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ON SZÁSZ-MIRAKYAN TYPE OPERATORS
PRESERVING POLYNOMIALS

ÖVGÜ GÜREL YILMAZ†, ALI ARAL∗ and FATMA TAŞDELEN YEŞILDAL†

Abstract. In this paper, a modification of Szász-Mirakyan operators is studied
[1] which generalizes the Szász-Mirakyan operators with the property that the
linear combination e2 +αe1 of the Korovkin’s test functions e1 and e2 are repro-
duced for α ≥ 0. After providing some computational results, shape preserving
properties of mentioned operators are obtained. Moreover, some estimations for
the rate of convergence of these operators by using different type modulus of
continuity are shown. Furthermore, a Voronovskaya-type formula and an app-
roximation result for derivative of operators are calculated.
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1. INTRODUCTION

Approximation theory is based on finding the best approximation of a func-
tion by polynomials or other type of simple functions. For many years, there
have been lots of improvements about the approximation theory. In 1853,
Russian mathematician Chebyshev focused on this matter. However, the big
step was in 1885 when Karl Weierstrass [13] presented the theorem on appro-
ximation.

In approximation theory, positive linear operators play an essential role.
The study of approximation sequences of linear positive operators was started
at the beginning of the 1950s. One of the most important positive linear
operators is Bernstein polynomials. Bernstein polynomials on the space C [0, 1]
are defined by

Bnf(x) =
n∑
k=0

f
(
k
n

) (n
k

)
xk(1− x)n−k, n ∈ N.
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Up to now, there have been lots of extensions and modifications of Bernstein
polynomials. It was King [9] who constructed Bernstein type linear positive
operator defined on C [0, 1] having an approximation order better then the
classical operators such that they reproduce the test function e0 and e2. This
operator has an approximation order better than the classical operators on[
0, 1

3

]
.

Inspiring this fact D. Cardenas-Morales et al. [4] introduced an operator of
King type, which was reproduced e2 + αe1 for α ≥ 0 and defined by

(1) Bn,αf(x) =
n∑
k=0

(n
k

)
f
(
k
n

) (
r∗n,α(x)

)k
(1− r∗n,α(x))n−k,

where

r∗n,α(x) = − nα+1
2(n−1) +

√
(nα+1)2

4(n−1)2 + n(αx+x2)
n−1 , n ∈ N.

They found the shape preserving properties for Bn,α and worked on the com-
parison with Bernstein polynomials. Furthermore, they also showed that the
sequences Bn,α for α ≥ 0 are an approximation process. Besides, for different
Bernstein Durrmeyer type operators, similar results were given in [5].

Szász-Mirakyan operators are the generalizations of Bernstein polynomials
on the interval [0,∞) which are defined by

Snf(x) =
∞∑
k=0

f
(
k
n

)
e−nx (nx)k

k! , n ∈ N.

Notice that, for all functions f : C [0,∞)→ R the series at the right hand side
convergences absolutely.

There are many papers about different type of generalizations of Szász-
Mirakyan operators where the basic properties of approximation are analyzed.
In the recent years, the number of the articles related to this fact has increased
(see [2], [7], [3] and [10]).

In order to furnish better error estimation in a certain sense than classical
Szász-Mirakyan operators, in [7], authors defined the following operators,

D∗nf(x) = e−nu
∗
n(x)

∞∑
k=0

f
(
k
n

)
(nu∗n(x))k

k!

where
u∗n(x) = −1+

√
4n2x2+1
2n , n ∈ N.

Note that, both of the results of [4] and [9] were obtained in finite intervals.
On the infinite interval, using similar technique, authors introduced Szász-
Mirakyan operators King type by reproducing e1 and e2 [3].

In this paper, as in [4] for Bernstein polynomials, we consider a similar
modification of the Szász–Mirakyan modified operators given in [1] using the
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function rn,α which is defined by {Sn,α : C[0,∞)→ C[0,∞)}n>0 for α ≥ 0,

Sn,αf(x) := Sn,α(f ;x) =
∞∑
k=0

f
(
k
n

)
Pn,k,α(x)(2)

Pn,k,α(x) := e−nrn,α(x) (nrn,α(x))k
k!

rn,α(x) = − (αn+1)
2n +

√
(αn+1)2

4n2 + (x2 + αx), n ∈ N, x ≥ 0,

where {rn,α : [0,∞)→ R}n>0 is the sequence of functions.
Noting the fact that when n→∞, rn,α → x, Sn,αf reduces to the classical

Szász-Mirakyan operator. That is, classical Százs-Mirakyan operators turn
out to be a limit element of Sn,αf and also if we take α = 0, the sequence D∗nf
of operators appears which is introduced in [7].

