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Abstract. The paper is concerned with estimates for the mixed modulus of
smoothness in Lebesgue spaces with Muckenhoupt weights, Steklov type aver-
ages.
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1. INTRODUCTION

The main aim of this research is to investigate the approximation properties
of some means of two dimensional Fourier series in Lebesgue spaces Lpω

(
T2)

with weights ω in the Muckenhoupt’s class Ap
(
T2, J

)
, where J is the set of

rectangles in T2 := T× T, T := [0, 2π] with sides parallel to coordinate axes.
Trigonometric approximation by ”angle” and mixed K -functional will be the
main tools. We obtain the main properties of the weighted mixed modulus
of smoothness Ωr (f, δ1, δ2)p,ω in Lpω

(
T2), ω ∈ Ap (T2, J

)
, 1 < p < ∞. Note

that, in general, in weighted spaces, such as Lpω
(
T2) , the classical transla-

tion operators are not bounded. Instead of classical translation operators we
use Steklov type operators to define the weighted mixed modulus of smooth-
ness Ωr (f, δ1, δ2)p,ω in Lpω

(
T2) (see [2]). Starting from 70s, in the classical

nonweighted Lebesgue spaces Lp
(
T2) (defined on T2 or Td, d ≥ 1), some

problems related to the classical nonweighted mixed modulus of smoothness
ωr (f, δ1, δ2)p have been actively studied by mathematicians: M. K. Potapov
[14, 17], [18], [15, 16]; Potapov, Simonov, Lakovich [20]; Potapov, Simonov,
Tikhonov [22], [19, 21]; A. F. Timan [27]; M. F. Timan [28, Chapter 2]. Among
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these problems we mention direct and inverse theorems of angular approxima-
tion [14, 17], [18]; Hardy-Littlewood, Marcinkiewicz-Littlewood-Paley and em-
bedding results [15, 16]; transformed Fourier series; embedding results of the
Besov-Nikolski and Weyl-Nikolskii classes [19, 21], Ulyanov type inequalities
[23]; mixed K-functionals [6], [25]; fractional order classical mixed modulus of
smoothness [24].

In what follows, A . B will mean that, there exists a positive constant
Cu,v,..., depending only on the parameters u, v, . . . and can be different in
different places, such that the inequality A ≤ CB holds. If A . B and B . A
we will write A ≈ B.

It is well known that the main property of modulus of smoothness
Ωr (·, δ1, δ2)p,w is that it decreases to zero as max {δ1, δ2} → 0. This rate
can be characterized by some class Φa1,a2 defined below: the class Φa1,a2
(a1, a2 ∈ R× R) consists of functions ψ (·, ·) satisfying conditions

(a) ψ (t1, t2) ≥ 0 bounded on (0,∞)× (0,∞),
(b) ψ (t1, t2)→ 0 as max {t1, t2} → 0,
(c) ψ (t1, t2) is non-decreasing in t1 and t2, (d) t−ai

i ψ (ti) is non-increasing
in ti (i = 1, 2).

We suppose that J is the set of rectangles in T2 with the sides parallel
to coordinate axes. A function ω : T2 → R≥ := [0,∞) is called a weight
on T2 if ω (x1, x2) is measurable and positive almost everywhere on T2. We
denote by Ap

(
T2, J

)
, (1 < p <∞) the collection of locally integrable weights

ω : T2 → R≥ such that ω (x1, x2) is 2π-periodic with respect to each variable
x, y and
(1)

C:=sup
G∈J

(
1
|G|

∫
G

ω (x1, x2) dx1dx2

)(
1
|G|

∫
G

[ω (x1, x2)]
1

1−p dx1dx2

)p−1
<∞.

The least constant C in (1) will be called the Muckenhoupt’s constant of ω
and denoted by [ω]Ap

.
The main result of this work is the characterization of the modulus of

smoothness, given in the following theorem.

Theorem 1. Let r ∈ N, p ∈ (1,∞) and w ∈ Ap
(
T2, J

)
.

(a) If f ∈ Lpω
(
T2), then there exists ψ ∈ Φ2r,2r such that

(2) Ωr (f, t1, t2)p,w ≈ ψ (t1, t2)

holds for all t1, t2 ∈ (0,∞)× (0,∞) with equivalence constants depend-
ing only on r and [w]Ap

.
(b) If ψ ∈ Φ2r,2r then there exist f0 ∈ Lpω

(
T2) and the positive real numbers

t0, t3 such that

(3) Ωr (f0, δ1, δ2)p,w ≈ ψ (δ1, δ2)
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holds for all δ1, δ2 ∈ (0, t0)× (0, t3) with equivalence constants depend-
ing only on r and [w]Ap

.

