JOURNAL OF NUMERICAL ANALYSIS AND APPROXIMATION THEORY

J. Numer. Anal. Approx. Theory, vol. 45 (2016) no. 2, pp. 99-108 ictp.acad.ro/jnaat

CHARACTERIZATION OF MIXED MODULUS OF SMOOTHNESS IN WEIGHTED L^p SPACES^{*,a}

RAMAZAN AKGÜN**

Abstract. The paper is concerned with estimates for the mixed modulus of smoothness in Lebesgue spaces with Muckenhoupt weights, Steklov type averages.

MSC 2010. 42A10, 41A17.

Keywords. Modulus of smoothness, Lebesgue spaces, Muckenhoupt weights, partial de la Vallée Poussin means, Fourier series.

1. INTRODUCTION

The main aim of this research is to investigate the approximation properties of some means of two dimensional Fourier series in Lebesgue spaces $L^p_{\omega}(\mathbb{T}^2)$ with weights ω in the Muckenhoupt's class $A_p(\mathbb{T}^2, \mathbb{J})$, where \mathbb{J} is the set of rectangles in $\mathbb{T}^2 := \mathbb{T} \times \mathbb{T}$, $\mathbb{T} := [0, 2\pi]$ with sides parallel to coordinate axes. Trigonometric approximation by "angle" and mixed K-functional will be the main tools. We obtain the main properties of the weighted mixed modulus of smoothness $\Omega_r(f, \delta_1, \delta_2)_{p,\omega}$ in $L^p_{\omega}(\mathbb{T}^2), \ \omega \in A_p(\mathbb{T}^2, \mathbb{J}), \ 1 . Note$ that, in general, in weighted spaces, such as $L^p_{\omega}(\mathbb{T}^2)$, the classical translation operators are not bounded. Instead of classical translation operators we use Steklov type operators to define the weighted mixed modulus of smoothness $\Omega_r(f, \delta_1, \delta_2)_{p,\omega}$ in $L^p_{\omega}(\mathbb{T}^2)$ (see [2]). Starting from 70s, in the classical nonweighted Lebesgue spaces $L^p(\mathbb{T}^2)$ (defined on \mathbb{T}^2 or \mathbb{T}^d , $d \geq 1$), some problems related to the classical nonweighted mixed modulus of smoothness $\omega_r(f,\delta_1,\delta_2)_p$ have been actively studied by mathematicians: M. K. Potapov [14, 17], [18], [15, 16]; Potapov, Simonov, Lakovich [20]; Potapov, Simonov, Tikhonov [22], [19, 21]; A. F. Timan [27]; M. F. Timan [28, Chapter 2]. Among

^{*}This work has been supported by Balikesir University Scientific Research Project 2016/58.

^aResults of this work were presented in the International Conference on Analysis and Its Applications (ICAA-2016), which held in 12-15 of July at the Ahi Evran University, Kirsehir, Turkey.

^{**}Department of Mathematics, Faculty of Arts and Sciences, University of Balikesir, Cagis Yerleskesi, 10145, Balikesir, Turkey, e-mail: rakgun@balikesir.edu.tr.

these problems we mention direct and inverse theorems of angular approximation [14, 17], [18]; Hardy-Littlewood, Marcinkiewicz-Littlewood-Paley and embedding results [15, 16]; transformed Fourier series; embedding results of the Besov-Nikolski and Weyl-Nikolskii classes [19, 21], Ulyanov type inequalities [23]; mixed K-functionals [6], [25]; fractional order classical mixed modulus of smoothness [24].

In what follows, $A \leq B$ will mean that, there exists a positive constant $C_{u,v,\ldots}$, depending only on the parameters u, v, \ldots and can be different in different places, such that the inequality $A \leq CB$ holds. If $A \leq B$ and $B \leq A$ we will write $A \approx B$.

It is well known that the main property of modulus of smoothness $\Omega_r(\cdot, \delta_1, \delta_2)_{p,w}$ is that it decreases to zero as max $\{\delta_1, \delta_2\} \to 0$. This rate can be characterized by some class Φ_{a_1,a_2} defined below: the class Φ_{a_1,a_2} $(a_1, a_2 \in \mathbb{R} \times \mathbb{R})$ consists of functions $\psi(\cdot, \cdot)$ satisfying conditions

- (a) $\psi(t_1, t_2) \ge 0$ bounded on $(0, \infty) \times (0, \infty)$,
- (b) $\psi(t_1, t_2) \to 0 \text{ as max} \{t_1, t_2\} \to 0$,
- (c) $\psi(t_1, t_2)$ is non-decreasing in t_1 and t_2 , (d) $t_i^{-a_i}\psi(t_i)$ is non-increasing in t_i (i = 1, 2).

