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ABOUT B-SPLINES.
TWENTY ANSWERS TO ONE QUESTION:

WHAT IS THE CUBIC B-SPLINE FOR THE KNOTS -2,-1,0,1,2?

EWALD QUAK∗

Abstract. In this composition an attempt is made to answer one simple ques-
tion only: What is the cubic B-spline for the knots -2,-1,0,1,2? The note will
take you on a most interesting trip through various fields of Mathematics and
finally convince you on how little we know.
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1. INTRODUCTION

Polynomial splines are real-valued functions which consist of polynomial
pieces that are glued together at given breakpoints with prescribed smooth-
ness. To name just a few applications of these powerful tools within applied
and computational mathematics: splines are a de-facto standard in the mathe-
matical description of curves and surfaces for industrial computer-aided design
and manufacture (CAD-CAM). Spline surfaces and their offspring subdivision
surfaces are at the heart of professional animation systems for the production
of movies like Toy Story or Monsters, Inc. Splines are also used to solve ordi-
nary differential equations and in the multivariate form of finite elements they
form the cornerstone for the numerical treatment of partial differential equa-
tions. The approximation of scattered data, be it in geometric modelling or
statistics, can be carried out with splines. Wavelet theory and multiresolution
analysis owe a lot to spline functions as well.

So both faculty and students are bound to encounter splines in very dif-
ferent settings and basic spline material is to some extent incorporated in
undergraduate numerical analysis text books. In this paper I would like to
give some examples how a certain B-spline basis function can be characterized.
Some of these examples are well-known and at the heart of important theory
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Fig. 1. The graph of the cubic B-spline for the knots -2,-1,0,1,2.

or applications, other disguises are rather far-fetched, and could be considered
as dragged from mathematical oblivion. I do not claim that this list is in any
way complete, and I invite all readers to supply me with other approaches
they have encountered.

In this text, I have deliberately chosen to focus on cubic splines and conse-
quently not formulated any statements in the highest possible generality. In
this way I hope to generate more questions rather than give complete answers,
stimulating the reader’s interest to take a closer look –for example at other
spline degrees or different choices of breakpoints. Some remarks in this di-
rection are given in the final section of the paper. I tried to hold the proofs
as elementary as possible, but still giving a flavor of what is happening in
more general situations, avoiding - if possible - straightforward calculations
just valid for the cubic case. As for the sources that inspired my twenty an-
swers, I tried to quote early original papers, but are not in a position to claim
absolute historical accuracy concerning who did what first. Instead the reader
is invited to consult on his or her own more detailed spline monographs, or
study books dealing with a specific application area using splines. Be aware,
however, that it was of course necessary to change original notations and also
proofs to generate a consistent presentation.

The twenty choices are listed in Section 2, including the references that
inspired them. The first answer is discussed in Section 3 and allows to say a
bit where the name spline originated. Using yet another definition we are able
to address in Section 4 some basic properties in items 2, 3 and 4, including
the basis property that motivated the term B-spline as in basis spline. In
the subsequent Section 5, divided differences of truncated power functions
allow us to come up with a closed formula expression, point out connections
to Green’s functions and Peano kernels, and give a geometric interpretation
in items 5-8. Fourier transforms are employed in Section 6 for items 9-11.
Subdivision concepts, important in wavelet theory and geometric modeling,
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are then showcased in Section 7 for items 12 and 13. Section 8 is devoted to
probability interpretations in items 14-17, including the historic reference from
1904, where the graph of a cubic B-spline (probably) appears for the first time,
years before the term B-spline was coined. Also the last items 18-20 covered
in Section 9 stem from roots in probability, but are singled out because they
originated in the author’s country of residence. The final Section 10 tries to
give some information how the general spline theory can be developed from
the cubic approach in this elementary paper and where to find the relevant
information. Enjoy!

2. TWENTY CHOICES

1. [44, 27] The function f which minimizes the integral∫ 2

−2

(
g′′ (x)

)2
dx,

when considering all functions g, whose second derivatives are square
integrable over the interval [−2; 2] and which interpolate the following
data:

g (−2) = g′ (−2) = g (2) = g′ (2) = 0, g (−1) = g (1) = 1
6 , g (0) = 2

3?

2. [38] The function f defined by the pieces

f (x) =



1
6 (x+ 2)3 , if x ∈ [−2,−1] ,
1
6

(
(x+ 2)3 − 4 (x+ 1)3

)
, if x ∈ [−1, 0] ,

1
6

(
(2− x)3 − 4 (1− x)3

)
, if x ∈ [0, 1] ,

1
6 (2− x)3 , if x ∈ [1, 2] ,
0, otherwise.

?

3. [13] The functionf of smallest support such that f is a cubic poly-
nomial on each interval [k; k + 1] for each k ∈ Z, twice continuously
differentiable everywhere, even and for which f(0) = 2

3?
4. [2, 12] The function f built from characteristic functions as

f (x) = x+2
3

(
x+2

2

(
(x+ 2)X|[−2,−1) (x) + (−x)X|[−1,0) (x)

)
+1−x

2

(
(x+ 1)X|[−1,0) (x) + (1− x)X|[0,1) (x)

))
+ 2−x

2

(
x+1

2

(
(x+ 1)X|[0,1) (x) + (1− x)X|[0,1)(x)

)
+2−x

2

(
(x)X|[0,1) (x) + (2− x)X|[1,2) (x)

))
.

where for k = −2,−1, 0, 1

X|[k,k+1) =
{

1 if x ∈ [k, k + 1),
0 if x /∈ [k, k + 1)

?
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5. [38] The function f given by

f (x) = 1
6

(
(−2− x)3

+ − 4 (−1− x)3
+ + 6 (−x)3

+ − 4 (1− x)3
+ + (2− x)3

+

)
,

where the truncated power functions are defined as x+ = max (x, 0)
and x3

+ = (x+)3?
6. [5] The function f obtained by taking the divided difference with re-

spect to t in the points −2, −1, 0, 1, 2 of Green’s function associated
with the differential operator D4 and multiplying the result by 24?
This means

f (x) = 24 [−2,−1, 0, 1, 2]tG4 (t, x) ,

where for any given function h which is integrable on [−2, 2] and any
real numbers g0, g1, g2, g3 the function

g (t) =
3∑
j=0

gj
(t+2)j

j! +
∫ 2

−2
G4 (t, x)h (x) dx

solves the initial value problem

g(4) (t) = h (t) , almost everywhere in [−2, 2] ,

g(`) (−2) = g`, ` = 0, 1, 2, 3.

7. [13] The function f for which∫ +∞

−∞
f (x)h(4) (x) dx = 44h (0) ,

for all functions h, which are four times continuously differentiable on
[−2, 2], and where44h (x) is the fourth order central difference defined
as

44h (x) = 4 (4 (4 (4h (x)))) , with 4 h (x) = h
(
x+ 1

2

)
− h

(
x− 1

2

)
?

8. [13] The function f so that f (x) represents the 3-dimensional volume
of the intersection of a hyperplane in R4 that is orthogonal to the x-axis
and goes through the point (x, 0, 0, 0) with a 4-simplex of volume 1,
which is placed in R4, so that its five vertices project orthogonally onto
the points on the x-axis (−2, 0, 0, 0), (−1, 0, 0, 0), (0, 0, 0, 0), (1, 0, 0, 0),
(2, 0, 0, 0)?

9. [38] The function f whose Fourier transform is the 4th power of a
dilated sinc function, i.e., using the inverse Fourier transform

f (x) = 1
2π

∫ +∞

−∞

(
sin( u

2 )
u
2

)4
eixudu?
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10. [38] The function f which results when taking the convolution of the
hat function

N (x) =


x+ 1, if x ∈ [−1, 0] ,
1− x, if x ∈ [0, 1] ,
0, otherwise,

with itself, i.e.,

f (x) = (N ∗N) (x) =
∫ +∞

−∞
N (x− y)N (y) dy, x ∈ R?

11. [36, 28] The function f generated in the following way?
In R2 a unit square is placed with its lower edge on the x-axis and

then moved along this axis. Assuming the square’s center at time x to
be the point

(
x, 1

2

)
, we obtain a function A such that A(x) is the area

of the region cut out of the square by the graph of the hat function
N(x) (see item 10) and the x-axis. Repeating this process one more
time, we obtain f(x) as the area of the region cut out of the square by
the graph of the function A(x) and the x-axis.