In [1], authors showed the approximation properties of Szász-Mirakyan mo-
dified operator. In the lights of the definition of the operator of (2), different
kinds of results which are related to the mentioned operator are obtained.

The organization of the paper is as follows:
In section 2, shape preserving properties of the Szász-Mirakyan modified

operators are investigated. Using the convexity and generalized convexity, re-
lations between the given functions, Sn,αf and Snf operators are obtained.
Then, the results of Voronovskaya-type theorem are given. Moreover, the rate
of convergence properties of this operator for two different modulus of conti-
nuities are studied and a theorem which is satisfied by derivative of Sn,αf is
given.

Throughout the paper, we use following definition and notations.

Definition 1. [5] A function f ∈ Ck[0,∞) (the space of k times conti-
nuously differentiable functions) is said to be τ convex of order k ∈ N whenever

(3) Dk(f ◦ τ−1) ◦ τ ≥ 0.

The classical convexity is obtained for τ = e1 and k = 2.
For τ(x) = e2+αe1 if f ∈ C[0,∞) convex functions with respect to e2+αe1

(in classical sense), it fulfills∣∣∣∣∣∣
1 1 1
x2

0 + αx0 x2
1 + αx1 x2

2 + αx2
f(x0) f(x1) f(x2)

∣∣∣∣∣∣ ≥ 0, 0 < x0 < x1 < x2 <∞

or equivalently to (3) for f ∈ C2[0,∞), k = 2

f ′′(x)− 2
2x+αf

′(x) ≥ 0, x > 0

for α > 0.
In this paper, mostly the name of τ convexity

(
τ(x) = x2 + αx

)
is used

instead of generalized convexity.
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The function space C2[0,∞) is defined by,

C2[0,∞) =
{
f ∈ C[0,∞) : f(x) ≤ kf (1 + x2)

}
where kf is a constant depending on f and

C∗2 [0,∞) =
{
f ∈ C[0,∞) : lim

x→∞
f(x)
1+x2 = kf

}
.

The space C2[0,∞) is endowed with the norm

‖f‖2 = sup
x≥0

|f(x)|
1+x2 .

2. SHAPE PRESERVING PROPERTIES

Let ei(x) = xi, i = 0, 1, 2. For α ≥ 0 and n > 0, using the results for the
Szász-Mirakyan operator (2), it is found that

(4) Sn,αe0 = e0, Sn,αe1 = rn,α, Sn,αe2 = (rn,α)2 + rn,α
n .

In view of the definition of rn,α yields

(5) Sn,α (e2 + αe1) (x) = x2 + αx.

To obtain the shape preserving properties, we need to find the first and second
order derivatives of Sn,αf. For Szász–Mirakyan operators similar results were
first established in [12].

Lemma 2. For any f ∈ C[0,∞), n ∈ N and x ∈ [0,∞) we have
a)

S′n,αf(x) = nr′n,α(x)
∞∑
k=0

{
f
(
k+1
n

)
− f

(
k
n

)}
Pn,k,α(x),

b)

S′′n,αf(x) = nr′′n,α(x)
∞∑
k=0

{
f
(
k+1
n

)
− f

(
k
n

)}
Pn,k,α(x)

+n2
(
r′n,α(x)

)2 ∞∑
k=0

{
f
(
k+2
n

)
− 2f

(
k+1
n

)
+ f

(
k
n

)}
Pn,k,α(x).

Calculating the first and the second order derivatives of rn,α, it is directly seen
that

(6) r′n,α(x) = 1
2

(2x+α)√
(αn+1)2

4n2 +(x2+αx)

and

r′′n,α(x) = 1
2

(
(αn+1)2

4n2 +
(
x2 + αx

))− 3
2
(
α
n + 1

2n2

)
.



5 Szász-Mirakyan type operators 97

c) For rn,α(x) ∈ [0,∞)/
{
k
n , k = 0, 1, ...