We suppose that \mathbb{J} is the set of rectangles in \mathbb{T}^2 with the sides parallel to coordinate axes. A function $\omega : \mathbb{T}^2 \to \mathbb{R}^{\geq} := [0, \infty)$ is called a weight on \mathbb{T}^2 if $\omega(x_1, x_2)$ is measurable and positive almost everywhere on \mathbb{T}^2 . We denote by $A_p(\mathbb{T}^2, \mathbb{J}), (1 the collection of locally integrable weights$ $<math>\omega : \mathbb{T}^2 \to \mathbb{R}^{\geq}$ such that $\omega(x_1, x_2)$ is 2π -periodic with respect to each variable x, y and

$$C := \sup_{G \in \mathbb{J}} \left(\frac{1}{|G|} \int_{G} \omega(x_1, x_2) \, dx_1 dx_2 \right) \left(\frac{1}{|G|} \int_{G} \left[\omega(x_1, x_2) \right]^{\frac{1}{1-p}} \, dx_1 dx_2 \right)^{p-1} < \infty.$$

The least constant C in (1) will be called the Muckenhoupt's constant of ω and denoted by $[\omega]_{A_n}$.

The main result of this work is the characterization of the modulus of smoothness, given in the following theorem.

THEOREM 1. Let $r \in \mathbb{N}$, $p \in (1, \infty)$ and $w \in A_p(\mathbb{T}^2, \mathbb{J})$.

(a) If $f \in L^p_{\omega}(\mathbb{T}^2)$, then there exists $\psi \in \Phi_{2r,2r}$ such that

(2)
$$\Omega_r \left(f, t_1, t_2 \right)_{p,w} \approx \psi \left(t_1, t_2 \right)$$

holds for all $t_1, t_2 \in (0, \infty) \times (0, \infty)$ with equivalence constants depending only on r and $[w]_{A_r}$.

(b) If $\psi \in \Phi_{2r,2r}$ then there exist $f_0 \in L^p_{\omega}(\mathbb{T}^2)$ and the positive real numbers t_0, t_3 such that

(3)
$$\Omega_r \left(f_0, \delta_1, \delta_2 \right)_{n,w} \approx \psi \left(\delta_1, \delta_2 \right)$$

(1)

holds for all $\delta_1, \delta_2 \in (0, t_0) \times (0, t_3)$ with equivalence constants depending only on r and $[w]_{A_p}$.

For functions in $L^p_{\omega}(\mathbb{T})$, $p \in (1, \infty)$, $\omega \in A_p(\mathbb{T})$ Theorem 1 was obtained by the author in [1]. In this work we simplify the (long) proof given in [1].

This type characterization theorem was proved in [26] (one dimensional case) for the spaces $L^p(\mathbb{T})$, $p \in [1, \infty)$, with classical moduli of smoothness of fractional order. The class Φ_{ϱ} describes completely the class of all majorants for the moduli of smoothness $\omega_r(\cdot, \delta)_p$ in the space $L^p(\mathbb{T})$, $p \in [1, \infty)$. For $\omega_r(\cdot, \delta)_p$, $r \in \mathbb{N}$ the characterization problem was investigated by O. V. Besov, S. B. Stechkin [4], V. I. Kolyada [12]; for $\omega_r(\cdot, \delta)_p$, r > 0 the characterization theorem was obtained by S. Tikhonov [26].

2. PRELIMINARIES

Let $L^1(\mathbb{T}^2)$ be the collection of Lebesgue integrable functions $f(x_1, x_2)$: $\mathbb{T}^2 \to \mathbb{R}$ such that $f(x_1, x_2)$ is 2π -periodic with respect to each variable x_1, x_2 . Let $1 , <math>\omega(x_1, x_2) \in A_p(\mathbb{T}^2, \mathbb{J})$, and let $L^p_{\omega}(\mathbb{T}^2)$ be the collection of Lebesgue integrable functions $f(x_1, x_2) : \mathbb{T}^2 \to \mathbb{R}$ such that $f(x_1, x_2)$ is 2π periodic with respect to each variable x_1, x_2 and

$$\|f\|_{p,\omega} := \left(\iint_{\mathbb{T}^2} |f(x_1, x_2)|^p \,\omega(x_1, x_2) \, dx_1 dx_2\right)^{1/p} < \infty.$$

When $\omega(x_1, x_2) \equiv 1$ we denote $\|f\|_{p,1} =: \|f\|_p$ and $L_1^p(\mathbb{T}^2) =: L^p(\mathbb{T}^2)$ for $1 \leq p < \infty; L_1^\infty(\mathbb{T}^2) =: L^\infty(\mathbb{T}^2).$