12. [8] The continuous function f which has the values f(0) = 2
3 , f (1) =

f (−1) = 1
6 , and 0 in all other integers and satisfies the functional

equation
f (x)= 1

8 (f (2x+2)+4f (2x+1)+6f (2x)+4f (2x−1)+f (2x−2))?
13. [34, 9] The continuous function f which results from the following limit

process?
We start with the polygon in R2 that connects the initial points

P 0
k = (k, δk,0). Then we generate new polygons successively by setting

for r ∈ N ∪ {0} and any k ∈ Z

P r+1
2k = 1

8
(
P rk−1 + 6P rk + P rk+1

)
,

P r+1
2k+1 = 1

2
(
P rk + P rk+1

)
.

The resulting polygons converge to f in the sense that for r ∈ N∪ {0}
and any k ∈ Z ∥∥∥( k

2r , f
(
k
2r

))
− P rk

∥∥∥
∞
≤ 1

3
1
2r .

14. [25] The function f describing the discrete probability distribution for
the following urn model?

Consider an urn initially containing w white balls and b black balls.
One ball at a time is drawn at random from the urn and its color is
inspected. Then it is returned to the urn and w+b balls of the opposite
color are added to the urn. A total of three such draws are carried
out. With t = w/(w+ b) as the probability of selecting a white ball on
the first trial, the probability of selecting exactly 3 white balls in the
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three trials is f (t − 2), of selecting exactly 2 white balls in the three
trials is f (t− 1), of selecting exactly 1 white ball in the three trials is
f(t) and of selecting exactly 0 white balls in the three trials is f(t+1).

15. [38, 43] The function f that is the density distribution of the error
committed in the sum X1+X2+X3+X4 of 4 independent real random
variables Xk, if each variable is replaced by its nearest integer value?

16. [43] The function f , such that f(x) is the 3-dimensional volume of
the section of the 4-dimensional unit cube

[
−1

2 ,
1
2

]4
cut out by the

hyperplane x1 +x2 +x3 +x4 = x, which lies normal to the cube’s main
diagonal (connecting

(
−1

2 ,−
1
2 ,−

1
2 ,−

1
2

)
to
(

1
2 ,

1
2 ,

1
2 ,

1
2

)
)?

17. [43] The function f whose graph appears in the contribution of A.
Sommerfeld to the Festschrift Ludwig Boltzmann gewidmet zum 60.
Geburtstage, the monograph dedicated to the 60th birthday of Ludwig
Boltzmann, February 20th 1904?

18. [6] The function f so that

f (x) = 1
π

∫ x+ 1
2

x− 1
2

∫ t3+ 1
2

t3− 1
2

∫ t2+ 1
2

t2−1
2

(
Q
(
t1 + 1

2

)
−Q

(
t1 − 1

2

))
dt1dt2dt3,

where
Q (t) = lim

λ→0+
arctan

(
t
λ

)
?

19. [23] The function f given by the real part of a complex integral in the
following way:

f (x) = 8
π Re

∫ +∞

0
u3

(42+(u−2ix)2)(22+(u−2ix)2)(u−2ix)du?

20. [23] The function f represented as

f (x) = 1
12

4∑
k=0

(−1)k
(4
k

)
|x+ 2− k|3 sign (x+ 2− k)4?

3. PRELUDE: WHY IS A SPLINE CALLED A SPLINE?

One of the most important and straightforward things one wishes to do
in numerical analysis is to interpolate given values using some simple basic
functions, for example algebraic or trigonometric polynomials. Concerning
interpolation by algebraic polynomials, however, it has been known for over
a hundred years [35] that an interpolant can display enormous oscillations,
even if the data is taken from a smooth well-behaved function. One of the
ideas used to counter this effect is to consider functions that consist of various
simple pieces which are glued together with a given smoothness.
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3.1. The complete cubic spline interpolant. Here we will try cubic poly-
nomial pieces connected in such a way that they form a function that is twice
continuously differentiable everywhere. The places where different pieces meet
are typically called breakpoints or knots. In this sense let us consider the fol-
lowing example.

(Interpolation) Given the five abscissae t0 < t1 < t2 < t3 < t4, we wish
to find an interpolating cubic spline function s, meaning that

s ∈ C2 [t0, t4] ,
s|[tk,tk+1] ∈ Π3 for k = 0, 1, 2, 3,

s (tk) = gk for k = 0, 1, 2, 3, 4(3.1)
for prescribed real values gk.

Is this problem even well-posed in the sense that there exists a unique
solution amongst all the piecewise cubic C2 functions on [t0, t4] with interior
breakpoints in t1 < t2 < t3? The function s must be a cubic polynomial p on
the interval [t0, t1], giving us 4 parameters. Since we have C2 continuity in
the point t1, we must have s(x) = p(x) + a1(x − t1)3 on the interval [t1, t2],
and analogously s(x) = p(x) + a1(x− t1)3 + a2(x− t2)3 on [t2, t3] and s(x) =
p(x) + a1(x− t1)3 + a2(x− t2)3 + a3(x− t3)3 on [t3, t4]. This means we have
in total seven parameters and five interpolation conditions to satisfy, so if –
as we just expect, but do not know precisely right now – the conditions are
independent, we still have two parameters to fix by other conditions. There
are many choices for the additional two conditions, typically involving the two
endpoints of the interval. One such choice is s′′(t0) = s′′(t4) = 0 [27], but
that actually influences the approximation quality in the endpoints negatively
([3], p. 55). Another prominent choice, which we consider here, is to prescribe
Hermite data in the endpoints [44], i.e., demanding in addition
(3.2) s′ (t0) = g′0 and s′ (t4) = g′4,

yielding what is called a complete cubic spline interpolant s.
To show properly the existence and uniqueness of the complete spline in-

terpolant, we can proceed as in the early days of splines and set directly
s|[tk,tk+1] (x) = Ak +Bk (x− tk) + Ck (x− tk)2 +Dk (x− tk)3 , k = 0, 1, 2, 3.

We get from the interpolation conditions (3.1) and the continuity in the break-
points, with hk = tk+1 − tk, for k = 0, 1, 2, 3

Ak = gk(3.3)
hkBk + h2

kCk + h3
kDk = gk+1 − gk.(3.4)

The continuity of the first derivatives then yields
(3.5) Bk + 2hkCk + 3h2

kDk = Bk+1 for k = 0, 1, 2,
and the continuity of the second derivative
(3.6) 2Ck + 6hkDk = 2Ck+1 for k = 0, 1, 2.
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Using as principal unknowns the Ck = 1
2s
′′ (tk) for k = 0, 1, 2, 3 as well as C4

as an additional variable, we get for k = 0, 1, 2 from (3.6) k = 3

(3.7) Dk = Ck+1−Ck

3hk
, for k = 0, 1, 2, 3.

Then (3.4) yields

(3.8) Bk = gk+1−gk

hk
− 1

3hk (2Ck + Ck+1) , for k = 0, 1, 2, 3.

Finally, the equations (3.8) and (3.7) substituted into (3.5) yield the linear
system

 h0 2 (h0 + h1) h1 0 0
0 h1 2 (h1 + h2) h2 0
0 0 h2 2 (h2 + h3) h3



C0
C1
C2
C3
C4

 = 3gI

with the right hand side

gI =
(
g2−g1
h1
− g1−g0

h0
, g3−g2

h2
− g2−g1

h1
, g4−g3

h3
− g3−g2

h2

)T
.

The two additional Hermite conditions (3.2) in the endpoints mean that

B0 = g′0 and B3 + 2h3C3 + 3h2
3D3 = g′4,

resulting in the final tridiagonal 5× 5 system

(3.9)


2h0 h00 0 0 0
h0 2 (h0 + h1) h1 0 0
0 h1 2 (h1 + h2) h2 0
0 0 h2 2 (h2 + h3) h3
0 0 0 h3 2h3



C0
C1
C2
C3
C4

 = 3g

with
g =

(
g1−g0
h0
− g′0, gI, g

′
4 −

g4−g3
h3

)T
.

The coefficient matrix is diagonally dominant, and so there exists a unique
solution of C ′ks, from which all the other parameters can be computed, yielding
a unique complete cubic spline interpolant s for the prescribed interpolation
conditions (3.1) and (3.2). Clearly, the whole deduction can be carried out for
any number n of distinct interior breakpoints and Hermite endpoint conditions.