}
, we have

Sn,αf(x)− f(rn,α(x)) = rn,α(x)
n

∞∑
k=0

f
[
rn,α(x), kn ,

k+1
n

]
Pn,k,α(x),

where f [x0, x1, x2] is the divided differences of f with respect to x0, x1 and x2
such that 0 ≤ x0 < x1 < x2 <∞.

By applying first and second order derivatives of the operators, it leads to
the following theorem:

Theorem 3. Suppose that f ∈ C[0,∞), n ∈ N and x ∈ [0,∞). Then we
have
i) If f ∈ C[0,∞) is increasing, then Sn,αf is increasing,
ii) If f ∈ C[0,∞) is increasing and convex, then Sn,αf is convex.
Theorem 4. If f is convex and decreasing, we have

(7) Sn,αf (x) ≥ f (x) , x ∈ [0,∞).
Proof. We know that a function f is convex if and only if all second order

divided differences of f are nonnegative, (see [11, p. 259]). Thus, using Lemma
2, c) we have Sn,αf (x) ≥ f (rn,α(x)) , x ∈ [0,∞). Also we know that [1, Lemma
2.2] the inequality
(8) 0 < rn,α(x) < x <∞
holds true. Considering f is decreasing function, we have the desired result.

�

As an immediate consequence of the above result, one can stated the fol-
lowing theorem.

Theorem 5. Let n ∈ N, α ∈ [0,∞) and f ∈ C[0,∞) be convex with respect
to e2 + αe1, α > 0. Then we have

f(x) ≤ Sn,αf(x) ≤ Snf(x), x > 0.
Proof. From the remark of [14, Remark, p.426], we know that

Sn,αf(x) ≥ f(x), x ≥ 0
because of the f is convex with respect to τ = e2+αe1

1+α , α > 0. It is known
that the Szász-Mirakyan operators, n ∈ N, of a convex function f , satisfy

Snf(x) ≥ f(x)
for all n ∈ N and α ∈ [0,∞) (see [14, Remark, p. 438]). Thus, since τ is
convex we have

Sn(τ) ≥ τ.
Since (Sn(τ))−1 is increasing, so we get

(Sn(τ))−1 ◦ (Sn(τ)) ≥ (Sn(τ))−1 ◦ τ.
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Thus, we have
x ≥

(
(Sn(τ))−1 ◦ τ

)
(x).

Applying the operator Snf on both sides of the above inequality (Sn is mono-
tone operator), then we obtain

Snf(x) ≥ Sn((Sn(τ))−1 ◦ τ)(x) = Sn,αf(x),
which completes the proof. �

Theorem 6. Let n ∈ N, α ∈ [0,∞) and f ∈ C[0,∞) then
lim
α→∞

Sn,αf(x) = Snf(x)

uniformly for any closed interval [a, b] ⊂ [0,∞).
Proof. It is easily checked that

lim
α→∞

rn,α(x) = x

is uniform on [a, b] . This completes the proof. �

3. ASYMPTOTIC EXPRESSION

We begin by the following Voronovskaya-type theorem:
Theorem 7. Let f ∈ C∗2 [0,∞) such that f ′, f ′′ ∈ C∗2 [0,∞). Then we have

lim
n→∞

2n (Sn,αf(x)− f(x)) = x
(
f ′′(x)− 2

2x+αf
′(x)

)
,

for every x ∈ [0,∞).
Proof. Let f, f ′ and f ′′ ∈ C∗2 [0,∞) and x ∈ [0,∞) be fixed. By the Taylor

formula, we can write
(9) f (t) = f (x) + f ′ (x) (t− x) + 1

2f
′′ (x) (t− x)2 + λx (t) (t− x)2 ,

where λx (t) ∈ C∗2 [0,∞) and limt→x λx (t) = 0. From (9) we have
2n (Sn,αf(x)− f(x)) = f ′ (x) 2nSn,α (e1 − xe0) (x)

+1
2f
′′ (x) 2nSn,α (e1 − xe0)2 (x)

+2nSn,αλx (·) (e1 − xe0)2 (x).
By the Cauchy-Schwarz inequality, we have

(10) Sn,αλx (·) (e1 − xe0)2 (x) ≤
√
Sn,αλ2

x (·) (x)
√
Sn,α (e1 − xe0)4 (x).

