) for the monotonic non-

decreasing function g, (\) := (E\z,x), € H, where {E\}, is the spectral
family of A, then we get

(@ (F (A)p(A)a,z) _ [ (f(A) f(A)p(A)a,z)
(5:5) it 22 (s e
and
(@A) FA)pA 2\ (pA)a,x)
CONEN (@ (f (A) p(A) z,2) )] @ (f (A)p (A7)

for any x € H, x # 0.
In particular, if p is taken to be the constant 1, then for any = € H, ||z| = 1,
we have

o ez
and
(®(f(A) f(A)z, )\ 1
o9 0= [q)< (@ (f (A))z,z) )] (@ (f(A) z, )
® (M d' (m
< % lqﬂ M)) o (I)JQF((m)] (M —m)

Moreover, if [a,b] = [m, M] and f (t) = t, then from and we get
(5.9) (®(A)z,z) > P (W)
and

(® (A) Az, )\ 1
10 o< (Gie )~ w@es

_ l«b’_ (M) @, (m)

for any z € H, ||z|| = 1.

Further on, assume that ® : [a,b] C I — (0,00) is continuously differen-
tiable AH-convex and monotonic nondecreasing (nonincreasing) function on
the interval of real numbers I, f : [m, M| — [a,b], p : [m, M] — (0,00) are
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continuous functions on [m, M] and g : [m, M] — R is monotonic nondecreas-
ing on [m, M].

If we write the inequalities and for the Riemann-Stieltjes inte-
gral, then we have

G1) 20O Sl LU0 g (1)
I p()dg(t) LD ag (1)
and
(5.12) S (2 (f @) p(t)dg (1) _ o <f o (f ())f(t)p(t)dg(t))
Sl @ (F @) p()dg(t) ~ I (f (1) p (t) dg (1)

The inequalities (b.11]) and (5.12)) imply the following operator inequalities

(@ (F (A p(A)aa) _ o (Lt )
(5:13) »(A)z, ) S(D( (T )
and

(@ A’ p(A)a,) (@ (f(4)) f (A)p(A)2,2)
(5.14) (@ (f(A)p(A)z,z) Sq)( (@ (f(A))p(A)z,z) )

for any x € H, x # 0.
In particular, if p is taken to be the constant 1, then for any = € H, ||z| = 1,
we have

<<I>’(f(A)21f(A) .. x>
(5.15) (@ (f (A)z,2) < & [ A2
U, o)
<‘I>(f(A)) ’

and

(5.16)

(@(F AN z.2) @ (f(A) f(A)r2)
wrme <0 <<I>’(f(A))wm> )
Moreover, if [a,b] = [m, M] and f (t) = t, then from and we get

<<I>’(A) - x>
(5.17) (@ (A)z,z) < & ((A))

and

((®(4))2,2) (@ (A) Az, z)
(5.18) <o < : ) ,

(@ (A)z, ) " (A) x, )
for any z € H, ||z|| = 1.

If ®: [a,b] C I — (0,00) is AH-concave, then the reverse versions of the
inequalities above hold. We omit the details.
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The interested reader may state various power inequalities for positive defi-
nite operators by choosing ®), (t) = ¥ which is AH-convex for p € (—1,0) and
AM-concave for p € (—oo,—1) U (0, c0).

For instance, if we take p = —r, with r € (0,1) then from , and

we get
_ (A7 x) -
AT > ~—
{ z,7) 2 < (A—Tz,x) ’
and .y
(A7%"p x) < (A~ "z, )
(A—rz,z) — \ (A" 1z, 2) ’
which can be written as
(5.19) <A_Tx,ac>1_r <A1_Tx,ac>r > 1,
and
(5.20) <A_2Tx,x> < <A_T_1a:,ac>r <A_Tx,x>1fr,
for any z € H, ||z|| = 1, where A is a positive definite operator on H and
re(0,1).
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