3.2. An extremal property. The complete cubic spline interpolant s has a
very special extremal property. If we take any other function g that possesses a
square-integrable second derivative on [t0, t4] and interpolates the given func-
tion values gk in the abscissae tk, and in addition the derivative values g′0 and
g′4 in the endpoints, we have the following integral relation between s and g

(3.10)
∫ t4

t0

(
g′′ (x)− s′′ (x)

)
s′′ (x) dx = 0,
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because integration by parts yields∫ t4

t0

(
g′′ (x)− s′′ (x)

)
s′′ (x) dx = −

∫ t4

t0

(
g′ (x)− s′ (x)

)
s′′′ (x) dx,

as the remaining terms vanish due to the derivative interpolation (3.2) in the
interval endpoints. Since s′′′ is piecewise constant, namely 6Dk on the interval
[tk, tk+1], we can split the integral to obtain∫ t4

t0

(
g′′ (x)− s′′ (x)

)
s′′ (x) dx

= −
3∑

k=0
6Dk

∫ tk+1

tk

(
g′ (x)− s′ (x)

)
dx

= −
3∑

k=0
6Dk ((g (tk+1)− s (tk+1))− (g (tk)− s (tk))) = 0

due to the interpolation conditions (3.1), establishing (3.10). This relation,
however, implies for any such interpolatory g a Pythagorean integral equation∫ t4

t0

(
g′′ (x)

)2
dx =

∫ t4

t0

(
g′′ (x)− s′′ (x)

)2
dx+

∫ t4

t0

(
s′ (x)

)2
dx,

so that

(3.11)
∫ t4

t0

(
s′′ (x)

)2
dx ≤

∫ t4

t0

(
g′′ (x)

)2
dx

with equality only if g = s.
So s is the unique function among all the interpolants for the specific in-

terpolation conditions (3.1) and (3.2) which possesses minimal 2-norm of the
second derivative. Again, this holds for all sets of distinct breakpoints in an
interval [a, b].

Note that the integral relation (3.10) and thus the extremal property (3.11)
also hold in the case, where the Hermite boundary interpolation conditions
(3.2) are replaced by the conditions s′′ (t0) = s′′ (t4) = 0 [27], and with suitable
boundary conditions similar properties can be derived for other odd spline
degrees [1].

3.3. This why a spline is called a spline. Finally, we can address the title
question of this section. From differential geometry we know that the curvature
of a curve, which is given as the graph (x, g (x)) of a smooth function g over
an interval [a, b], can be described locally by the formula

κ (x) = g′′ (x)(
1 + (g′ (x))2

)3/2 .

Instead of minimizing the strain energy
∫
κ2 (x) dx of such a curve that is to

pass through given points, one can simplify by just minimizing
∫

(g′′ (x))2 dx.
From the previous subsection we know that the optimal function in this latter
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case is in fact the cubic spline interpolant. Keep in mind, though, that only if
|g′| is really small, then the curvature κ is actually close to g′′.

Certain instruments used in naval architecture for the construction of a
smooth curve through given points were called splines, and it is for this reason
the name spline was introduced in the pioneering work of I. J. Schoenberg [38],
p. 48: For k = 4 (polynomial order = degree +1) they (the curves) represent
approximately the curves drawn by means of a spline (instrument) and for this
reason we propose to call them spline curves of order k.

Note that the use of polynomial order instead of degree has some advantages
which we will come back to in later sections. Figure 2 shows the reconstruc-
tion of a mechanical spline instrument, produced by the Norwegian Maritime
Museum for the University of Oslo.

Fig. 2. A mechanical spline.

3.4. A special case (Item 2.1). Using the function values and first deriva-
tives given in item 2.1, we obtain from the general case (3.9) the specific
tridiagonal system of conditions

2 1 0 0 0
1 4 1 0 0
0 1 4 1 0
0 0 1 4 1
0 0 0 1 2



C0
C1
C2
C3
C4

 =


1
2
1
−3
1
1
2

 .

yielding the solution C0 = C4 = 0, C1 = C3 = 1
2 and C2 = −1.

As the piecewise representation of the complete cubic spline interpolant s
in this (very) particular case we thus obtain
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(3.12) s (x) =


1
6 (x+ 2)3 if x ∈ [−2, ,−1] ,
1
6 + 1

2 (x+ 1) + 1
2 (x+ 1)2 − 1

2 (x+ 1)3 if x ∈ [−1, 0] ,
2
3 − x

2 + 1
2x

3 if x ∈ [0, 1] ,
1
6 −

1
2 (x− 1) + 1

2 (x− 1)2 − 1
6 (x− 1)3 if x ∈ [1, 2] .

Note that we actually get here s ∈ C2 (R) , if we take s to be identically zero
outside of the interval [−2, 2]. For a graph of this function take a look back
at the front page.

4. ONE POSSIBLE DEFINITION AND SOME PROPERTIES

Somehow the introduction in the previous section is not exactly to the
point. Although it shows clearly why cubic splines as a class of functions are
distinguished for certain interpolation problems through the extremal property
(3.11), it does not really single out one specific function amongst all splines.
Why should the function values and endpoint derivatives in item 2.1 lead to
any kind of special spline function? Shouldn’t we rather think of a spline that
is equal to one in one breakpoint and zero in all others? We see that if we
add more break-points and corresponding interpolation conditions, we increase
the size of the system of equations (3.9), though it will still be tridiagonal
and uniquely solvable. As a consequence, however, the complete cubic spline
interpolant will generally consist of many pieces and be globally supported
from endpoint to endpoint. Thus in total item 2.1 does not seem like such
a good way to define spline basis functions. In fact, what happened is the
following: I wanted to introduce the general extremal property of splines and
thus explain the name in the beginning, but also had to get exactly the answer
(3.12). So in a way I still owe you a proper definition of a cubic B-spline for
the knots −2,−1, 0, 1, 2.

4.1. A definition of a cubic B-spline. At the end of the previous section,
we have already seen that the function s in (3.12) is actually everywhere twice
differentiable if we extend it by setting it to zero outside of the interval [−2, 2].
That way s is in fact a cubic polynomial over each interval [k, k + 1] , k ∈ Z,
not just for k = −2, −1, 0, 1. The function has just four nontrivial pieces,
and for numerical purposes it would be very advantageous to operate only
with small supports and a small number of pieces. So far, however, all these
properties are satisfied also for a multiple c · s, for any nonzero constant c. A
prescribed function value in the center of the support, x = 0, is one way to fix
this constant. Why exactly the normalization in the following definition was
picked, will become clear a little later. Now let’s go.

Definition 4.1. (Cubic B-spline) We introduce the cubic B-spline B
for the knots (or breakpoints) −2,−1, 0, 1, 2 by demanding that it satisfies the
following properties:
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• B is a real-valued function defined for all x ∈ R.
• B has only local support, namely the interval [−2, 2].
• On each subinterval [k, k + 1] for k ∈ Z the function B is a cubic

polynomial: B|[k,k+1] ∈ Π3.
• The six polynomial pieces, i.e., including the two identically zero ones

on [−∞,−2) and (2,∞) , are fitted together so that the function B is
twice continuously differentiable everywhere: B ∈ C2 (R).
• Finally we impose that the function B attains a specific value in the

center of its support, namely B (0) = 2
3 .

Ignoring the results of the previous section, we would just naively register
that we have a total of sixteen free parameters, since we have the four cubic
polynomial pieces over [−2, 2], each providing four parameters. On the other
hand, we have fifteen conditions in the form of three continuity conditions for
each of the five active breakpoints −2,−1, 0, 1, 2,, which heuristically explains
why we need a final condition to obtain a unique solution.

4.2. An explicit formula (Item 2.2). Starting from scratch, we determine
the polynomial pieces of B explicitly this time. The C2 continuity in −2 and
2 imposes, since B is identically zero outside [−2, 2], that

B|[−2,−1] (x) = a−2 (x+ 2)3 ,

B|[1,2] (x) = a1 (2− x)3

for some factors a−2 and a1, while the C2 continuity in −1 and 1 leads to

B|[−1,0] (x) = a−2 (x+ 2)3 + a−1 (x+ 1)3 ,

B|[0,1] (x) = a1 (2− x)3 + a0 (1− x)3

for some a−1 and a0. The C2 continuity in 0 yields – not too surprisingly –
the symmetry that a−2 = a1 and a−1 = a0 as well as a0 = −4a1.