For functions in Lpω (T) , p ∈ (1,∞), ω ∈ Ap (T) Theorem 1 was obtained
by the author in [1]. In this work we simplify the (long) proof given in [1].

This type characterization theorem was proved in [26] (one dimensional
case) for the spaces Lp (T) , p ∈ [1,∞), with classical moduli of smoothness of
fractional order. The class Φ% describes completely the class of all majorants
for the moduli of smoothness ωr (·, δ)p in the space Lp (T) , p ∈ [1,∞). For
ωr (·, δ)p, r ∈ N the characterization problem was investigated by O. V. Besov,
S. B. Stechkin [4], V. I. Kolyada [12]; for ωr (·, δ)p, r > 0 the characterization
theorem was obtained by S. Tikhonov [26].

2. PRELIMINARIES

Let L1 (T2) be the collection of Lebesgue integrable functions f (x1, x2) :
T2 → R such that f (x1, x2) is 2π-periodic with respect to each variable x1, x2.
Let 1 < p < ∞, ω (x1, x2) ∈ Ap

(
T2, J

)
, and let Lpω

(
T2) be the collection of

Lebesgue integrable functions f (x1, x2) : T2 → R such that f (x1, x2) is 2π-
periodic with respect to each variable x1, x2 and

‖f‖p,ω :=

∫∫
T2

|f (x1, x2)|p ω (x1, x2) dx1dx2

1/p

<∞.

When ω (x1, x2) ≡ 1 we denote ‖f‖p,1 =: ‖f‖p and Lp1
(
T2) =: Lp

(
T2) for

1 ≤ p <∞; L∞1
(
T2) =: L∞

(
T2).

We define Steklov type averages by

σh1,h2f (x1, x2) = 1
4h1h2

∫ x1+h1

x1−h1

∫ x2+h2

x2−h2
f (t, τ) dtdτ.

σh1,◦f (x1, x2) = 1
2h

∫ x1+h1

x1−h1
f (t, τ) dt,

σ◦,h2f (x1, x2) = 1
2k

∫ x2+h2

x2−h2
f (t, τ) dτ.

Lemma 2. [8, Theorem 3.3],[2] If 1 < p <∞, ω ∈ Ap
(
T2, J

)
, f ∈ Lpω

(
T2),

then

(4)
{
‖σh1,h2f‖p,ω , ‖σh1,◦f‖p,ω , ‖σ◦,h2f‖p,ω

}
. ‖f‖p,ω ,

uniformly in h1, h2, where the constants depend only on [ω]Ap
and p.
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For 1 < p < ∞, ω ∈ Ap
(
T2, J

)
, f ∈ Lpω

(
T2), h1, h2, r ∈ N, we define the

mixed differences by

5r,◦
h1,◦f (x1, x2) = (I− σh1,◦)

r f (x1, x2) ,
5◦,r◦,h2

f (x1, x2) = (I− σ◦,h2)r f (x1, x2) ,

5r,r
h1,h2

f (x1, x2) = 5r,◦
h1,◦

(
5◦,r◦,h2

f
)

(x1, x2) ,

where I is identity operator on T2. Using the inequalities (4) we get

(5)
{∥∥∥5r,◦

h,◦f
∥∥∥
p,ω

,
∥∥∥5◦,r◦,kf∥∥∥p,ω , ∥∥∥5r,r

h,kf
∥∥∥
p,ω

}
. ‖f‖p,ω ,

for 1 < p <∞, ω ∈ Ap
(
T2, J

)
, f ∈ Lpω

(
T2) , r ∈ N, with constants depending

only on [ω]Ap
and p, r.

The mixed modulus of smoothness of f ∈ Lpω
(
T2) , 1 < p < ∞, ω (x, y) ∈

Ap
(
T2, J

)
, r ∈ {0} ∪ N, can be defined as

(6) Ωr (f, δ1, δ2)p,ω =


sup

0≤h1≤δ1
0≤h2≤δ2

∥∥∥5r,r
h1,h2

f
∥∥∥
p,ω

, r ∈ N,

‖f‖p,ω , r = 0.

If 1 < p < ∞, ω ∈ Ap
(
T2, J

)
, f ∈ Lpω

(
T2), r ∈ N, then from (6) and (5)

Ωr (f, δ1, δ2)p,ω . ‖f‖p,ω with constant depending only on [ω]Ap
and p, r.