We define Steklov type averages by

$$\sigma_{h_1,h_2} f(x_1, x_2) = \frac{1}{4h_1h_2} \int_{x_1-h_1}^{x_1+h_1} \int_{x_2-h_2}^{x_2+h_2} f(t,\tau) dt d\tau$$

$$\sigma_{h_1,\circ} f(x_1, x_2) = \frac{1}{2h} \int_{x_1-h_1}^{x_1+h_1} f(t,\tau) dt,$$

$$\sigma_{\circ,h_2} f(x_1, x_2) = \frac{1}{2k} \int_{x_2-h_2}^{x_2+h_2} f(t,\tau) d\tau.$$

LEMMA 2. [8, Theorem 3.3],[2] If $1 , <math>\omega \in A_p(\mathbb{T}^2, \mathbb{J})$, $f \in L^p_{\omega}(\mathbb{T}^2)$, then

(4)
$$\left\{ \left\| \sigma_{h_1,h_2} f \right\|_{p,\omega}, \left\| \sigma_{h_1,\circ} f \right\|_{p,\omega}, \left\| \sigma_{\circ,h_2} f \right\|_{p,\omega} \right\} \lesssim \left\| f \right\|_{p,\omega},$$

uniformly in h_1, h_2 , where the constants depend only on $[\omega]_{A_p}$ and p.

For $1 , <math>\omega \in A_p(\mathbb{T}^2, \mathbb{J})$, $f \in L^p_{\omega}(\mathbb{T}^2)$, $h_1, h_2, r \in \mathbb{N}$, we define the mixed differences by

$$\nabla_{h_{1,\circ}}^{r,\circ} f(x_{1},x_{2}) = (\mathbb{I} - \sigma_{h_{1,\circ}})^{r} f(x_{1},x_{2}), \nabla_{\circ,h_{2}}^{\circ,r} f(x_{1},x_{2}) = (\mathbb{I} - \sigma_{\circ,h_{2}})^{r} f(x_{1},x_{2}), \nabla_{h_{1,h_{2}}}^{r,r} f(x_{1},x_{2}) = \nabla_{h_{1,\circ}}^{r,\circ} \left(\nabla_{\circ,h_{2}}^{\circ,r} f \right) (x_{1},x_{2}),$$

where \mathbb{I} is identity operator on \mathbb{T}^2 . Using the inequalities (4) we get

(5)
$$\left\{ \left\| \bigtriangledown_{h,\circ}^{r,\circ} f \right\|_{p,\omega}, \left\| \bigtriangledown_{\circ,k}^{\circ,r} f \right\|_{p,\omega}, \left\| \bigtriangledown_{h,k}^{r,r} f \right\|_{p,\omega} \right\} \lesssim \|f\|_{p,\omega},$$

for $1 , <math>\omega \in A_p(\mathbb{T}^2, \mathbb{J})$, $f \in L^p_{\omega}(\mathbb{T}^2)$, $r \in \mathbb{N}$, with constants depending only on $[\omega]_{A_p}$ and p, r.

The mixed modulus of smoothness of $f \in L^p_{\omega}(\mathbb{T}^2)$, $1 , <math>\omega(x, y) \in A_p(\mathbb{T}^2, \mathbb{J})$, $r \in \{0\} \cup \mathbb{N}$, can be defined as

(6)
$$\Omega_r (f, \delta_1, \delta_2)_{p,\omega} = \begin{cases} \sup_{\substack{0 \le h_1 \le \delta_1 \\ 0 \le h_2 \le \delta_2 \\ \|f\|_{p,\omega}}} \|\nabla_{h_1, h_2}^{r, r} f\|_{p,\omega} &, r \in \mathbb{N}, \\ \|f\|_{p,\omega} &, r = 0. \end{cases}$$

If $1 , <math>\omega \in A_p(\mathbb{T}^2, \mathbb{J})$, $f \in L^p_{\omega}(\mathbb{T}^2)$, $r \in \mathbb{N}$, then from (6) and (5) $\Omega_r(f, \delta_1, \delta_2)_{p,\omega} \lesssim ||f||_{p,\omega}$ with constant depending only on $[\omega]_{A_p}$ and p, r.

Note that from the definition of $\Omega_r(f, \cdot, \cdot)_{p,\omega}$, it has the following properties when $1 , <math>\omega \in A_p(\mathbb{T}^2, \mathbb{J})$, $f \in L^{\infty}_{\omega}(\mathbb{T}^2)$, $r \in \mathbb{N}$:

- (1) $\Omega_r (f, 0, 0)_{p,\omega} = 0.$
- (2) $\Omega_r(f, \delta_1, \delta_2)_{p,\omega}$ is subadditive with respect to f.
- (3) $\Omega_r (f, \delta_1, \delta_2)_{p,\omega}^{r,\omega} \leq \Omega_r (f, t_1, t_2)_{p,\omega}$ for $0 \leq \delta_i \leq t_i; \quad i = 1, 2.$

When $\omega(x_1, x_2) \equiv 1$ we denote $\Omega_r(f, \delta_1, \delta_2)_{p,1} =: \Omega_r(f, \delta_1, \delta_2)_p$ for $1 \leq p < \infty$; $\Omega_r(f, \delta_1, \delta_2)_{\infty,1} =: \Omega_r(f, \delta_1, \delta_2)_{\infty}$.