Thus the cubic B-spline B is indeed given up to a constant factor by the
continuity conditions imposed in the knots and the prescribed function value
in 0 fixes this constant to achieve the representation of item 2.2, with the
polynomial pieces of course just the same as those already stated in (3.12).
Note that

B (x) > 0 for x ∈ (−2, 2) .
Item 2.2 can be found in formula (4.2) on page 71 of [38], but there it is derived
in a completely different way, which we will come back to later in Section 6.

4.3. The basis property. Next we see that for k ∈ Z the translated functions
B (· − k) are also in C2 (R), have support [k − 2, k + 2] and each consist of four
cubic polynomial pieces within their supports. Thus it is possible to look at
the whole set of functions {B (· − k)}k∈Z instead of only B. Then any function
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represented as

(4.1)
∑
k∈Z

ckB (· − k)

is a real-valued piecewise cubic C2 function on all of R with breakpoints in
the integers Z. Note that due to the local supports, the sum for any x ∈ R
only contains at most four terms for which the corresponding function value
of B-spline translates is nonzero, so we need not worry about the convergence
of an infinite series here.

Do we cover all real-valued piecewise cubic C2 functions with breakpoints
in the integers this way, meaning is it possible to write any such function g in
the form given in (4.1)? The answer is yes, justifying the term B-spline – as for
basis spline – introduced by Schoenberg in [39], p. 256: It was shown in ([13])
that spline functions in an interval (a, b), finite or infinite, with prescribed
knots, admit a unique representation in terms of so-called fundamental spline
functions, which we now call B-splines. The master was of course referring to
arbitrary knots and polynomial degrees, but we are content to investigate the
specific situation at hand.

Let us start by looking at the interval [0, 1]. Only the four translates
B (·+ 1) , B (·) , B (· − 1) and B(· − 2) do not vanish on this interval. De-
noting pk = B (· − k)|[0,1] for k = −1, 0, 1, 2, we have for x ∈ [0, 1] from item
2.2

p−1 (x) = 1
6 (1− x)3 , p0 (x) = 1

6

(
(2− x)3 − 4 (1− x)3

)
,

p1 (x) = 1
6

(
(x+ 1)3 − 4x3

)
, p2 (x) = 1

6x
3.

An instructive way to check that the four polynomials pk are linearly indepen-
dent is to show that the monomial basis up to degree 3 can be represented by
the pk locally, i.e., for x ∈ [0, 1]:

1 = p−1 (x) + p0 (x) + p1 (x) + p2 (x) ,
x = −p−1 (x) + p1 (x) + 2p2 (x) ,
x2 = 3

2p−1 (x)− 1
3p0 (x) + 2

3p1 (x) + 11
3 p2 (x) ,

x3 = 6p2 (x) .

This means that we can write the restriction of any polynomial over [0, 1] in
terms of B (· − k) , k = −1, 0, 1, 2 :

(4.2) g|[0,1] =
2∑

k=−1
ckB (· − k)|[0,1] .

The C2 continuity in x = 1 means that terms of

g|[1,2] −
2∑

k=−1
ckB (· − k)|[1,2] = 1

6c3 (x− 1)3 , for some c3 ∈ R.
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As the support of B (· − 3) is the interval [1, 5] and B (x− 3)|[1,2] = 1
6 (x− 1)3,

we get

g|[0,2] =
3∑

k=−1
ckB (· − k)|[0,2]

and we can proceed inductively interval by interval for the positive x-axis and
repeat the procedure for the negative x-axis, looking first at [−1, 0] and so
forth, thus establishing that any g has a representation of the form (4.1).

4.4. Local reproduction of polynomials. As a special case, since all cubic
polynomials can of course be seen as piecewise polynomials, where the break-
points are just not active, we know that we can represent them as a spline
series of the form (4.1). In fact, the extension of the local representation of
the monomials can be derived inductively for all x ∈ R as

1 =
∑
k∈Z

B (x− k) ,(4.3)

x =
∑
k∈Z

kB (x− k) ,

x2 =
∑
k∈Z

(
k2 − 1

3

)
B (x− k) ,

x3 =
∑
k∈Z

(
k3 − k

)
B (x− k)

Note that the normalization condition B (0) = 3
2 from the B-spline definition

is just the right one to produce that the spline B and its integer translates
form a partition of unity (4.3).

Recalling that B (· − k) has support [k − 2, k + 2], the knots in the interior
of its support are k − 1, k, k + 1. Why don’t you find out how the coefficients
in the expansions of the monomials are related to the symmetric functions?
These are given for any three real numbers s1, s2, s3 by

symmj (s1, s2, s3) =
∑

1≤i1<i2<···<ij≤3
si1si2 · · · sij , for j = 0, 1, 2, 3.

4.5. Minimal support (Item 2.3). Since we have now established that each
C2 function which is piecewise cubic over the integers can be written in the
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series form (4.1), we can show that the function B has indeed smallest support,
meaning that there is no such function g 6= 0, whose support is properly
contained in [−2, 2]. If we assume that there is such a function, since it is
piecewise polynomial over the integers, its support would be contained either
in [−2, 1] or [−1, 2]. We look at the first case, the other one is dealt with
analogously.

According to the basis property, we know that the function g must have
a representation of the form (4.1). Since the function g is identically zero
on [1, 2], arguing in a similar way as for (4.2), we establish that in the series
representation c0 = c1 = c2 = c3 = 0, and use induction to show that ck = 0
also for k ≥ 4. Proceeding similarly for the interval [−3,−2], we get c−4 =
c−3 = c−2 = c−1 = 0, and from there on ck = 0 also for k ≤ −5, establishing
that g ≡ 0. The same argument holds of course to see that the piecewise cubic
C2 functions of support [k − 2, k + 2] must have the form ckB (· − k) , ck 6= 0,
for any k ∈ Z.

We are now able to address item 2.3. A function, which is in C2 (R), a cubic
polynomial on each interval [k, k + 1] for k ∈ Z, and has smallest support must
have the form ckB (· − k). Since it attains the function value 2

3 in x = 0, it
can only be 4B (·+ 1) , B (·) or 4B (·+ 1). Since the function is supposed to
be even as well, it must be B itself.

As mentioned before, our argument for the basis property of spline functions
is derived from [13], where it is actually carried out for any degree and any
kind of knot sequence, i.e., the breakpoints are no longer equally spaced and
thus the basis functions no longer translates of just one function like our B
here. For those who are striving (not always successfully) to publish their
results promptly, here is a quote from the introduction of this paper of 1966:
The present paper was written in 1945 and completed by 1947 (...) but for no
good reason has so far not been published. Those were the days.

4.6. A recursion formula (Item 2.4). Although I have stated in the intro-
duction that we will restrict ourselves to polynomial degree 3, it is actually
essential to see how minimally supported splines of given degree can be recur-
sively put together using minimally supported splines of lower degree. So I
am going to introduce a specific piecewise quadratic, linear and constant func-
tion now, but without much of an explanation. Find out for yourself about
their properties such as the relation of the polynomial degree to the number
of nontrivial pieces, positioning of breakpoints and the order of smoothness in
these breakpoints. Once you have reached the last section and thus the general
definition of a B-spline, you will be able to put things into perspective. Just
to confuse you I will index these piecewise polynomial functions by the order
of the polynomial pieces, and not by their degree.

We start by setting M4 = B as a piecewise cubic function. For piecewise
quadratics we define M3 by
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(4.4) M3 (x) =



1
2

(
x+ 3

2

)2
, if x ∈

[
−3

2 ,−
1
2

]
,

−x2 + 3
4 , if x ∈

[
−1

2 ,
1
2

]
,

1
2

(
x− 3

2

)2
, if x ∈

[
1
2 ,

3
2

]
,

0, otherwise

and the piecewise linear M2 (yes, this is actually the hat function N from item
2.10) as

(4.5) M2 (x) =


1 + x, if x ∈ [−1, 0] ,
1− x, if x ∈ [0, 1] ,
0, otherwise.

Finally, for piecewise constants we take

(4.6) M1 = χ|[− 1
2 ,

1
2 ) =

{
1, if x ∈ [−1

2 ,
1
2),

0, if x /∈ [−1
2 ,

1
2).