Note that from the definition of Ωr (f, ·, ·)p,ω, it has the following properties
when 1 < p <∞, ω ∈ Ap

(
T2, J

)
, f ∈ Lpω

(
T2), r ∈ N:

(1) Ωr (f, 0, 0)p,ω = 0.
(2) Ωr (f, δ1, δ2)p,ω is subadditive with respect to f .
(3) Ωr (f, δ1, δ2)p,ω ≤ Ωr (f, t1, t2)p,ω for 0 ≤ δi ≤ ti; i = 1, 2.

When ω (x1, x2) ≡ 1 we donote Ωr (f, δ1, δ2)p,1 =: Ωr (f, δ1, δ2)p for 1 ≤ p <
∞; Ωr (f, δ1, δ2)∞,1 =: Ωr (f, δ1, δ2)∞.

Let 1 < p < ∞, ω ∈ Ap
(
T2, J

)
, and f ∈ Lpω

(
T2) , then there is λ ∈ (1,∞)

such that f ∈ Lλ
(
T2), namely, we have Lpω

(
T2) ⊂ Lλ

(
T2) and this gives

possibility to define the corresponding Fourier series of f .

Lemma 3. [2] If 1 < p <∞, ω ∈ Ap
(
T2, J

)
, and f ∈ Lpω

(
T2), then we have

(7) L∞
(
T2
)
⊂ Lpω

(
T2
)
⊂ Lλ

(
T2
)

for some λ > 1.

We define Tm,n as the set of all trigonometric polynomials of degree at most
m with respect to variable x1 and of degree at most n with respect to variable
x2. Then

Ym1,m2(f)p,ω = inf
{∥∥∥f − 2∑

i=1
Ti
∥∥∥
p,ω

: Ti ∈ Tmi

}
,
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where Tmi is the set of all two dimensional trigonometric polynomials of degree
at most mi with respect to variable xi (i = 1, 2)

Let 1 < p < ∞, ω ∈ Ap
(
T2, J

)
and

∞∑
n1=0

∞∑
n2=0

An1,n2 (x1, x2) be the corre-

sponding Fourier series for f ∈ Lpω
(
T2). We define the partial sums of Fourier

series of f ∈ Lpω
(
T2) , 1 < p <∞, ω ∈ Ap

(
T2, J

)
as

Sm,◦ (f) (x1, x2) =
m∑

n1=0

∞∑
n2=0

An1,n2 (x1, x2, f) ,

S◦,n (f) (x1, x2) =
∞∑

n1=0

n∑
n2=0

An1,n2 (x1, x2, f) ,

Sm1,m2 (f) (x1, x2) =
m1∑
n1=0

m2∑
n2=0

An1,n2 (x1, x2, f) .

Define the partial de la Valleè Poussin means of f as

Vm,◦ (f) (x1, x2) = 1
m+1

2m−1∑
k=m

Sk,◦ (f) ,(8)

V◦,n (f) (x1, x2) = 1
n+1

2n−1∑
l=n

S◦,l (f) ,(9)

Vm1,m2 (f) (x1, x2) = 1
(n+1)(m+1)

2m1−1∑
k=m1

2m2−1∑
l=m2

Sk,l (f) .(10)

Lemma 4. [2] If 1 < p <∞, ω ∈ Ap
(
T2, J

)
, f ∈ Lpω

(
T2), then{

‖Sm,◦ (f)‖p,ω , ‖S◦,n (f)‖p,ω , ‖Sm1,m2 (f)‖p,ω
}
. ‖f‖p,ω ,{

‖Vm,◦ (f)‖p,ω , ‖V◦,n (f)‖p,ω , ‖Vm1,m2 (f)‖p,ω
}
. ‖f‖p,ω ,

‖f −Wm1,m2f‖p,ω . Ym1,m2 (f)p,ω

where Wm1,m2f (x1, x2) := (Vm1,◦ (f) + V◦,m2 (f)− Vm1,m2 (f)) (x1, x2) with
all constants depending only on [ω]Ap

and p.

By Theorem 6 of [13]

(11)
∥∥∥f − Cαm1,m2f

∥∥∥
p,ω
→ 0

as m1,m2 → ∞ where Cαm1,m2f is αth Cesàro mean of f . From this we
can deduce that C

(
T2) is a dense subset of Lpω

(
T2) for 1 < p < ∞, ω ∈

Ap
(
T2, J

)
. Then Ym1,m2 (f)p,ω .

∥∥∥f − Cαm1,m2f
∥∥∥
p,ω
→ 0 and Ym1,m2 (f)p,ω →

0 as m1,m2 →∞.
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Let W r,s
p,ω, r, s ∈ N, (respectively W r,◦

p,ω; W ◦,sp,ω) denote the collection of func-
tions f ∈ L1

(
Td
)

such that f (r,s) ∈ Lpω
(
Td
)

(respectively f (r,◦) ∈ Lpω
(
Td
)

;

f (◦,s) ∈ Lpω
(
Td
)
).