To prove Voronovskaya-type theorem, we must compute Sn,αexi , i = 1, 2, 3, 4.
Here exi (t) := (t − x)i. Employing the definition of rn,α, we can compute

following limits.
lim
n→∞

2nSn,αex1(x) = lim
n→∞

2nSn,α (e1 − xe0) (x)

= lim
n→∞

2n (rn,α(x)− x)

= − 2x
(α+2x)
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and using the last limit, we get

lim
n→∞

2nSn,αex2(x) = lim
n→∞

2n(Sn,αe2(x)− 2xSn,αe1(x) + x2)

= lim
n→∞

2n(Sn,α (e2 + αe1) (x)− (α+ 2x) rn,α(x) + x2)

= lim
n→∞

2n
(
x2 + αx− (α+ 2x) rn,α(x) + x2

)
= lim

n→∞
2n (α+ 2x) (x− rn,α(x))

= 2x.

Moreover, we compute the following via Mathematica

nSn,αe4(x) =n4(2x4+4x3α+6x2α2+4xα3+α4)−n3(10x2α+10xα2+2α3)
2n3

− n3(2x2α+2xα2−α3)
√

1+2nα+n2(2x+α)2

2n3

+ n2(4x2+4xα+3α2)
√

1+2nα+n2(2x+α)2

2n3 + o(1)

nSn,αe3(x) =−n
3(3x2α+3xα2+α3)+n2(3x2+3xα)

2n2

+ n2(x2+αx+α2)
√

1+2nα+n2(2x+α)2

2n2

− nα
√

1+2nα+n2(2x+α)2

2n2 + o(1)

nSn,αe2(x) =1
2

(
α+ n(2x2 + 2xα+ α2)− α

√
1 + 2nα+ n2(2x+ α)2

)
nSn,αe1(x) =− 1

2 (1 + nα) + 1
2

√
1 + 2nα+ n2(2x+ α)2.

Then if we use equalities which are mentioned above, we obtain

nSn,αe
x
4(x) =n

(
Sn,αe4 − 4xSn,αe3 + 6x2Sn,αe2 − 4x3Sn,αe1 + x4Sn,αe0

)
(x)

=n4(16x4+32x3α+24x2α2+8xα3+α4)
2n3

− n3(8x3+12x2α+6xα2+α3)
√

1+2nα+n2(2x+α)2

2n3

− n3(8x3+16x2α+10xα2+2α3)
2n3

+ n2(4x2+8xα+3α2)
√

1+2nα+n2(2x+α)2

2n3 + o(1).

Finally by letting n→∞, we get

lim
n→∞

nSn,αe
x
4(x) =− (8x3+12x2α+6xα2+α3)α

2(2x+α) − (4x3 + 8x2α+ 5xα2 + α3)

+ (2x+α)(4x2+8xα+3α2)
2

=0.

Putting this results in (10), we have the desired result. �
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4. RATE OF CONVERGENCE OF Sn,αf

In this Section, the rate of convergence of Sn,α operators in terms of both
the weighted modulus of continuity and classical one is obtained.

Examining relations (4) and using the fact that rn,α → x as n→∞, then, on
the basis of Korovkin’s first theorem, we observe that Sn,α is an approximation
process on compact subsets included in [0,∞). Now, we want to give sufficient
conditions which ensure both uniform convergence of the sequence Sn,α to the
identity operator on the whole interval [0,∞) and the rate of convergence.
For Bernstein type operators, a similar result was first established in [6]. This
problem was further studied by de la Cal and Carcamo in [6].

Theorem 8. Assume that f : [0,∞)→ R is bounded. Let

f∗(z) = f(z2), z ∈ [0,∞).

We have for all x ≥ 0 and α > 0

(11) |Sn,αf(x)− f(x)| ≤ 6w
(
f∗; 1√

n

)
.

Therefore, Sn,αf converges to f uniformly on [0,∞) as n → ∞, whenever
f∗ is uniformly continuous.

Proof. Let x > 0 be arbitrary fixed. Since

Sn,αf(x) = Sn,α(f∗(
√
e1);x)

using the the definition of modulus of smoothness w (f∗; ·) , we have

|Sn,αf(x)− f(x)| =
∣∣Sn,α(f∗(

√
e1);x)− f∗(

√
x)
∣∣

≤ Sn,α
(∣∣f∗(√e1)− f∗(

√
x)
∣∣ ;x)

≤ Sn,α
(
w
(
f∗; |
√
t−
√
x|
)

;x
)

= Sn,α

(
w

(
f∗; |√t−√x|

Sn,α(|√e1−
√
xe0|;x)Sn,α

(
|
√
e1−
√
xe0|;x

)))
.