Now the functions M1
(
· − 1

2

)
= χ|[0,1),M2,M3

(
· − 1

2

)
and M4 are all piece-

wise polynomials with breakpoints in the integers of increasing polynomial
degree, but are they connected in some way? We set tk = k, k ∈ Z, and define,
following the notation in [13],

M1(x|tk, tk+1) = M1
(
x− k − 1

2

)
= χ|[tk,tk+1),

M2(x|tk, tk+1, tk+2) = M2 (x− k − 1) ,

M3(x|tk, tk+1, tk+2, tk+3) = M3
(
x− k − 3

2

)
,

M4 (x|tk, tk+1, tk+2, tk+3, tk+4) = M4 (x− k − 2) .

It is easily verified using item 2.1, (4.4), (4.5) and (4.6), that the following
recursion holds for j = 2, 3, 4 and any k ∈ Z:

Mj (x|tk, . . . , tk+j) = x−tk
tk+j−1−tkMj−1 (x|tk, . . . , tk+j−1)(4.7)

+ tk+j−x
tk+j−tk+1

Mj−1 (x|tk+1, . . . , tk+j) .
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This recursion formula can be illustrated in the form of a triangle

M4 (x|tk, tk+1, tk+2, tk+3, tk+4)
x−tk

tk+3−tk · ↗
tk+4−x

tk+4−tk+1
· ↖

M3 (x|tk, tk+1, tk+2, tk+3) M3 (x|tk+1, tk+2, tk+3, tk+4)
x−tk

tk+2−tk · ↗
tk+3−x

tk+3−tk+1
· ↖↗ · x−tk+1

tk+3−tk+1

tk+4−x
tk+4−tk+2

· ↖
M2 (x|tk, tk+1, tk+2) M2 (x|tk+1, tk+2, tk+3) M2 (x|tk+2, tk+3, tk+4)
x−tk

tk+1−tk · ↗
tk+2−x

tk+2−tk+1
· ↖↗ · x−tk+1

tk+2−tk+1

tk+3−x
tk+3−tk+2

· ↖↗ · x−tk+2
tk+3−tk+2

tk+4−x
tk+4−tk+3

· ↖
χ[tk,tk+1) χ[tk+1,tk+2) χ[tk+2,tk+3) χ[tk+3,tk+4)

For k = −2, substituting expressions for decreasing j and comparing with
item 2.2 interval by interval, establishes item 2.4. Of course, just checking
the formulae for the polynomial pieces is unsatisfactory, and will not work for
arbitrary degree, let alone arbitrary breakpoints, so we are in need of a closed
formula expression for the B-splines and we will attack that problem in the
subsequent section. For the recursion in the general case, we defer to the final
section.

Having a recursion available is very important, for instance, to handle B-
splines in practical computations in a numerically stable way. The recursion,
as found independently in [2] and [12], is typically considered as the starting
point for splines as a practical numerical tool. We will not dwell on this too
much here, but give one example, namely the evaluation of the series (4.1).

For x ∈ [t`, t`+1), for any ` ∈ Z, only four terms are relevant due to the
compact support of B:

∑
k∈Z

ckB (x− k) =
∑̀

k=`−3
ckB (x− k) = c3

` (x) ,

where the c3
` (x) are defined recursively for j = 1, 2, 3, and k = `− 3 + j, . . . , `

as

cjk (x) = tk+4−j−x
tk+4−j−tk c

j−1
k−1 (x) + x−tk

tk+4−j−tk c
j−1
k (x) ,

with the initialization

c0
k (x) = ck, for k = `− 3, . . . , `.
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Again, we can illustrate this using a triangular scheme:

c3
`

t`+1−x
t`+1−t` · ↗

x−t`
t`+1−t` · ↖

c2
`−1 c2

`

t`+1−x
t`+1−t`−1

· ↗ x−t`−1
t`+1−t`−1

· ↖↗ · t`+2−x
t`+2−t`

x−t`
t`+2−t` · ↖

c1
`−2 c1

`−1 c1
`

t`+1−x
t`+1−t`−2

· ↗ x−t`−2
t`+1−t`−2

· ↖↗ · t`+2−x
t`+2−t`−1

x−t`−1
t`+1−t`−1

· ↖↗ · t`+3−x
t`+3−t`

x−tv
t`+3−t` · ↖

c`−3 c`−2 c`−1 c`

For a thorough look at triangular schemes for polynomials and splines consult
[26].

5. ENTER: TRUNCATED POWER FUNCTIONS

To derive a closed formula, especially one allowing also the use of nonuni-
form knots, we start with a different approach. The most straightforward
piecewise polynomial functions are the following:

Definition 5.1. For all x ∈ R the truncated function is defined as

x+ = max (x, 0)

and for fixed n ∈ N the truncated power function of degree n by

xn+ = (x+)n .

These functions consist of just two polynomial pieces glued together at the
breakpoint 0, so that the function values of the two pieces match in the knot
and also all the corresponding onesided derivatives (the leftsided ones for the
left piece which is identically zero and the rightsided ones for the right piece,
the polynomial xn) up to the order n − 1. The n-th derivative then displays
a jump discontinuity in the breakpoint. Altogether xn+ is a function that is
n− 1 times continuously differentiable on all of R. Clearly the breakpoint can
be shifted to any other point by a simple translation, i.e., (x− a)n+ has its
breakpoint in a. A quick quote from [3], p. 101: We refuse to worry about the
meaning of the symbol (0)0

+.

5.1. A closed formula for B-splines (Item 2.5). It is possible that a linear
combination of truncated power functions with different breakpoints, which
are of infinite support, can be combined to generate a compactly supported
function. In fact, using the definition and investigating the different cases for
the respective intervals, we can show that representation 2.5 holds, i.e.,

B (x) = 1
6

(
(−2− x)3

+ − 4 (−1− x)3
+ + 6 (−x)3

+ − 4 (1− x)3
+ + (2− x)3

+

)
.
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At this point it is time to remember a fundamental tool in numerical anal-
ysis, typically introduced when studying the Newton form of interpolation
polynomials, namely the divided differences.

For a function f the fourth order divided difference in the five distinct points
t0, t1, t2, t3, t4 is defined as the leading coefficient of the polynomial of degree
4 that interpolates f in t0, t1, t2, t3, t4, so

(5.1) [t0, t1, t2, t3, t4] f =
4∑

k=0

f (tk)
ω′ (tk)

,

where
ω (t) = (t− t0) (t− t1) (t− t2) (t− t3) (t− t4) .

As is well known, we can compute divided differences for points tk < . . . < tk+`
by a recursion:

[tk] f = f (tk) , for ` = 0
and

(5.2) [tk, . . . , tk+`] f = [tk+1, . . . , tk+`] f − [tk, . . . , tk+`−1] f
tk+` − tk

, for ` ≥ 1.

Defining the function G (t, x) = (t− x)3
+, we can establish that in fact

(5.3) B (x) = 4 [−2,−1, 0, 1, 2]tG (t, x) = 4 [−2,−1, 0, 1, 2]t (t− x)3
+ ,

so that the cubic B-spline B for the knots −2,−1, 0, 1, 2 is generated by apply-
ing the fourth order divided difference for these knots to the functions G with
respect to the variable t and multiplying by the difference last knot minus first
knot. The equation is translation invariant in the sense that

(5.4) B (x− k) = 4 [k − 2, k − 1, k, k + 1, k + 2]t (t− x)3
+ .

5.2. Green’s functions (Item 2.6). Now we proceed to investigate other set-
tings, where the truncated power functions and thus B-splines as their divided
differences are of importance.

Definition 5.2. For the linear differential operator

(5.5) L [y] = y(4) + a3 (x) y(3) + a2 (x) y(2) + a1 (x) y(1) + a0 (x) y

and initial conditions

(5.6) y(3) (a) = g3, y(2) (a) = g2, y(1) (a) = g1, y (a) = g0

a bivariate function GL (x, t) defined on a bivariate interval [a, b]2 is called
Green’s function for the differential operator (5.5) with given ini-
tial conditions (5.6), if the unique solution to the initial value problem (IVP)
given by

L [y] = h, almost everywhere
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for any right hand side function h that is integrable on the interval [a, b] and
arbitrary initial condition (5.6) can be expressed as

yp (x) +
∫ x

a
GL (x, t)h (t) dt,

where yp is the solution of the homogeneous IV P L[y] = 0 under the given
initial conditions, while the integral term solves the equation L[y] = h under
homogeneous initial conditions.

