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COMBINED APPROACH TO SOLVE
THE LINEAR COMPLEMENTARITY PROBLEM

Z. KEBBICHE1 and H. ROUMILI2

Abstract. In this paper, we present a new approach in order to solve the linear
complementary problem (LCP). We have combined the ideas of Lemke’s method
and its variants taking advantage of the benefits of each approach in order to
improve the convergence of these algorithms.

Numerical simulations and comparative results of the new approach are pro-
vided.

Since the quadratic convex program and linear program can be written as
(LCP), so it can be resolved thanks to our new approach.

MSC 2010. 90C33.
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1. INTRODUCTION

Study of complementary problems began with the works of R.W. Cottle
in the 1960’s [3]. Problems of this type arise frequently in engineering appli-
cations, game theory, and economics. It can be seen as a particular case of
variational inequalities. Also, the KKT conditions for linear and quadratic
programming problems can be written as a linear complementary problem,
hence the algorithm presented in this paper can be used to solve both linear
and quadratic programming problems.

An important tool existing since a long time to solve the (LCP) is the
Lemke’s method (1968), based on the principle of the simplex method intro-
duced by Dantzig in 1951. It chooses the entering variable by a complementary
pivot rule, the entering variable in a step is always the complement of the drop-
ping variable in the previous step. An artificial variable z0 associated to the
column vector −e (−e is the column vector of all 1’s in Rn) is introduced into
(LCP) and the idea is to drive the variable z0 to 0 by series of complementary
pivots, thus obtaining a solution to the (LCP). This method converges with a
finite number of iterations, when the problem admits a solution.

In this paper, we present two variants of Lemke’s method:
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Variant 1: the idea is to replace the column vector associated with z0 by
any strictly positive vector d.

Variant 2: the idea is to replace the column vector associated with z0 by
the column vector M. t of the matrix M such that M. t > 0.

The main difficulty of variant 1 lies in the determination of a strictly positive
vector d, it is a very restrictive condition. The question is how to choose the
components of d?

Concerning variant 2, the supposed condition on the matrix M restricted
classes of (LCP) treated with this variant (we can not apply this variant for
linear or quadratic problems, for (LCP) with any matrix, ...) because there is
no strictly positive column.

Our goal in this paper is to propose a new approach that combines the ideas
of these variants and Lemke’s method taking advantage of the benefits of each
approach in order to improve the convergence of these algorithms.

The paper is organized as follow:
Firstly, we present Lemke’s method. In section 3, we present the variants of

Lemke’s method. Numerical simulations and comparative experimental results
between the two variants and Lemke’s algorithm are given in section 4. The
new approach is described in section 5 with several examples of applications.
Section 6 presents some conclusions.

2. LEMKE’S METHOD

We consider the linear complementary problem

(LCP ) Find (w, z) ∈ Rn × Rn such that
w = Mz + q,(1)

(w, z) ≥ 0(2)
wtz = 0.(3)

where M is a given square matrix of order n and q is a column vector in Rn.

2.1. Preliminaries. Let wi (resp.zi) be the component of number i of vector
w (resp. z). The component wi (resp.zi) is called basic variable if wi ≥ 0
(resp. zi ≥ 0). If wi (resp. zi) is nonbasic variable, then wi = 0 (resp. zi = 0).

Definition 1. The couple (w, z) is called complementarity basic feasible
solution (CBFS), if it verifies the following conditions

1) (w, z) is a feasible solution to (1) and (2),
2) one and only one component of (wi, zi) is a basic variable for 1 ≤ i ≤ n.

Remark 2. 1) If q ≥ 0 then, we immediately have a complementarity basic
feasible solution (CBFS) of (LCP) by letting (w, z) = (q, 0) .

2) If (q � 0), an artificial variable z0 associated with the column vector −e
( −e is the column vector of all 1’s in Rn) is introduced into (LCP). �
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The idea is to drive the variable z0 to 0 by series of complementary pivots,
by solving the following problem

(LCP )z0 Find (w, z) ∈ Rn × Rn such that
w −Mz − ez0 = q,(4)

(w, z) ≥ 0 , z0 ≥ 0,(5)
wizi = 0 , for i = 1, ..., n.(6)

Thus obtaining a solution to the (LCP). Where z0 is defined by:

z0 = max {−qi : i = 1, ..., n} .