Further on, using the property w (f∗; ), we have

|Sn,αf(x)− f(x)| ≤ w
(
f∗;Sn,α

(∣∣√e1 −
√
xe0

∣∣ ;x))
×
(

1 + 1
Sn,α(|√e1−

√
xe0|;x)Sn,α

(∣∣√e1 −
√
xe0

∣∣ ;x))
= 2w

(
f∗;Sn,α

(∣∣√e1 −
√
xe0

∣∣ ;x)) .(12)

Using Cauchy- Schwarz inequality, we have

Sn,α
(∣∣√e1 −

√
xe0

∣∣ ;x) = Sn,α
(
|e1−xe0|√
e1+
√
x
;x
)

≤ 1√
x
Sn,α

(
(e1 − xe0)2;x

)1/2
.(13)
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From (4) and (5), we deduce

Sn,α
(
(e1 − xe0)2;x

)
= Sn,α (e2 + αe1) (x)− (2x+ α)Sn,α (e1) (x) + x2

= (2x+ α) (x− rn,α(x)) .
Clearly

x− rn,α(x) =x+ (αn+1)
2n −

√
(αn+1)2

4n2 + (x2 + αx)

= x

n

(
x+ (αn+1)

2n +
√

(αn+1)2
4n2 +(x2+αx)

)
≤ x
nx+αn+1 .(14)

According to (13) we have

Sn,α
(∣∣√e1 −

√
xe0

∣∣ ;x) ≤ √3√
n
.

Thus by (12), we have the inequality (11).
Under the hypothesis of our theorem, f∗ is uniformly continous on [0,∞),

we know that limδ→0w (f∗; δ) = 0. Since the inequality (11) valid for all
x ∈ [0,∞) leads us to the conclusion of our theorem. �

Now, we focus on weighted space C2[0,∞). Using (4) and (8), then we
obtain

Sn,α (e2 + e0) (x)
1 + x2 =

1 + r2
n,α (x) + rn,α(x)

n

1 + x2

≤
1 + x2 + x

n

1 + x2

≤3.
Therefore, we can say that Sn,α acts from C2[0,∞) to C2[0,∞). Also, we give
an estimation in terms of following weighted modulus of continuity. It is known
that, if f is not uniformly continuous on the interval [0,∞), then the usual
first modulus of continuity w(f, δ) does not tend to zero, as δ → 0. Here,
we use the following weighted modulus of continuity to gain this property.
For f ∈ C2[0,∞) and for every δ > 0, the weighted modulus of continuity
considered in [8] is defined as follows:

(15) Ω(f, δ) = sup
x≥0
|h|<δ

|f(x+ h)− f(x)|
(1 + x2)(1 + h2) .

It is known that for every f ∈ C∗2 [0,∞), Ω(f, δ), δ > 0, the following properties
hold true

lim
δ→0

Ω(f, δ) = 0

and
(16) Ω(f, λδ) ≤ 2 (1 + λ)

(
1 + δ2

)
Ω(f, δ), λ > 0.
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For f ∈ C2[0,∞), by (15) and (16), we can write

(17)
|f (t)− f(x)| ≤ 2(1 + x2)(1 + δ2)

(
1 + |t−x|

δ

) (
1 + (t− x)2

)
Ω(f, δ), t, x ≥ 0.

Theorem 9. Let f ∈ C∗2 [0,∞), then for all x ∈ [0,∞) we have the following
inequality

|Sn,αf(x)− f(x)|
(1 + x2)5/2 ≤ CαΩ(f, 1√

n
),

where Cα is a positive constant depending only on α.

Proof. Let n ∈ N and f ∈ C∗2 [0,∞). Considering (17) with λ = |t− x| δ−1,
from Cauchy-Schwarz inequality we can write

|Sn,αf(x)− f(x)| =
∣∣∣∣∣
∞∑
k=0

(
f
(
k
n

)
− f(x)

)
e−nrn,α(x) (nrn,α(x))k

k!

∣∣∣∣∣
≤
∞∑
k=0

∣∣∣f ( kn)− f(x)
∣∣∣ e−nrn,α(x) (nrn,α(x))k

k!