We can now compute directly that for the simple operator of fourth order
differentiation L = D4, i.e., L [y] = y(4) we obtain the fourth-order Taylor
polynomial in a as y4

p

yp (x) =
3∑

k=0
gk

(x−a)k

k! .

Differentiating under the integral sign yields

D3
x

(∫ b

a

1
6 (x− t)3

+ h (t) dt
)

=
∫ b

a
(x− t)0

+ h (t) dt =
∫ x

a
h (t) dt,

D4
x

(∫ b

a

1
6 (x− t)3

+ h (t) dt
)

= h (x)

and thus according to Definition 4

GD4 (x, t) = 1
6 (x− t)3

+ ,

yielding as the solution of the IVP on [a, b]

3∑
j=0

gj
(x−a)j

j! +
∫ b

a

1
6 (x− t)3

+ h (t) dt.

This holds true also for other spline degrees n, the differential operator Dn+1,
and the truncated power function 1

n! (x− t)n+ as the corresponding Green’s
function, see [5]. Note that we have used (x− t)3

+ here, while we use (t− x)3
+

in the B-spline definition. We have, however, that

(x− t)3
+ = (x− t)3 + (t− x)3

+ , for all x, t ∈ R,

and since the fourth order divided difference annihilates polynomials up to
degree 3

(5.7) [−2,−1, 0, 1, 2]t (t− x)3
+ = [−2,−1, 0, 1, 2]t (x− t)3

+

and thus item 2.6, if we choose specifically [a, b] = [−2, 2].
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5.3. Peano kernels (Item 2.7). The annihilation property of divided differ-
ences comes again into play in a special case of a remainder theorem originally
established by Peano (see [15]). In my opinion this a really powerful theorem
as it yields remainder terms for various types of interpolation, numerical in-
tegration and differencing. For cubic polynomials this allows – for example –
to state remainder formulae for Lagrange interpolation in four points, for the
cubic Taylor polynomial in one given point, or for Simpson’s rule for numerical
quadrature (try and see what you obtain).

Theorem 5.3. Let a linear functional on the function space C4 [a, b] be
given in the form

L (h) =
∫ b

a

(
a3 (t)h(3) (t) + a2 (t)h(2) (t) + a1 (t)h(1) (t) + a0 (t)h (t)

)
dt

+
j0∑
j=1

bj,0h (tj,0) +
j1∑
j=1

bj,1h
(1) (tj,1) +

j2∑
j=1

bj,2h
(2) (tj,2) +

j3∑
j=1

bj,3h
(3) (tj,3) ,

where the functions aj are assumed to be piecewise continuous over [a, b] the
points tj,k lie in [a, b] while all jk are in N and all bj,k are real numbers. If the
functional L annihilates polynomials of degree 3, i.e.,

L (p) = 0, for p ∈ Π3,

then we have for h ∈ C4 [a, b] the representation

L (f) =
∫ b

a
h(4) (x)K (x) dx

with
K (x) = 1

3!Lt
(
(x− t)3

+

)
,

meaning that the functional L is applied to the truncated power function as
a function of t, treating x as a free parameter. The function K is called the
Peano kernel of the functional L.

This remainder theorem also covers our divided differences of fourth order,
since they annihilate cubics, and we obtain for all h ∈ C4 [a, b]

[−2,−1, 0, 1, 2]h = 1
3!

∫ 2

−2
h(4) (x) [−2,−1, 0, 1, 2]t (t− x)3

+ dx(5.8)

= 1
4!

∫ 2

−2
h(4) (x)B (x) dx,

so the cubic B-spline B is – up to a factor – the Peano kernel for the divided
difference functional, and this holds also for other degrees and nonuniform
knots.

Note that we obtain from here the definite integral of the cubic B-spline By
choosing h (x) = x4, so that

(5.9)
∫ +∞

−∞
B (x) dx = 1.
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Finally, we point out that for equally spaced points, there is of course a direct
correspondence between divided differences and central differences. Over the
integers we define the central difference

∆h (x) = h
(
x+ 1

2

)
− h

(
x− 1

2

)
and iteratively

∆nh (x) = ∆n−1 (∆h (x)) .
We thus compute that

∆4h (0) = h (−2)− 4h (−1) + 6h (0)− 4h (1) + h (2) .

On the other hand according to the recursive computation of the divided
differences (5.2), we have

[−2,−1, 0, 1, 2]h = 1
4! (h (−2)− 4h (−1) + 6h (0)− 4h (1) + h (2))

and thus (recalling (5.8) we obtain item 2.7∫ ∞
−∞

h(4) (x)B (x) dx = ∆4h (0) .

5.4. A geometric interpretation (Item 2.8). The Peano kernel property of
the B-spline B and an integral representation of divided differences (again valid
for any choice of simple knots) give rise to our first geometric interpretation
of B. Using again the recursion for divided differences (5.2), it is possible to
establish the Hermite-Genocchi integral representation of a divided difference
for a smooth function h ∈ C4 [x0, x4]

[x0, x1, x2, x3, x4]h =(5.10)

=
∫ ∫

Σ

∫ ∫
h(4) (x0s0 + x1s1 + x2s2 + x3s3 + x4s4) ds1ds2ds3ds4,

where the domain of integration is the simplex Σ in R4 given as{
(s1, s2, s3, s4) : s1 ≥ 0, s2 ≥ 0, s3 ≥ 0, s4 ≥ 0, s0 = 1− s1 − s2 − s3 − s4 ≥ 0

}
.

A straightforward proof for general order divided differences is of course done
by induction over the number of points xj .

We now position a unit-volume simplex Σ∗ in R4, so that its five ver-
tices under orthogonal projection to the x-axis are mapped onto the points
(xj , 0, 0, 0)T . There are a lot of possibilities for this, a simple one being the
vertices

X0 = (x0, 0, 0, 0)T , X1 = (x1, 0, 0, 0)T , X2 =
(
x2,

2
x1−x0

, 0, 0
)T

,

X3 = (x4, 0, 3, 0)T , X4 = (x0, 0, 0, 4)T .
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Regardless of the actual choice of Xj = (xj , yj,zj , uj)T , as long as 4!vol4 (Σ∗) =
det (X1 −X0, X2 −X0, X3 −X0, X4 −X0) = 4!, we make a change of vari-
ables

x = x0 (1− s1 − s2 − s3 − s4) + x1s1 + x2s2 + x3s3 + x4s4,

y = y0 (1− s1 − s2 − s3 − s4) + y1s1 + y2s2 + y3s3 + y4s4,

z = z0 (1− s1 − s2 − s3 − s4) + z1s1 + z2s2 + z3s3 + z4s4,

u = u0 (1− s1 − s2 − s3 − s4) + u1s1 + u2s2 + u3s3 + u4s4.

The determinant of the Jacobian ∂(x,y,z,u)
∂(s1,s2,s3,s4) needed for the corresponding

integral transformation is det (X1 −X0, X2 −X0, X3 −X0, X4 −X0) = 4!, so
that we obtain by the Hermite-Genocchi formula (5.10)

4! [x0,x1, x2, x3, x4]h =

=
∫ ∫

Σ

∫ ∫
h(4) (x (s1, s2, s3, s4))

∣∣∣∣ ∂ (x, y, z, u)
∂ (s1, s2, s3, s4)

∣∣∣∣ ds1ds2ds3ds4

=
∫ ∫

Σ

∫ ∫
h(4) (x) dxdydzdu

=
∫ x4

x0
h(4) (x)

( ∫∫∫
(x,y,z,u)∈Σ∗

1dydzdu
)
dx

The interior triple integral is now indeed the 3-dimensional volume of the
intersection of the hyperplane given by x = xf , with xf fixed between x0 and
x4, and the simplex Σ∗. On the other hand, by (5.8), it must be the B-spline
B as the Peano kernel of the divided difference, since the equations hold for
all functions h ∈ C4 [a, b], yielding

B (x) =
∫∫∫

(x,y,z,u)∈Σ∗
1dydzdu,

and thus item 2.8. Note how the volume is always the same, regardless of how
the simplex is chosen, provided the first coordinate of each Xj is xj and the
volume of Σ∗ is 1, a nice illustration of Cavalieri’s principle.