Then (w, z) = (q + ez0, 0) is a starting solution to (LCP)z0
.

Definition 3. (w, z, z0) is called almost-complementarity basic feasible so-
lution of (LCP)z0

if it verifies the following conditions:
1) (w, z, z0) is a feasible solution to (4) and (5),
2) neither ws nor zs are basic for some s ∈ {1, ..., n} ,
3) z0 is basic, and exactly one variable from each complementary pair

(wi, zi) is basic for i = 1, ..., n and i 6= s.

2.2. Description of Lemke’s algorithm. This algorithm was introduced by
Lemke (1968), known as the complementary pivot algorithm because it chooses
the entering variable by a complementary pivot rule, the entering variable in
a step is always the complement of the dropping variable in the previous step.
The dropping variable has to determined according to the minimum ratio test
to guarantee that the new basis obtained after the pivot step will also be a
feasible basis.

Algorithm 1. • Data. q ∈ Rn, M ∈ Rn×n.
• Initialization.

– If q ≥ 0 stop. (w, z) = (q, 0) is a solution of the (LCP) .
– Else determine s ∈ {1, ...., n} to satisfy: qs = min {qi : 1 ≤ i ≤ n} ,

qs < 0, We perform a pivot step with the column vector of z0 as
the pivot column, and the sth row as the pivot row. ws drops from
the basis vector and z0 is the entering variable, put ys = zs.

• Iteration.
• Step 1: Let hs be the column vector corresponding to the variable
ys then

– If hs ≤ 0 go to step 4.
– Else determine the set I = {i : hs [i] > 0} , then choose r such

that qr
hs[r] = min

i∈I

{
qi

hs[i]

}
. (the vector q designates the second mem-

ber column after pivoting)
– If the basic variable in the row r is z0 go to step 3.
– Else go to step 2.
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• Step 2: The basic variable in the row r is either wk or zk for k 6= s, so
we perform a pivot step with the row r as the pivot row and the column
of ys as the pivot column. If wk (respectively zk) drops the basis, put
ys = zk (resp. ys = wk) and we return to step 1.
• Step 3: We perform a pivot step with the row of z0 and the column of
ys, so z0 leaves the basis, we obtain a solution of (LCP).
• Step 4: Since hs ≤ 0 we stop with a ray of termination (RT):

R = {(w, z, z0) + λh : λ ≥ 0} , or (w, z, z0) is an almost
complementarity basic feasible solution to (LCP)z0, the components
of h are defined as

1, for the row corresponding to ys

−hs, for rows corresponding to basic variables
0, elsewhere

• End.

2.3. Convergence. This algorithm is guaranteed to work under certain non-
degeneracy assymptions and when M satisfies certain properties.

Theorem 4. We suppose that M ∈ CPP (M is copositive plus) and each
feasible almost-complementarity solution of (LCP)z0

is nondegenerate, then
the algorithm stops after a finite number of iterations.

If the system defined by (1) and (2) is consistent, then the algorithm stops
with a complementarity basic feasible solution of (LCP), else, (LCP) admits
no solution.

Example 5. It is possible that cycling occurs under degeneracy. Here we
provide an example of cycling constructed by M. Kostreva [4]. Let

M =

 1 2 0
0 1 2
2 0 1

 and q =

 −1
−1
−1

 .
Lemke’s method cycles after 7 iterations.
M is a p-matrix, so (LCP) has a unique solution, and that the complemen-

tary pivot method always terminates in a finite number of pivot steps with
that solution, if it is carried out in such a way that cycling does not occur un-
der degeneracy. So using the lexico-minimum ratio rule for choosing the pivot
row in each step, cycling cannot occur, and the method gives the solution
(w, z)t = (0, 0, 0, 2

3 ,
2
3 ,

2
3)t after 4 iterations. �

Example 6. Consider the (LCP) problem, where

M =

 21 0 0
28 14 0
24 24 12

 and q =

 −1
−1
−1

 .
The algorithm stops after 2 iterations with the solution: (w, z)t =

(0, 0.33, 0.14, 0.05, 0, 0)t. �
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3. VARIANTS OF LEMKE’S METHOD

3.1. Variant 1. This variant is described in [7].
Principle
In Lemke’s algorithm, we have the following table

w z z0 second member
I −M −e q

The idea of this variant is to replace the corresponding column to z0 by a
vector d such that d > 0, so we have the table

w z z0 second member
I −M −d q

,

and the system
Find (w, z) ∈ Rn × Rn such that:

w −Mz − dz0 = q,(7)
(w, z) ≥ 0, z0 ≥ 0,(8)
wi zi = 0, for i = 1 : n.(9)