Let $1 , <math>\omega \in A_p(\mathbb{T}^2, \mathbb{J})$, and $f \in L^p_{\omega}(\mathbb{T}^2)$, then there is $\lambda \in (1, \infty)$ such that $f \in L^{\lambda}(\mathbb{T}^2)$, namely, we have $L^p_{\omega}(\mathbb{T}^2) \subset L^{\lambda}(\mathbb{T}^2)$ and this gives possibility to define the corresponding Fourier series of f.

LEMMA 3. [2] If $1 , <math>\omega \in A_p(\mathbb{T}^2, \mathbb{J})$, and $f \in L^p_{\omega}(\mathbb{T}^2)$, then we have (7) $L^{\infty}(\mathbb{T}^2) \subset L^p_{\omega}(\mathbb{T}^2) \subset L^{\lambda}(\mathbb{T}^2)$

for some $\lambda > 1$.

We define $\mathcal{T}_{m,n}$ as the set of all trigonometric polynomials of degree at most m with respect to variable x_1 and of degree at most n with respect to variable x_2 . Then

$$Y_{m_1,m_2}(f)_{p,\omega} = \inf \left\{ \left\| f - \sum_{i=1}^2 T_i \right\|_{p,\omega} : T_i \in \mathcal{T}_{m_i} \right\},\$$

Let $1 , <math>\omega \in A_p(\mathbb{T}^2, \mathbb{J})$ and $\sum_{n_1=0}^{\infty} \sum_{n_2=0}^{\infty} A_{n_1,n_2}(x_1, x_2)$ be the corresponding Fourier series for $f \in L^p_{\omega}(\mathbb{T}^2)$. We define the partial sums of Fourier series of $f \in L^p_{\omega}(\mathbb{T}^2)$, $1 , <math>\omega \in A_p(\mathbb{T}^2, \mathbb{J})$ as

$$S_{m,\circ}(f)(x_1, x_2) = \sum_{n_1=0}^{m} \sum_{n_2=0}^{\infty} A_{n_1,n_2}(x_1, x_2, f),$$

$$S_{\circ,n}(f)(x_1, x_2) = \sum_{n_1=0}^{\infty} \sum_{n_2=0}^{n} A_{n_1,n_2}(x_1, x_2, f),$$

$$S_{m_1,m_2}(f)(x_1, x_2) = \sum_{n_1=0}^{m_1} \sum_{n_2=0}^{m_2} A_{n_1,n_2}(x_1, x_2, f).$$

Define the partial de la Valleè Poussin means of f as

(8)
$$V_{m,\circ}(f)(x_1,x_2) = \frac{1}{m+1} \sum_{k=m}^{2m-1} S_{k,\circ}(f),$$

(9)
$$V_{\circ,n}(f)(x_1, x_2) = \frac{1}{n+1} \sum_{l=n}^{2n-1} S_{\circ,l}(f),$$

(10)
$$V_{m_1,m_2}(f)(x_1,x_2) = \frac{1}{(n+1)(m+1)} \sum_{k=m_1}^{2m_1-1} \sum_{l=m_2}^{2m_2-1} S_{k,l}(f)$$

LEMMA 4. [2] If $1 , <math>\omega \in A_p(\mathbb{T}^2, \mathbb{J})$, $f \in L^p_{\omega}(\mathbb{T}^2)$, then

$$\left\{ \left\| S_{m,\circ}\left(f\right) \right\|_{p,\omega}, \left\| S_{\circ,n}\left(f\right) \right\|_{p,\omega}, \left\| S_{m_{1},m_{2}}\left(f\right) \right\|_{p,\omega} \right\} \lesssim \left\| f \right\|_{p,\omega}, \\ \left\{ \left\| V_{m,\circ}\left(f\right) \right\|_{p,\omega}, \left\| V_{\circ,n}\left(f\right) \right\|_{p,\omega}, \left\| V_{m_{1},m_{2}}\left(f\right) \right\|_{p,\omega} \right\} \lesssim \left\| f \right\|_{p,\omega}, \\ \left\| f - W_{m_{1},m_{2}}f \right\|_{p,\omega} \lesssim Y_{m_{1},m_{2}}\left(f\right)_{p,\omega},$$

where $W_{m_1,m_2}f(x_1,x_2) := (V_{m_1,\circ}(f) + V_{\circ,m_2}(f) - V_{m_1,m_2}(f))(x_1,x_2)$ with all constants depending only on $[\omega]_{A_n}$ and p.