6. FOURIER TRANSFORMS

We will now look at situations, where the function B arises specifically
because its breakpoints lie not just anywhere, but in the integers. Schoenberg
called this the cardinal case, see his monograph [40]. For background material
on Fourier transforms, used here without proof, consult a textbook on Fourier
analysis. I for myself used the formulations from Chapter 2 in [11]. Note that
i everywhere in this text denotes the imaginary unit, it is never used as an
index.
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Recall first that the Fourier transform of a function g ∈ L1 (R) is defined
as

ĝ (ω) = (Fg) (ω) =
∫ ∞
−∞

g (x) e−iωxdx

and the inverse Fourier transform of ĝ ∈ L1 (R) as(
F−1ĝ

)
(x) = 1

2π

∫ ∞
−∞

ĝ (ω) eiωxdω.

Next recall that, provided both g and ĝ ∈ L1 (R), at every point x where g is
continuous

(6.1) g (x) =
(
F−1ĝ

)
(x) .

Let g, h ∈ L1 (R), then the convolution g ∗ h is also in L1 (R), where

(g ∗ h) (x) =
∫ ∞
−∞

g (x− t)h (t) dt.

For the Fourier transform of a convolution we have

(6.2) (F (g ∗ h)) (ω) = (Fg) (ω) · (Fh) (ω) .

Recall now that the sinc function is defined as

sin c (x) =
{

sinx
x if x 6= 0,

1 if x = 0.

It turns out that the sinc function is closely related to piecewise polynomials
through the Fourier transform.

A fundamental result for practical applications is the Sampling Theorem.
The theorem deals with functions that are bandlimited, i.e. whose Fourier
transform is nonzero only on an interval of finite length, say Fg (ω) = 0 for
|ω| > L. In this case the whole function (signal in engineering terms) can
be reconstructed from countably many discrete samples, namely the function
values g (kπ/L) for k ∈ Z, as

(6.3) g (x) =
∞∑

k=−∞
g
(
kπ
L

)
sinc

(
L
(
x− kπ

L

))
.

Compare (6.3), where a bandlimited function is represented using the sinc
function and its translates, to (4.1), where a piecewise polynomial over the
integers is represented by the B-spline B and its integer translates. While the
convergence in (6.3) is very slow, evaluation is quickly done in (4.1) due to
compact support and the recursion formula. The coefficients in (4.1), however,
are no simple samples of the given spline function. In Schoenberg’s already
mentioned first spline paper in 1946 [38], the series (6.3) was the starting point
for his studies of spline series like (4.1).
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6.1. The Fourier transform of the B-spline B (Item 2.9). Let us start
by computing the Fourier transform of our cubic B-spline B. Splitting up the
complex-valued function hω (x) = e−iωx into its real and imaginary part, we
find that we can actually use the Peano kernel property (5.8) and item 2.7
also for this function to obtain∫ ∞

−∞
ω4e−iωxB (x) dx = ∆4hω (0) .

We have
∆hω (x) = e−iωx(x+ 1

2 ) − eiω(x− 1
2 ) = −2i sin

(
ω
2
)
e−iωx

and thus
∆4hω (x) = (−2i)4 sin4 (ω

2
)
e−iωx = 24 sin4 (ω

2
)
e−iωx

and
∆4hω (0) = 24 sin4 (ω

2
)
.

This way we obtain that the Fourier transform of B is a power of a dilated
sinc function:

(FB) (ω) = 1
ω4 ∆4hω (0) =

(
sin( ω

2 )
ω
2

)4
= sinc4 (ω

2
)
.

Since B is continuous, due to (6.1), taking the inverse Fourier transform yields
item 2.9.

(6.4) B (x) = F−1
(
sinc4 ( ·

2
))

(x) = 1
2π

∫ +∞

−∞

(
sin( ω

2 )
ω
2

)4
eiωxdω.

6.2. Convolutions (Item 2.10). The occurrence of the 4-th power of the
sinc-function for a cubic B-spline (order = 4) is of course no accident. Start-
ing with piecewise constants, namely the characteristic function M1 of the
halfopen interval

[
−1

2 ,
1
2

)
already presented in (4.6), i.e.,

M1 (x) =
{

1, if x ∈ [−1
2 ,

1
2),

0, if x /∈ [−1
2 ,

1
2),

we define recursively for n ≥ 2, using convolution,

Mn (x) = (Mn−1 ∗M1) (x) =
∫ ∞
−∞

Mn−1 (x− t)M1 (t) dt(6.5)

=
∫ 1

2

− 1
2

Mn−1 (x− t) dt =
∫ x+ 1

2

x− 1
2

Mn−1 (t) dt, for all x ∈ R.

Check that this recursive definition is actually consistent with the piecewise
definitions in (4.5) and (4.4).

Since the Fourier transform of M1 is

(FM1) (ω) =
∫ ∞
−∞

M1 (x) e−iωxdx =
∫ 1

2

− 1
2

e−iωxdx = sin ω
2

ω
2
,
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the Fourier transforms of Mn are due to convolution property (6.2)

(FMn) (ω) = (FM1)n (ω) =
( sin ω

2
ω
2

)n
.

While M1 still has two jumps, we see from (6.5) that the smoothness of Mn

increases by one with each convolution, i.e. Mn ∈ Cn−2 (R). Thus taking the
inverse transform establishes for n ≥ 2

Mn (x) = 1
2π

∫ +∞

−∞

(
sin( ω

2 )
ω
2

)n
eiωxdω,

implying of course M4 = B.
Since the sinc-function is even, we can remove the complex exponential in

the integrand and write

(6.6) Mn (x) = 1
π

∫ +∞

0

(
sin( ω

2 )
ω
2

)n
cos (xω) dω.

Integrals of this form have been investigated for a long time by a lot of math-
ematicians independent of spline theory, see [7] for a historical review.

We have already seen in (4.5) that for the hat function N we have N = M2.
This establishes, as the convolution is associative, that

B (x) = (((M1 ∗M1) ∗M1) ∗M1) (x)
= ((M1 ∗M1) ∗ (M1 ∗M1)) (x) = (N ∗N) (x) .

producing item 2.10.

6.3. A moving unit impulse (Item 2.11). In [28] it is described how B-
splines can be generated recursively by intersecting the graph of a lower order
B-spline with a unit impulse moving along the coordinate axis, as derived in
[36]. In more explicit terms this would mean the following.

Moving a unit square along the x-axis with its center at the point
(
x, 1

2

)
means that its four corners lie at

(
x− 1

2 , 0
)
,
(
x+ 1

2 , 0
)
,
(
x+ 1

2 , 1
)
,
(
x− 1

2 , 1
)

for a given x ∈ R. The area A(x) of the region cut out of the square by the
graph of the hat function N(x) is then nothing but the definite integral of the
hat function between the limits of integration x− 1

2 and x+ 1
2 :

A (x) =
∫ x+ 1

2

x− 1
2

N (t) dt = M3 (x) .

Thus a repetition of the process using A(x) instead of N(x) produces item
2.11: ∫ x+ 1

2

x− 1
2

A (t) dt =
∫ x+ 1

2

x− 1
2

M3 (t) dt = M4 (x) = B (x) .
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7. SUBDIVISION

7.1. The refinement equation (Item 2.12). A simple dilation of the B-
spline series (4.1) by a factor of 2 yields that any piecewise cubic polynomial
function over the half integers 1

2Z that lies in C2(R) can be represented by the
sum ∑

k∈Z
ckB (2 · −k) .

Clearly the B-spline B qualifies as such a function, the knots 1
2 + Z are just

not active as B is a piecewise function over the knots Z. So there must be
coefficients pk, called two-scale coefficients, such that

(7.1) B (x) =
∑
k∈Z

pkB (2x− k) .

The specific functional equation for the refinement of B – as given in item 2.12
– can now be established using the Fourier transform of B, indicating also the
corresponding ones for all the functions Mn.

Note that in 2.12 we can compute the values of any solution function f in
the points 1

2 +Z from the prescribed values in Z using the functional equation.
Repeating this process, the values in 1

4 + 1
2Z can be computed from those in

1
2 +Z and so forth, so that the values of f are established for all arguments of
the form k

2r . The continuity of f takes care of the remaining rational numbers
and all irrational ones, ensuring that there can be only one continuous solution
function of the functional equation with the prescribed function values in the
integers.

So we take the Fourier transforms in (7.1) to obtain

(FB) (ω) = F

∑
k∈Z

pkB (2 · −k)

 (ω) .