1) If q ≥ 0, (w, z) = (q, 0) is a solution of the (LCP).
2) If q � 0, identify row s to satisfy qs

ds
= min

{
qi
di

: 1 ≤ i ≤ n
}
. We per-

form a pivot step with the column vector of z0 as the pivot column, and the
sth row as the pivot row. ws drops from the basis vector and z0 is the entering
variable, put ys = zs. Then, we follow the same steps of Lemke’s algorithm.

We will now illustrate this variant using the numerical examples of the
previous section.

Example 7. Consider the (LCP) problem with

M =

 1 2 0
0 1 2
2 0 1

 and q =

 −1
−1
−1

 .
We choose d = (7, 3, 5)t, when we apply variant 1, we obtain the solution:
(w, z)t = (0, 0, 0, 2

3 ,
2
3 ,

2
3)t after 4 iterations. We choose d = (15, 7, 9)t, then the

algorithm stops after 6 iterations with the same solution. �

Example 8. Consider the (LCP ) problem, where

M =

 21 0 0
28 14 0
24 24 12

 and q =

 −1
−1
−1

 .
Let d = (12, 14, 21)t, the algorithm stops after 2 iterations with the solution:

(w, z)t = (0, 0.33, 0.14, 0.05, 0, 0)t.
For d = (2, 3, 1)t, the algorithm stops after 8 iterations with the same

solution. �
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Remark 9. 1) The choice of the vector d affects the results obtained in
number of iterations and execution time, so the question is: first, how to
choose components of the vector d, and secondly, what is the ideal choice?

2) Noting that among the advantages of this variant is that it does not suffer
from cycling problem (Example 7). �

3.2. Variant 2. This variant also is described in [7].
Principle
Suppose the matrix M satisfies the condition: there exists a column vector

of M in which all the entries are strictly positive ( M. t > 0 ). Then a variant
of the Lemke’s algorithm which uses no artificial variable at all, can be applied
on the (LCP ). So M.t replace the vector d and the variable zt play the same
role as that of the artificial variable z0.

We assume that q � 0. Let t be such that M. t > 0. When a pivot step
is carried out with the column of zt as the pivot column and row s as the
pivot row, the right hand side constants vector becomes nonnegative after
this pivot step. Hence (w1, ..., ws−1, zt, ws+1, ..., wn) is feasible basic vector,
and if s = t, it is a complementary feasible basic vector and the solution
corresponding to it is a solution of the (LCP). If s 6= t, the feasible basic
vector (w1, ..., ws−1, zt, ws+1, ..., wn) satisfies the following properties:

Definition 10. Any feasible basic vector satisfying the following conditions
is known as an almost complementary feasible basic vector:

1) It contains exactly one basic variable from the complementary pair
(wi, zi) for n− 2 values of i (namely i 6= s, t here).

2) It contains both the variables from a fixed complementary pair (namely
(wt, zt) here), as basic variables.

3) There exists exactly one complementary pair both the variables in which
are not contained in this basic vector (namely (ws, zs) here).

Algorithm 2. • Data. q ∈ Rn, M ∈ Rn×n.
• Initialization.

– If q ≥ 0 stop. (w, z) = (q, 0) is a solution of the (LCP) .
– Else 1) Choose t such that M. t > 0.

2) Determine s ∈ {1, ...., n} to satisfy: qs

mst
= min

{
qi

mit
, i = 1...n

}
.

We perform a pivot step with the column vector of zt as the pivot
column, and the sth row as the pivot row. ws drops from the basis
vector and zt is the entering variable, put ys = zs.

• Iteration.
• Step 1: Let hs be the column vector corresponding to the variable
ys then

– If hs ≤ 0 go to step 4.
– Else Determine the set I = {i : hs [i] > 0} , then choose r such

that
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qr
hs[r] = min

i∈I

{
qi

hs[i]

}
. (the vector q designates the second member

column after pivoting)
– If the basic variable in the row r is zt go to step 3.
– Else go to step 2.