≤ 2(1 + x2)(1 + δ2)Ω(f, δ)×

×
∞∑
k=0

(
1 + 1

δ

∣∣∣ kn − x∣∣∣) (1 +
(
k
n − x

)2
)
e−nrn,α(x) (nrn,α(x))k

k!

= 2(1 + x2)(1 + δ2)Ω(f, δ)×

×
{

1+Sn,αex2 + 1
δ (Sn,αex2)1/2 + 1

δ (Sn,αex2)1/2 (Sn,αex4)1/2
}

and choosing δ = 1√
n
, then there is a constant Cα depending on α such that

we have
|Sn,αf(x)− f(x)|

(1 + x2)5/2 ≤ CαΩ
(
f, 1√

n

)
and the proof is completed. �

5. CONVERGENCE OF DERIVATIVE OF Sn,αf

Before considering the main results of this section, we state the derivative
of the operator (2) in following lemma.

Lemma 10. Let f be a continuously differentiable on [0,∞). Then, we have

(18) S′n,αf(x) = e−nrn,α(x)r′n,α(x)
∞∑
k=0

f ′
(
k+φk
n

) (nrn,α(x))k

k! , 0 < φk < 1.

Proof. From Lemma 2, we know that

S′n,αf(x) = nr′n,α(x)
∞∑
k=0

{
f
(
k+1
n

)
− f

(
k
n

)}
Pn,k,α(x).
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It is well known that

f
(
k+1
n

)
− f

(
k
n

)
= 1

nf
[
k
n ,

k+1
n

]
,

where f
[
k
n ,

k+1
n

]
is the divided difference of the points k

n and k+1
n .

Differentiating (2) with respect to x and applying the definition of the di-
vided difference in first derivative of Sn,α, we obtain

S′n,αf(x) = e−nrn,α(x)r′n,α(x)
∞∑
k=0

f
[
k
n ,

k+1
n

]
(nrn,α(x))k

k! .

Moreover, since the divided difference of f satisfies the equality

f
[
k
n ,

k+1
n

]
= f ′(ξ), k

n < ξ < k+1
n ,

taking ξ = k+φk
n , 0 < φk < 1, we get

S′n,αf(x) = e−nrn,α(x)r′n,α(x)
∞∑
k=0

f ′
(
k+φk
n

)
(nrn,α(x))k

k! , 0 < φk < 1

which completes the proof. �

First, we shall prove weighted convergence of first derivative of operator
(2) for f ∈ C∗2 [0,∞) in Lipschitz norm. Let f be continuously differentiable
function, which belongs to C2[0,∞) and also f ′ satisfies the Lipschitz condition
that is ∣∣f ′(x)− f ′(t)

∣∣ ≤M |x− t|β , 0 < β ≤ 1 , for any x, t ≥ 0.

In this case, we write f ′ ∈ LipMβ.

Theorem 11. If the function f is continuously differentiable on [0,∞) and
f ′ belongs to LipMβ, then we obtain

lim
n→∞

sup
x∈[0,∞)

∣∣∣S′n,αf(x)− f ′(x)
∣∣∣

1 + xβ+1 = 0.

Proof. Considering (18), we can write∣∣∣S′n,αf(x)− f ′(x)
∣∣∣ ≤ ∣∣∣S′n,αf(x)− f ′(rn,α(x))r′n,α(x)

∣∣∣
+
∣∣∣f ′(rn,α(x))r′n,α(x)− f ′(x)

∣∣∣
≤ r′n,α(x)

∞∑
k=0

∣∣∣f ′ (k+φk
n

)
− f ′(rn,α(x))

∣∣∣Pn,k,α(x)

+
∣∣∣f ′(rn,α(x))r′n,α(x)− f ′(x)

∣∣∣ .
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By reason of f ′ ∈ LipβM , we attain∣∣∣S′n,αf(x)− f ′(x)
∣∣∣ ≤ Mr′n,α(x)

∞∑
k=0

∣∣∣(k+φk
n

)
− rn,α(x)

∣∣∣β Pn,k,α(x)

+
∣∣∣f ′(rn,α(x))r′n,α(x)− f ′(x)

∣∣∣ .
Since φk < 1, we deduce∣∣∣S′n,αf(x)− f ′(x)

∣∣∣ ≤ Mr′n,α(x)
∞∑
k=0

∣∣∣(k+1
n

)
− rn,α(x)

∣∣∣β Pn,k,α(x)

+
∣∣∣f ′(rn,α(x))r′n,α(x)− f ′(x)