By Theorem 6 of [13]

(11)
$$\left\| f - C^{\alpha}_{m_1,m_2} f \right\|_{p,\omega} \to 0$$

as $m_1, m_2 \to \infty$ where $C^{\alpha}_{m_1,m_2} f$ is α th Cesàro mean of f. From this we can deduce that $C(\mathbb{T}^2)$ is a dense subset of $L^p_{\omega}(\mathbb{T}^2)$ for $1 . Then <math>Y_{m_1,m_2}(f)_{p,\omega} \lesssim \left\| f - C^{\alpha}_{m_1,m_2} f \right\|_{p,\omega} \to 0$ and $Y_{m_1,m_2}(f)_{p,\omega} \to 0$ as $m_1, m_2 \to \infty$.

Let $W_{p,\omega}^{r,s}, r, s \in \mathbb{N}$, (respectively $W_{p,\omega}^{r,\circ}$; $W_{p,\omega}^{\circ,s}$) denote the collection of functions $f \in L^1(\mathbb{T}^d)$ such that $f^{(r,s)} \in L^p_{\omega}(\mathbb{T}^d)$ (respectively $f^{(r,\circ)} \in L^p_{\omega}(\mathbb{T}^d)$; $f^{(\circ,s)} \in L^p_{\omega}(\mathbb{T}^d)$).

The following inequalities can be obtained by the method given in [2]. For $1 , there exist constants depending only on <math>[\omega]_{A_p}$ and p, r so that

(i) (Jackson inequalities of Favard type)

(12)
$$Y_{m_1,m_2}(g_1)_{p,\omega} \lesssim \frac{1}{(m_1+1)^{2r}} \left\| g_1^{(2r,\circ)} \right\|_{p,\omega}, \quad g_1 \in W^{2r,\circ}_{p,\omega},$$

(13)
$$Y_{m_1,m_2}(g_2)_{p,\omega} \lesssim \frac{1}{(m_2+1)^{2r}} \left\| g_2^{(\circ,2r)} \right\|_{p,\omega}, \quad g_2 \in W_{p,\omega}^{\circ,2r},$$

(14)
$$Y_{m_1,m_2}(g)_{p,\omega} \lesssim \frac{1}{(m_1+1)^{2r}(m_2+1)^{2r}} \left\| g^{(2r,2r)} \right\|_{p,\omega}, \quad g \in W^{2r,2r}_{p,\omega}.$$

(ii) if $\delta_1, \delta_2 > 0$ then

(15)
$$\Omega_r \left(g_1, \delta, \cdot\right)_{p,\omega} \lesssim \delta^2 \Omega_{r-1} \left(g_1^{(2,\circ)}, \delta, \cdot\right)_{p,\omega}, \quad g_1 \in W_{p,\omega}^{2,\circ}$$

(16)
$$\Omega_r \left(g_2, \cdot, \xi\right)_{p,\omega} \lesssim \xi^2 \Omega_{r-1} \left(g_2^{(\circ,2)}, \cdot, \xi\right)_{p,\omega}, \quad g_2 \in W_{p,\omega}^{\circ,2},$$

(17)
$$\Omega_r \left(g, \delta_1, \delta_2\right)_{p,\omega} \lesssim \delta_1^2 \delta_2^2 \Omega_{r-1} \left(g^{(2,2)}, \delta_1, \delta_2\right)_{p,\omega}, \quad g \in W^{2,2}_{p,\omega}.$$

and hence

$$\begin{split} \Omega_r \left(f, \delta, \cdot \right)_{p,\omega} &\lesssim \quad \delta^{2r} \left\| f^{(2r,\circ)} \right\|_{p,\omega}, \\ \Omega_r \left(f, \cdot, \xi \right)_{p,\omega} &\lesssim \quad \xi^{2r} \left\| f^{(\circ,2r)} \right\|_{p,\omega}, \\ \Omega_r \left(f, \delta_1, \delta_2 \right)_{p,\omega} &\lesssim \quad \delta_1^{2r} \delta_2^{2r} \left\| f^{(2r,2r)} \right\|_{p,\omega} \end{split}$$

DEFINITION 5. The mixed K-functional is defined as

$$\begin{split} K(f,\delta_1,\delta_2,p,\omega,r,s) &:= \\ &:= \inf_{g_1,g_2,g} \Big\{ \|f - g_1 - g_2 - g\|_{p,\omega} + \delta_1^r \left\| \frac{\partial^r g_1}{\partial x^r} \right\|_{p,\omega} + \delta_2^s \left\| \frac{\partial^s g_2}{\partial y^s} \right\|_{p,\omega} + \delta_1^r \delta_2^s \left\| \frac{\partial^{r+s} g}{\partial x^r \partial y^s} \right\|_{p,\omega} \Big\} \end{split}$$

where the infimum is taken for all g_1, g_2, g so that $g_1 \in W_{p,\omega}^{r,\circ}, g_2 \in W_{p,\omega}^{\circ,s}, g \in W_{p,\omega}^{r,s}$ where $r, s \in \mathbb{N}, 1 .$