• Step 2: The basic variable in the row r is either wk or zk for k 6= t, so
we perform a pivot step with the row r as the pivot row and the column
of ys as the pivot column. If wk (respectively zk) drops the basis, put
ys = zk (resp. ys = wk) and we return to step 1.
• Step 3: We perform a pivot step with the row of wt or zt and the

column of ys, so wt or zt leaves the basis, we obtain a solution of
(LCP).
• Step 4: Since hs ≤ 0, we stop with a ray of termination:

R = {(w1, w2, ..., wn, z1, z2, ...zn) + λh : λ ≥ 0} .
the components of d are defined as

1, for the row corresponding to ys

−hs, for rows corresponding to basic variables
0, elsewhere

• End.

We will now illustrate this variant using the same examples for variant 1.

Example 11. Let

M =

 1 2 0
0 1 2
2 0 1

 and q =

 −1
−1
−1

 .
There is no strictly positive column in M, so we can not apply this variant.

�

Example 12. Let

M =

 21 0 0
28 14 0
24 24 12

 and q =

 −1
−1
−1

 .
M.1 � 0, so we can apply variant 2. The algorithm stops after 1 iteration

with the solution: (w, z)t = (0, 0.33, 0.14, 0.05, 0, 0)t. �

4. COMPARATIVE NUMERICAL RESULTS

In this section, we present the comparative numerical results between the
two variants and Lemke’s algorithm.

Example 13. Consider a (LCP) problem with

M =

 2 1 −1
2 1 −1
1 1 0

 and q =

 3
1
−1

 . �
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Example 14. Let

M =
(
−1

2 1
1 −1

2

)
and q =

(
1
−1

)
. �

Example 15. Let

M =

 21 0 0
28 14 0
24 24 12

 and q =

 −1
−1
−1

 . �

Example 16. Consider a (LCP) problem with

M =

 1 2 0
0 1 2
2 0 1

 and q =

 −1
−1
−1

 . �

Example 17. Let

M =


1 1 3 4
5 3 1 1
2 1 2 2
1 4 1 1

 and q =


−1
2
1
3

 . �

Example 18. We consider a convex quadratic problem (CQP)

(CQP )


min x2

1 + 2x2
2 − 2x1x2 − x1 − 6x2
x1 + 2x2 ≤ 4
− x1 − 2x2 ≤ 4
x1, x2 ≥ 0.

�

Example 19. We consider the following linear problem (LP)

(LP )



min−x1 − x2 − x3
−x1 + 2x2 ≤ 4

x1 − 3x2 − x3 ≤ −3
x1 + x2 ≤ 9

−x1 − 1
2x2 + x3 ≤ −2
−2x2 ≤ −5
x1, x2, x3 ≥ 0.

�

Example 20. We have a (LCP) problem with

M [i, j] =


5, if i < j

1, if i = j

0, if i > j

and q[i] = −1,

for i = 1, ..., 15 and j = 1, ..., 15. �
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Example 21. We have

M =



1 2 2 2 . . . 2
2 5 6 6 . . . 6
2 6 9 10 . . . 10
2 6 10 13 14 . . .
. . . 14 17 18 . .
. . . . 18 . . .
. . . . . . . .
2 6 10 . . . . 4n− 3


and q =



−1
−1
.
.
.
.
.
−1


�

In the following tables, n represents the problem dimension, k represents
the number of iterations and t represents the calculation time in seconds for
the three algorithms.

Lemke’s algor. v. 1 v. 2
Examples n k t k t k t
Ex. 13 3 3 0.49 3 0.5 2 0.05
Ex. 14 2 RT 0.5 RT 0.5 × ×
Ex. 15 3 2 0.59 2 0.49 1 0.00
Ex. 16 3 4 0.55 6 0.5 × ×
Ex. 17 4 2 0.55 2 0.49 1 0.00
Ex. 18 4 4 0.55 4 0.49 × ×
Ex. 19 8 11 0.66 9 0.49 × ×
Ex. 20 15 30 2.11 56 2.91 2 1.51
Ex. 21 20 2 0.49 2 0.49 1 0.00

Table 1. Comparative numerical results of the Lemke’s method, vari-
ant 1 and variant 2.

According to the numerical results in Table 1, the following remarks can be
made:

1) Variant 1 difficulty lies in the determination of an ideal vector d since
the choice of this vector affects the results obtained in number of iter-
ations and execution time (See section 3).

2) We can not apply variant 2 for:
- All linear programming problems (Example 18) since there is no strictly

positive column. The matrix M in this case is in the form M =
(

0 At

−A 0

)
(See section 5).