The following inequalities can be obtained by the method given in [2]. For
1 < p < ∞, ω ∈ Ap

(
T2, J

)
, r ∈ N, there exist constants depending only on

[ω]Ap
and p, r so that

(i) (Jackson inequalities of Favard type)

Ym1,m2 (g1)p,ω .
1

(m1+1)2r

∥∥∥g(2r,◦)
1

∥∥∥
p,ω

, g1 ∈W 2r,◦
p,ω ,(12)

Ym1,m2 (g2)p,ω .
1

(m2+1)2r

∥∥∥g(◦,2r)
2

∥∥∥
p,ω

, g2 ∈W ◦,2rp,ω ,(13)

Ym1,m2 (g)p,ω .
1

(m1+1)2r(m2+1)2r

∥∥∥g(2r,2r)
∥∥∥
p,ω

, g ∈W 2r,2r
p,ω .(14)

(ii) if δ1, δ2 > 0 then

Ωr (g1, δ, ·)p,ω . δ2Ωr−1
(
g(2,◦)

1 , δ, ·
)
p,ω

, g1 ∈W 2,◦
p,ω ,(15)

Ωr (g2, ·, ξ)p,ω . ξ2Ωr−1
(
g(◦,2)

2 , ·, ξ
)
p,ω

, g2 ∈W ◦,2p,ω ,(16)

Ωr (g, δ1, δ2)p,ω . δ2
1δ

2
2Ωr−1

(
g(2,2), δ1, δ2

)
p,ω

, g ∈W 2,2
p,ω .(17)

and hence

Ωr (f, δ, ·)p,ω . δ2r
∥∥∥f (2r,◦)

∥∥∥
p,ω

,

Ωr (f, ·, ξ)p,ω . ξ2r
∥∥∥f (◦,2r)

∥∥∥
p,ω

,

Ωr (f, δ1, δ2)p,ω . δ2r
1 δ

2r
2

∥∥∥f (2r,2r)
∥∥∥
p,ω

.

Definition 5. The mixed K-functional is defined as

K(f, δ1, δ2, p, ω, r, s) :=

:= inf
g1,g2,g

{
‖f−g1−g2−g‖p,ω+ δr1

∥∥∥∂rg1
∂xr

∥∥∥
p,ω

+ δs2

∥∥∥∂sg2
∂ys

∥∥∥
p,ω

+ δr1δ
s
2

∥∥∥ ∂r+sg
∂xr∂ys

∥∥∥
p,ω

}
where the infimum is taken for all g1, g2, g so that g1 ∈ W r,◦

p,ω, g2 ∈ W ◦,sp,ω, g ∈
W r,s
p,ω where r, s ∈ N, 1 < p <∞, ω ∈ Ap

(
T2, J

)
, f ∈ Lpω

(
T2).

(iii) If 1 < p < ∞, ω ∈ Ap
(
T2, J

)
, f ∈ Lpω

(
T2) and r ∈ N, then there exist

constants depending only on Muckenhoupt’s constant [ω]Ap
of ω and p, r so

that the equivalence

(18) Ωr (f, δ1, δ2)p,ω ≈ K(f, δ1, δ2, p, ω, 2r)
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and the properties

Ωr (f, λδ1, ηδ2)p,ω . (1 + bλc)2r (1 + bηc)2r Ωr (f, δ1, δ2)p,ω ,
Ωr (f, δ1, δ2)p,ω

δ2r
1 δ

2r
2

.
Ωr (f, t1, t2)p,ω

t2r1 t
2r
2

, 0 < ti ≤ δi; i = 1, 2,

hold for δ1, δ2 > 0, where bxc := max {z ∈ Z : z ≤ x} .
(iv) (11) can be refined by the inequality (19) below [2]. If 1 < p < ∞,

ω ∈ Ap
(
T2, J

)
, f ∈ Lpω

(
T2) and r ∈ N, then there exists C[ω]Ap

,p,r depending
only on Muckenhoupt’s constant [ω]Ap

of ω and p, r so that

(19) Ym1,m2 (f)p,ω ≤ C[ω]Ap
,p,rΩr

(
f, 1

m1
, 1
m2

)
p,ω

where m1,m2 ∈ N.