(iii) If $1 , <math>\omega \in A_p(\mathbb{T}^2, \mathbb{J})$, $f \in L^p_{\omega}(\mathbb{T}^2)$ and $r \in \mathbb{N}$, then there exist constants depending only on Muckenhoupt's constant $[\omega]_{A_p}$ of ω and p, r so that the equivalence

(18)
$$\Omega_r \left(f, \delta_1, \delta_2\right)_{p,\omega} \approx K(f, \delta_1, \delta_2, p, \omega, 2r)$$

and the properties

$$\begin{aligned} \Omega_r \left(f, \lambda \delta_1, \eta \delta_2 \right)_{p,\omega} &\lesssim \left(1 + \lfloor \lambda \rfloor \right)^{2r} \left(1 + \lfloor \eta \rfloor \right)^{2r} \Omega_r \left(f, \delta_1, \delta_2 \right)_{p,\omega}, \\ \frac{\Omega_r \left(f, \delta_1, \delta_2 \right)_{p,\omega}}{\delta_1^{2r} \delta_2^{2r}} &\lesssim \frac{\Omega_r \left(f, t_1, t_2 \right)_{p,\omega}}{t_1^{2r} t_2^{2r}}, \qquad 0 < t_i \le \delta_i; \quad i = 1, 2, \end{aligned}$$

hold for $\delta_1, \delta_2 > 0$, where $\lfloor x \rfloor := \max \{ z \in \mathbb{Z} : z \le x \}$.

(iv) (11) can be refined by the inequality (19) below [2]. If $1 , <math>\omega \in A_p(\mathbb{T}^2, \mathbb{J}), f \in L^p_{\omega}(\mathbb{T}^2)$ and $r \in \mathbb{N}$, then there exists $C_{[\omega]_{A_p}, p, r}$ depending only on Muckenhoupt's constant $[\omega]_{A_p}$ of ω and p, r so that

(19)
$$Y_{m_1,m_2}(f)_{p,\omega} \le C_{[\omega]_{A_p},p,r}\Omega_r\left(f,\frac{1}{m_1},\frac{1}{m_2}\right)_{p,\omega}$$

where $m_1, m_2 \in \mathbb{N}$.

3. PROOF OF THEOREM 1

Let $\omega_r(\cdot, \delta_1, \delta_2)_p$, $1 \le p \le \infty$, be the usual nonweighted mixed modulus of smoothness:

$$\omega_r \left(g, \delta_1, \delta_2\right)_p := \sup_{0 \le h_1 \le \delta_1, 0 \le h_2 \le \delta_2} \left\| \left(\mathbb{I} - T_{h_1, \circ}\right)^r \left(\mathbb{I} - T_{\circ, h_2}\right)^r g \right\|_p, \quad g \in L^p \left(\mathbb{T}^2\right),$$

where $T_{h_1,\circ g}(x_1, x_2) := g(x_1 + h_1, x_2); T_{\circ,h_2}g(x_1, x_2) := g(x_1, x_2 + h_2)$. From [25] $(1 \le p < \infty)$ and [6] $(p = \infty)$ and (18) there exist positive constants, depending only r, p, such that

(20)
$$\omega_{2r} (g, \delta_1, \delta_2)_p \approx \Omega_r (g, \delta_1, \delta_2)_p$$

holds for $1 \leq p \leq \infty$ and $g \in L^p(\mathbb{T}^2)$.

Theorem 2.5 of [26] give that: Let $r \in \mathbb{N}, p \in [1, \infty]$.

(a) If $f \in L^p(\mathbb{T}^2)$, then there exists $\psi \in \Phi_{r,r}$ such that

(21)
$$\omega_r \left(f, t_1, t_2 \right)_p \approx \psi \left(t_1, t_2 \right)$$

holds for all $t_1, t_2 \in (0, \infty) \times (0, \infty)$ with equivalence constants depending only on r.

(b) If $\psi \in \Phi_{r,r}$ then there exist $f_0 \in L^p(\mathbb{T}^2)$ and the positive real numbers t_0, t_3 such that

(22)
$$\omega_r \left(f_0, \delta_1, \delta_2 \right)_p \approx \psi \left(\delta_1, \delta_2 \right)$$

holds for all $\delta_1, \delta_2 \in (0, t_0) \times (0, t_3)$ with equivalence constants depending only on r.