∣∣∣ .
Applying Holder inequality, we have∣∣∣S′n,αf(x)− f ′(x)

∣∣∣ ≤
≤Mr′n,α(x)Sn,α

((
e1 (t) + 1

n − rn,α(x)
)2

;x
)β

2
+
∣∣∣f ′(rn,α(x))r′n,α(x)− f ′(x)

∣∣∣
= Mr′n,α(x)

(
Sn,α

(
(e1 (t)−rn,α(x))2 ;x

)
+ 2 1

nSn,α (e1 (t)−rn,α(x);x) + 1
n2

)β
2

+
∣∣∣f ′(rn,α(x))r′n,α(x)− f ′(x)

∣∣∣ .
Let us remark that

sup
x∈[0,∞)

r′n,α(x)Sn,α
(
(e1 (t)− rn,α(x))2 ;x

)β
2

1 + xβ+1

= sup
x∈[0,∞)

rn,α(x)
β
2

(1 + xβ+1)n → 0, as n→∞,(19)

Sn,α (e1 (t)− rn,α(x);x) = 0 and

(20) sup
x∈[0,∞)

r′n,α(x)
1 + xβ+1 → 0, as n→∞.

On the other hand,

f ′(rn,α(x))r′n,α(x)−f ′(x) =
(
f ′(rn,α(x))− f ′(x)

)
r′n,α(x)−f ′(x)

(
1− r′n,α(x)

)
.

Since f ′ ∈ LipMβ, we can write∣∣f ′(rn,α(x))− f ′(x)
∣∣ ≤M |rn,α(x)− x|β

and ∣∣f ′(x)
∣∣ ≤ ∣∣f ′(0)

∣∣+Mxβ ≤Mf

(
1 + xβ

)
,

where Mf = max {|f ′(0)| ,M} .
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Now by (6) and (14) , we get∣∣∣f ′(rn,α(x))r′n,α(x)− f ′(x)
∣∣∣

1 + xβ+1 ≤ |f ′(rn,α(x))− f ′(x)|
1 + xβ+1 r′n,α(x)

+ |f ′(x)|
1 + xβ+1

∣∣∣1− r′n,α(x)
∣∣∣

≤ M
|rn,α(x)− x|β

1 + xβ+1 + |f ′(x)|
1 + xβ+1

∣∣∣1− r′n,α(x)
∣∣∣

≤ M
xβ

(1 + xβ+1) (αn+ 1)β

+Mf
2
α2

1 + xβ

1 + xβ+1

(
α

2n + 1
4n2

)
.(21)

Combining (19), (20) and (21), we have the the desired result. �

6. COMPARISON WITH Sn(f)

Let us denote w(f, δ) be the first order modulus of continuity of f ∈
CB[0,∞) (the space of all bounded and continuous functions on[0,∞)), where

w(f ; δ) = sup
0<|x−y|<δ

|f(x)− f(y)| .

We have the following estimates for Snf , D∗nf and Sn,αf in terms of the
modulus of continuity w(f, δ),

|Snf(x)− f(x)| ≤ 2w(f ; δ1(x))
|Sn,αf(x)− f(x)| ≤ 2w(f, δ2(x))

where δ2
1(x) = x

n and δ2
2(x) = (α+ 2x)(x− rn,α(x)).

In the following theorem, we present analogues theorem for Sn,αf to show
a better order of approximation.

Theorem 12. For every f ∈ CB[0,∞), x ≥ 0 and n ∈ N, we have
δ2(x) ≤ δ1(x)

and one can get the best approximation using Sn,αf.

Proof. The order of approximation to a function f ∈ CB[0,∞), given by
the sequence Sn,αf will be at least as good as of Snf whenever

2x2 + αx− rn,α(x)(α+ 2x) ≤ x
n .

Let
Kn,α = 2x2 + αx− rn,α(x)(α+ 2x)− x

n .

For x ∈ [0,∞), α ∈ [0,∞) and n > 0, the only root is x = 0 and one can see
that Kn,α never changes the sign in (0,∞). To analyze the sign of the Kn,α,
we can use the first derivative of Kn,α

Kn,α(0) = 0, K ′n,α(x) < 0
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and so that for x ∈ [0,∞), we get 2x2 + αx − rn,α(x)(α + 2x) ≤ x
n that is

δ2 ≤ δ1. �
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