3. PROOF OF THEOREM 1

Let ωr (·, δ1, δ2)p, 1 ≤ p ≤ ∞, be the usual nonweighted mixed modulus of
smoothness:

ωr (g, δ1, δ2)p := sup
0≤h1≤δ1,0≤h2≤δ2

‖(I− Th1,◦)
r (I− T◦,h2)r g‖p , g ∈ Lp

(
T2
)

,

where Th1,◦g (x1, x2) := g(x1 + h1, x2); T◦,h2g (x1, x2) := g(x1, x2 + h2). From
[25] (1 ≤ p < ∞) and [6] (p = ∞) and (18) there exist positive constants,
depending only r, p, such that

(20) ω2r (g, δ1, δ2)p ≈ Ωr (g, δ1, δ2)p

holds for 1 ≤ p ≤ ∞ and g ∈ Lp
(
T2) .

Theorem 2.5 of [26] give that: Let r ∈ N, p ∈ [1,∞] .
(a) If f ∈ Lp

(
T2), then there exists ψ ∈ Φr,r such that

(21) ωr (f, t1, t2)p ≈ ψ (t1, t2)

holds for all t1, t2 ∈ (0,∞)×(0,∞) with equivalence constants depending only
on r.

(b) If ψ ∈ Φr,r then there exist f0 ∈ Lp
(
T2) and the positive real numbers

t0, t3 such that

(22) ωr (f0, δ1, δ2)p ≈ ψ (δ1, δ2)

holds for all δ1, δ2 ∈ (0, t0)× (0, t3) with equivalence constants depending only
on r.

Proof of Theorem 1. (i) Note that if F ∈ C
(
T2) then from (7)

(23)
∥∥∥5r,r

h1,h2
F
∥∥∥
p,w
≤ Cp,[w]Ap

∥∥∥5r,r
h1,h2

F
∥∥∥
C(T2)

.
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Using Theorem 2.5 (A) of [26], (7), (20), (18), (23) there exists ψ ∈ Φ2r such
that

Ωr (F, δ1, δ2)p,w ≤ Cp,[w]Ap
Ωr (F, δ1, δ2)∞ ≤ Cp,[w]Ap

ω2r (F, δ1, δ2)∞
≤ Cr,p,[w]Ap

ψ (δ1, δ2) .

If p ∈ (1,∞), Ap
(
T2, J

)
, f ∈ Lpω

(
T2), then, by (11), for any ε > 0 there exists

F ∈ C
(
T2) such that ‖f − F‖p,w < ε. Thus

Ωr (f, δ1, δ2)p,w ≤ Ωr (f − F, δ1, δ2)p,w + Ωr (F, δ1, δ2)p,w
≤ Cr,p,[w]Ap

‖f − F‖p,w + Cr,p,[w]Ap
ψ (δ1, δ2) .

Letting ε→ 0+ we get

Ωr (f, δ1, δ2)p,w ≤ Cr,p,[w]Ap
ψ (δ1, δ2) .

On the other hand, from (18), (20), (7) and Theorem 2.5 (A) of [26]

ψ (δ1, δ2) ≤ Cr,p,[w]Ap
ω2r (f, δ1, δ2)1 ≤ Cr,p,[w]Ap

Ωr (f, δ1, δ2)p,w

and the equivalence (2) is established.
(ii) For the equivalence (3) let ψ ∈ Φ2r. By Theorem 2.5 (B) and Remark

2.7 (1) of [26] there exist f ∈ L∞
(
T2) and the positive real numbers t0, t3 such

that
ω2r (f, δ1, δ2)p ≈ ψ (δ1, δ2) , p = 1,∞

holds for all δ1, δ2 ∈ (0, t0)× (0, t3) with equivalence constants depending only
on r. Then by (18), (20) we get

ψ (δ1, δ2) ≤ Crω2r (f, δ1, δ2)1 ≤ CrΩr (f, δ1, δ2)1 ≤ Cr,p,[w]Ap
Ωr (f, δ1, δ2)p,w

≤ Cr,p,[w]Ap
Ωr (f, δ1, δ2)∞ ≤ Cr,p,[w]Ap

ω2r (f, δ1, δ2)∞
≤ Cr,p,[w]Ap

ψ (δ1, δ2)

for all δ1, δ2 ∈ (0, t0)× (0, t3). �
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Nikolskĭı and Weyl-Nikolskĭı classes in a mixed metric, Moscow Univ. Math. Bull., 59
(2005), pp. 19–26.

[22] M.K. Potapov, B. V. Simonov and S. Y. Tikhonov, Transformation of Fourier
series using power and weakly oscillating sequences, Math. Notes., 77 (2005), pp. 90–
107.

[23] M.K. Potapov, B. V. Simonov and S. Y. Tikhonov, Relations between mixed moduli
of smoothness and embedding theorems for the Nikolskĭı classes, Proc. Steklov Inst.
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