Proof of Theorem 1. (i) Note that if $F \in C(\mathbb{T}^2)$ then from (7)

(23)
$$\left\| \bigtriangledown_{h_1,h_2}^{r,r} F \right\|_{p,w} \le C_{p,[w]_{A_p}} \left\| \bigtriangledown_{h_1,h_2}^{r,r} F \right\|_{C(\mathbb{T}^2)}.$$

Using Theorem 2.5 (A) of [26], (7), (20), (18), (23) there exists $\psi \in \Phi_{2r}$ such that

$$\begin{aligned} \Omega_r \left(F, \delta_1, \delta_2 \right)_{p,w} &\leq C_{p, [w]_{A_p}} \Omega_r \left(F, \delta_1, \delta_2 \right)_{\infty} \leq C_{p, [w]_{A_p}} \omega_{2r} \left(F, \delta_1, \delta_2 \right)_{\infty} \\ &\leq C_{r, p, [w]_{A_p}} \psi \left(\delta_1, \delta_2 \right). \end{aligned}$$

If $p \in (1, \infty)$, $A_p(\mathbb{T}^2, \mathbb{J})$, $f \in L^p_{\omega}(\mathbb{T}^2)$, then, by (11), for any $\varepsilon > 0$ there exists $F \in C(\mathbb{T}^2)$ such that $||f - F||_{p,w} < \varepsilon$. Thus

$$\begin{aligned} \Omega_r \, (f, \delta_1, \delta_2)_{p,w} &\leq & \Omega_r \, (f - F, \delta_1, \delta_2)_{p,w} + \Omega_r \, (F, \delta_1, \delta_2)_{p,w} \\ &\leq & C_{r,p, [w]_{A_p}} \| f - F \|_{p,w} + C_{r,p, [w]_{A_p}} \psi \left(\delta_1, \delta_2 \right). \end{aligned}$$

Letting $\varepsilon \to 0^+$ we get

$$\Omega_r \left(f, \delta_1, \delta_2 \right)_{p,w} \le C_{r,p,[w]_{A_n}} \psi \left(\delta_1, \delta_2 \right)$$

On the other hand, from (18), (20), (7) and Theorem 2.5 (A) of [26]

$$\psi(\delta_{1},\delta_{2}) \leq C_{r,p,[w]_{A_{p}}}\omega_{2r}(f,\delta_{1},\delta_{2})_{1} \leq C_{r,p,[w]_{A_{p}}}\Omega_{r}(f,\delta_{1},\delta_{2})_{p,w}$$

and the equivalence (2) is established.

(ii) For the equivalence (3) let $\psi \in \Phi_{2r}$. By Theorem 2.5 (B) and Remark 2.7 (1) of [26] there exist $f \in L^{\infty}(\mathbb{T}^2)$ and the positive real numbers t_0, t_3 such that

$$\omega_{2r} \left(f, \delta_1, \delta_2 \right)_p \approx \psi \left(\delta_1, \delta_2 \right), \quad p = 1, \infty$$

holds for all $\delta_1, \delta_2 \in (0, t_0) \times (0, t_3)$ with equivalence constants depending only on r. Then by (18), (20) we get

$$\begin{split} \psi\left(\delta_{1},\delta_{2}\right) &\leq C_{r}\omega_{2r}\left(f,\delta_{1},\delta_{2}\right)_{1} \leq C_{r}\Omega_{r}\left(f,\delta_{1},\delta_{2}\right)_{1} \leq C_{r,p,\left[w\right]_{A_{p}}}\Omega_{r}\left(f,\delta_{1},\delta_{2}\right)_{p,w} \\ &\leq C_{r,p,\left[w\right]_{A_{p}}}\Omega_{r}\left(f,\delta_{1},\delta_{2}\right)_{\infty} \leq C_{r,p,\left[w\right]_{A_{p}}}\omega_{2r}\left(f,\delta_{1},\delta_{2}\right)_{\infty} \\ &\leq C_{r,p,\left[w\right]_{A_{p}}}\psi\left(\delta_{1},\delta_{2}\right) \end{split}$$

for all $\delta_1, \delta_2 \in (0, t_0) \times (0, t_3)$.

ACKNOWLEDGEMENTS. The author wish to express his sincere gratitude to the referee(s) for his/her valuable suggestions.

REFERENCES

- R. AKGÜN, Realization and characterization of modulus of smoothness in weighted Lebesgue spaces, Algebra i Analiz, 26, pp. 64–87, 2014; St. Petersburg Math. J., 26 (2015), pp. 741–756.
- R. AKGÜN, Mixed modulus of continuity in Lebesgue spaces with Muckenhoupt weights, In press, Turkish Math. J., 40, 2016.
- [3] E. BERKSON and T.A. GILLESPIE, On restrictions of multipliers in weighted setting, Indiana Univ. Math. J., 52 (2003), pp. 927–961. ^I∠
- [4] O.V. BESOV and S.B. STECHKIN, A description of the moduli of continuity in L₂, Proc. Steklov Inst. Math., **134** (1977), pp. 27–30.