- Some convex quadratic problems (Example 17). The matrix M in this

case is in the form M =
(

Q At

−A 0

)
(See section 5).

- Any matrix M which has no strictly positive column (Example 14 and
Example 16).
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This result does not exist for Lemke’s method and variant 1.
3) The number of iterations and the calculation time recorded for variant

2 are better than those given by variant 1 and Lemke’s method.
4) We must think about a new approach that treats these classes of (LCP)

problems.

5. COMBINED APPROACH

Our goal in this paper is to propose a new approach that combines the ideas
of these variants and Lemke’s method taking advantage of the benefits of each
approach in order to improve the convergence of these algorithms. We give
the principle of our approach that combines the ideas of the three methods.

Principle
We assume that q � 0.

- If M satisfies the condition: ∃t such that M. t > 0, then we apply
variant 2.

- Else, we define a vector d � 0 from any column s of M with the
properties: we let all positive components of M.s and we put 1 for the
null components and −M [i, s] for the negative one.

Hence, our algorithm is defined as:

Algorithm 3. • Data. q ∈ Rn, M ∈ Rn×n.
• Initialization.

– If q ≥ 0 stop. (w, z) = (q, 0) is a solution of the (LCP ) .
– Else

- If ∃ t ∈ {1, ..., n} such that: M.t > 0 apply variant 2.
- Else Choose a column vector M.s ≯ 0 and calculate d ∈ Rn

+
as follow:

d[i] =


M [i, s], if M [i, s] > 0,
1, if M [i, s] = 0,
−M [i, s], if M [i, s] < 0,

then apply variant 1.
• End.

5.1. Numerical tests.

5.1.1. Case of linear complementary problem. We consider the (LCP)
problem

(LCP )


Find (w, z) ∈ Rn × Rn such that:

w = Mz + q
(w, z) ≥ 0
wtz = 0.

where M is a given square matrix of order n and q is a column vector in Rn.
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Example 22. We take example of Kostreva with M =

 1 2 0
0 1 2
2 0 1

 , then

d = (1, 2, 1)t for s = 3. �

Example 23. Let

M =


2 2 1 2
3 3 2 3
−2 1 5 −2
1 −2 −1 2

 and q =


−4
−6
4
4

 . �

Example 24. Let

M =



2 2 −1 3 −3 2
3 −3 2 −2 5 2
−2 −1 5 −2 −2 −1
1 −2 −1 2 3 −1
2 −1 2 −3 1 0
0 1 2 5 −1 0


and q =



−1
−1
−1
−1
−1
−1


. �

Examples n k t
Example 22 3 4 0.49
Example 23 4 2 0.5
Example 24 6 7 0.6

Table 2. Numerical results of the combined approach in the case of
a linear complementary problem.

In these examples, variant 2 is not applicable so we apply the new approach
with a vector d which is well defined.

5.1.2. Case of linear programming. We consider the following (LP) pro-
blem

(LP )


min ctx
Ax ≤ b
x ≥ 0,

Where A is a given (m,n)-matrix with rank(A) = m, b ∈ Rm and c ∈ Rn.
The conditions of KKT’s related to the (LP) problem are written as (LCP)

where:

M =
(

0 At

−A 0

)
, q =

(
c
b

)
and z∗ =

(
x∗

y∗

)
.

(x∗, y∗) is the primal-dual solution of (LP) and it dual (D).
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Examples n k t
Example 25 8 9 0.55
Example 26 12 13 0.82
Example 27 15 5 0.66

Table 3. Numerical results of the combined approach in the case
of linear programming problems.

Example 25. Consider the (LP) problem

(LP )



min−x1 − x2 − x3
−x1 + 2x2 ≤ 4

x1 − 3x2 − x3 ≤ −3
x1 + x2 ≤ 9

−x1 − 1
2x2 + x3 ≤ −2
−2x2 ≤ −5
x1, x2, x3 ≥ 0.