- [5] P.L. BUTZER, H. DYCKHOFF, E. GÖRLICH and R. L. STENS, Best trigonometric approximation, fractional order derivatives and Lipschitz classes, Canad. J. Math., 29 (1977), pp. 781–793. ^[2]
- [7] R. FEFFERMAN and E. STEIN, Singular integrals in product spaces, Adv. Math., 45 (1982), pp. 117–143.
- [8] A. GUVEN and V. KOKILASHVILI, On the mean summability by Cesaro method of Fourier trigonometric series in two-weighted setting, J. Inequal. Appl., bf 2006, Article ID: 41837 (2006), pp. 1–15. ^[2]
- R. HUNT, B. MUCKENHOUPT and R. WHEEDEN, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc., 176 (1973), pp. 227–251.
- [10] D.M. ISRAFILOV, Approximation by p-Faber Polynomials in the Weighted Smirnov Class $E^p(G, \omega)$ and the Bieberbach Polynomials, Constr. Approx., **17** (2001), pp. 335–351.
- [11] S.Z. JAFAROV, On moduli of smoothness in Orlicz classes, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 33 (2010), pp. 95–100.
- [12] V.I. KOLYADA, Imbedding in the classes $\varphi(L)$, Izv. Akad. Nauk SSSR Ser. Mat., **39** (1975), pp. 418–437.
- [13] A.D. NAKHMAN and B.P. OSILENKER, Estimates of weighted norms of some operators generated by multiple trigonometric Fourier series, Izvestiya Vysshikh Uchebnykh Zavedeni Matematika, 239 (1982), pp. 39–50 (Russian).
- [14] M. K. POTAPOV, Approximation by "angle" (in Russian), In: Proceedings of the Conference on the Constructive Theory of Functions and Approximation Theory, Budapest, 1969; Akadémiai Kiadó, pp. 371–399, 1972.
- [15] M. K. POTAPOV, The Hardy-Littlewood and Marcinkiewicz-Littlewood-Paley theorems, approximation "by an angle", and the imbedding of certain classes of functions, in Russian, Mathematica (Cluj), 14 (1972), pp. 339–362.
- [16] M. K. POTAPOV, A certain imbedding theorem in Russian, Mathematica (Cluj), 14 (1972), pp. 123–146.
- [17] M. K. POTAPOV, Approximation "by angle", and imbedding theorems, in Russian, Math. Balkanica, 2 (1972), pp. 183–198.
- [18] M. K. Potapov, Imbedding of classes of functions with a dominating mixed modulus of smoothness in Russian, Trudy Mat. Inst. Steklov., 131 (1974), pp. 199–210.
- [19] M. K. POTAPOV and B. V. SIMONOV, On the relations between generalized classes of Besov-Nikolskii and Weyl-Nikolskii functions, Proc. Steklov Inst. Math., 214 (1996), pp. 243–259.
- [20] M. K. POTAPOV, B.V. SIMONOV and B. LAKOVICH, On estimates for the mixed modulus of continuity of a function with a transformed Fourier series, Publ. Inst. Math. (Beograd) (N S), 58 (1995), pp. 167–192.
- [21] M.K. POTAPOV, B. V. SIMONOV and S. Y. TIKHONOV, Embedding theorems for Besov-Nikolskii and Weyl-Nikolskii classes in a mixed metric, Moscow Univ. Math. Bull., 59 (2005), pp. 19–26.
- [22] M.K. POTAPOV, B. V. SIMONOV and S. Y. TIKHONOV, Transformation of Fourier series using power and weakly oscillating sequences, Math. Notes., 77 (2005), pp. 90– 107. ^[2]
- [23] M.K. POTAPOV, B. V. SIMONOV and S. Y. TIKHONOV, Relations between mixed moduli of smoothness and embedding theorems for the Nikolskii classes, Proc. Steklov Inst. Math., 269 (2010), pp. 197–207.
- [24] M.K. POTAPOV, B. V. SIMONOV and S. Y. TIKHONOV, Mixed moduli of smoothness in $L_p, 1 : A survey, Surv. Approx. Theory, 8 (2013), pp. 1–57.$

108	Ramazan Akgün	10
[25]	K.V. RUNOVSKI, Several questions of approximation theory, PhD Disser. Cand. Na Moscow State University MGU, Moscow, Russia, 1989.	auk.,

- [26] S. TIKHONOV, On moduli of smoothness of fractional order, Real Anal. Exchange., 30, pp. 1–12, (2004/2005).
- [27] A.F. TIMAN, Theory of approximation of functions of a real variable, London: Pergamon Press, 1963.
- [28] M. F. TIMAN, Approximation and properties of periodic functions, Dnepropetrovsk: "Fedorchenko", 2011.
- [29] Y. E. YILDIRIR and D.M. ISRAFILOV, Approximation theorems in weighted Lorentz spaces, Carpathian J. Math., $\mathbf{26}$ (2010), pp. 108–119.

Received by the editors: August 22nd, 2016.