�

Example 26. We have the following (LP) problem

(LP )



min−4x1 − 5x2 − x3 − 3x4 + 5x5 − 8x6
x1 − 4x3 + 3x4 + x5 + 3x6 ≤ 1
5x1 + 3x2 + x3 − x5 + 3x6 ≤ 4

4x1 + 5x2 − 3x3 + 3x4 − 4x5 + x6 ≤ 4
−x2 + 2x4 + x5 − 5x6 ≤ 5

−2x1 + x2 + x3 + x4 + 2x5 + 2x6 ≤ 7
2x1 − 3x2 + 2x3 − x4 + 4x5 + 5x6 ≤ 5

xi ≥ 0, i = 1, 2, ..., 6,

�

Example 27. We consider a (LP) problem where

A =


1 2 3 4 5 5 4 3 2 1
6 7 8 9 10 5 2 8 3 1
11 12 13 14 15 6 7 80 90 10
1 10 20 30 40 50 60 80 90 10
3 9 27 60 45 60 75 8 9 46

 , b =


10000
10000
10000
10000
10000


and c = (−1,−1, ...,−1)t. �

For all linear programming problems presented here, we can not apply vari-
ant 2 since there is no strictly positive column. But the new approach gives
us the above results.

5.2. Case of convex quadratic programming. We consider the (CQP)
problem

(CQP)


min 1

2x
tQx+ ctx

Ax ≤ b
x ≥ 0.
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where Q is a symmetric semidefinite matrix of order n, A is a given (m,n)-
matrix with rank(A) = m, b ∈ Rm and c ∈ Rn.

The conditions of KKT’s related to the (CQP) problem are written as (LCP)
where:

z∗ =
(
x∗

y∗

)
, q =

(
c
b

)
and M =

(
Q At

−A 0

)
.

(x∗, y∗) is the primal-dual solution of (CQP) and it dual (D).
Example 28. We consider the following (CQP) problem

min 2x2
1 + 4x2

2 + 6x2
3 − 2x1x2 − 6x1x3 + 8x2x3 + 5x1 + 6x2 − 12x3
− x1 − 2x2 − x3 ≤ −6
x1 + x2 + x3 ≤ 16
−x1 + 2x2 ≤ 4
x1, x2, x3 ≥ 0.

�

Example 29. We have a (CQP) problem where

Q =


1 0 −5 0
0 5 0 0
−5 0 1 5
0 0 5 5

 , A =

 1 2 1 1
3 1 2 −1
0 −1 −4 0

 ,

b =

 5
−4

3
2

 and c =


1
3
−1
1

 . �

Example 30. Consider the (CQP) problem where

Q =



30 1 1 1 1 1 1 1 1 1
1 21 0 1 −1 1 0 1 0.5 1
1 0 15 −0.5 −2 1 0 1 1 1
1 1 −0.5 30 3 −1 1 −1 0.5 1
1 −1 −2 3 27 1 0.5 1 1 1
1 1 1 −1 1 16 −0.5 0.5 0 1
1 0 0 1 0.5 −0.5 8 1 1 1
1 1 1 −1 1 0.5 1 24 1 1
1 0.5 1 0.5 1 0 1 1 39 1
1 1 1 1 1 1 1 1 1 11


,

A =

 1 −1 1.9 1.25 1.2 0.4 −0.7 1.06 1.5 1.05
1.3 1.2 0.15 2.15 1.25 1.5 0.4 1.52 1.3 1
1.5 −1.1 3.5 1.25 1.8 2 1.95 1.2 1 −1

 ,

b = (11.651, 16.672, 21.295)t, and c = (−0.5,−1, 0, 0,−0.5, 0, 0,−1,−0.5,−1)t .
�

In Table 4, we have applied the new approach to quadratic programming
problems with any matrix M.
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Examples n k t
Example 28 6 4 0.55
Example 29 7 3 0.49
Example 30 13 4 0.97

Table 4. Numerical results of the combined approach in the case of
quadratic programming problems.

6. CONCLUSION

In this paper, we have proposed a new efficient approach to solve linear
complementary problems. We have combined the ideas of Lemke’s method
and its variants to introduce a new vector which is well defined, so, the algo-
rithm obtained is able to solve any type of problems (linear problems, convex
quadratic problems, any matrix which has no strictly positive column, ...) and
the numerical results confirm the efficient of our algorithm.

Acknowledgements. The authors wish to thank the anonymous referees
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overall presentation of the paper.

REFERENCES

[1] M. Bazarra, H.D. Sherali and C.M. Shetty, Nonlinear Programming: Theory
and Algorithms, Second edition, Wiley, 1993.

[2] I. Ben Gharbia, Résolution de problèmes de complémentarité: Applications à un
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