A dilation by the factor 2 in the function results in a factor of 1/2 in the
Fourier transform, the translation by an integer k in an additional factor of
e−ik

ω
2 , yielding in total

(FB) (ω) = 1
2

∑
k∈Z

pke
−ik ω

2

 (FB)
(
ω
2
)
.

Denoting z = e−i
ω
2 , the function

P (z) =
∑
k∈Z

pkz
k

is called the symbol of the refinable function and its investigation is one of the
cornerstones in subdivision theory (see for example [8] and the tutorial [20])
and wavelet analysis (see for example [14], [11]) to derive properties of the
function obeying a refinement equation with given two-scale coefficients.
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Our task here is much easier since we have already computed the Fourier
transform of B before and can just derive P by division, i.e.,

P (z) = 2 (FB) (ω)
(FB)

(
ω
2
) = 1

23

(
sin ω

2
sin ω

4

)4

= 1
23

(
ei

ω
2 − e−i

ω
2

ei
ω
4−e

−i ω
4

)4

= 1
23

(
ei

ω
4

1− e−iω

1− e−i
ω
2

)4

= 1
23 z
−2
(

1− z2

1− z

)4

= 1
23 z
−2 (1 + z)4

= 1
23

4∑
k=0

(4
k

)
zk−2.

Thus the two-scale coefficients for B are

pk =
{

1
23
( 4
k+2
)
, for k = −2, . . . , 2,

0, for |k| ≥ 3.

Note that the famous Daubechies functions [14] are derived from splines by
starting from the spline symbol P (z) and multiplying by another term S(z)
chosen to achieve orthogonality of the translates of the refinable function.

7.2. Subdivision curves (Item 2.13). How are the coefficients related when
going from the piecewise cubics over the integers Z to the half integers 1

2Z?
In other words given a function

g (x) =
∑
k∈Z

c0
kB (x− k) ,

we know that g can also be written as

g (x) =
∑
k∈Z

c1
kB (2x− k) ,

so the question is what the relationship is between the coefficients c0
k and c1

k.
Using the coefficients of the symbol P , also called the mask coefficients,
we find with item 2.12 that

g (x) =
∑
k∈Z

c0
kB (x− k) =

∑
k∈Z

c0
k

∑
`∈Z

p
`
B (2x− 2k − `)

=
∑
k∈Z

c0
k

∑
`∈Z

p
`−2kB (2x− `) =

∑
`∈Z

∑
k∈Z

c0
kp`−2kB (2x− `) .

Since the representations are unique, we obtain

c1
` =

∑
k∈Z

c0
kp`−2k, for all ` ∈ Z.
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Splitting up in even and odd indices and using the fact that only five coeffi-
cients pk are nonzero results in

c1
2` =

∑
k∈Z

c0
kp2`−2k = 1

8c
0
`−1 + 6

8c
0
` + 1

8c
0
`+1,

c1
2`+1 =

∑
k∈Z

c0
kp2`+1−2k = 4

8c
0
` + 4

8c
0
`+1.

Clearly we can iterate this procedure and obtain

g (x) =
∑
k∈Z

crkB (2rx− k) ,

with

cr2` =
∑
k∈Z

cr−1
k p2`−2k = 1

8c
r−1
`−1 + 6

8c
r−1
` + 1

8c
r−1
`+1 ,(7.2)

cr2`+1 =
∑
k∈Z

cr−1
k p2`+1−2k = 4

8c
r−1
` + 4

8c
r−1
`+1 .(7.3)

A straightforward way to approximate the graph of the function, i.e. the
set of pairs (x, g (x)) for all x ∈ R, is to draw the polygon connecting the
points P 0

k =
(
k, c0

k

)
k for all k ∈ Z instead. Note that the polygon does not

interpolate, since we take the k-th coefficient of the B-spline expansion as the
second component, not the function value of g at point k.

A finer polygon and hopefully better approximation is then obtained by
connecting the points P 1

2k =
(
k, c1

2k
)

for all k ∈ 1
2Z and so forth for all r ∈ N:

P r2rk = (k, cr2rk) for all k ∈ 1
2r Z. We contend that the polygons actually

converge to the graph of the function. Indeed we have for all k ∈ Z∥∥∥( k
2r , g

(
k
2r

))
− P rk

∥∥∥
∞

=
∥∥∥( k

2r , g
(
k
2r

))
−
(
k
2r , c

r
k

)∥∥∥
∞

=
∣∣∣g ( k

2r

)
− crk

∣∣∣ .
Using the r-th level representation of g we find

g
(
k
2r

)
=
∑
`∈Z

cr`B (k − `) = 1
6c
r
k−1 + 3

2c
r
k + 1

6c
r
k+1

and thus

g
(
k
2r

)
− crk = 1

6
(
crk−1 − crk

)
+ 1

6
(
crk+1 − crk

)
.

Using the difference operator for biinfinite sequences c = {c`}`∈Z defined by
(∆c)` = c`+1 − c`, we thus get∥∥∥( k

2r , g
(
k
2r

))
− P rk

∥∥∥
∞
≤ 1

3 ‖∆c
r‖∞ .
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It now suffices to investigate how the differences of consecutive levels are re-
lated. We have∣∣cr2`+1 − cr2`

∣∣ =
∣∣∣(4

8c
r−1
` + 4

8c
r−1
`+1

)
−
(

1
8c
r−1
`−1 + 6

8c
r−1
` + 1

8c
r−1
`+1

)∣∣∣
=
∣∣∣38cr−1

`+1 −
1
4c
r−1
` − 1

8c
r−1
`−1

∣∣∣
≤ 3

8

∣∣∣cr−1
`+1 − c

r−1
`

∣∣∣+ 1
8

∣∣∣cr−1
` − cr−1

`−1

∣∣∣ ≤ 1
2

∥∥∥∆cr−1
∥∥∥
∞

and ∣∣cr2` − cr2`−1
∣∣ =

∣∣∣(1
8c
r−1
`−1 + 6

8c
r−1
` + 1

8c
r−1
`+1

)
−
(

4
8c
r−1
`−1 + 4

8c
r−1
`

)∣∣∣
=
∣∣∣18cr−1

`+1 + 1
4c
r−1
` − 3

8c
r−1
`−1

∣∣∣
≤ 1

8

∣∣∣cr−1
`+1 − c

r−1
`

∣∣∣+ 3
8

∣∣∣cr−1
` − cr−1

`−1

∣∣∣ ≤ 1
2

∥∥∥∆cr−1
∥∥∥
∞,

obtaining
‖∆cr‖∞ ≤

1
2

∥∥∥∆cr−1
∥∥∥
∞

and thus by iteration∥∥∥( k
2r , g

(
k
2r

))
− P rk

∥∥∥
∞
≤ 1

3
1
2r ‖∆c‖∞ .

We have thus established that for a given fraction k
2r1 , the coefficients cr

k2r−r1

converge to g
(
k

2r1

)
for r → ∞, and the continuity of g takes care that the

sequence of polygons converge to the graph of g as a whole. In item 2.13 we
have specifically chosen the initial coefficients c0

k = δk,0, and thus g = B, so
that the polygons converge to the graph of B itself.

The study of subdivision curves in Computer Aided Geometric Design
started with Chaikin [9], but the idea dates back to de Rham in 1947 [34].
In the original process, called corner cutting, the rules for the coefficients, and
thus the corresponding rules for the control points P r2` and P r2`+1, are not given
by (7.2) and (7.3), but instead by

2r2` = 3
4c
r−1
` + 1

4c
r−1
`+1 ,

cr2`+1 = 1
4c
r−1
` + 3

4c
r−1
`+1 .

Compute for a given initial polygon a few steps of the algorithm and draw the
resulting polygons to see why the procedure is called corner cutting.

While in our notation and terminology it is fairly easy to see that the coeffi-
cients involved are in fact the two-scale coefficients of the piecewise quadratic
B-spline M3, and thus the corresponding polygons converge to the piecewise
quadratic function

∑
k c

0
kM3 (x− k), this was not known when the algorithm

was first described.
Subdivision procedures are also available for surfaces, and even more im-

portant there. I would like to refer those who are interested to find out more
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to the tutorials by Sabin [37]. At this point let me just mention that these
surfaces are now the state of the art in computer animation movies [16].

8. PROBABILITY

8.1. An urn model (Item 2.14). In Subsection 7.1 we have encountered
binomial coefficients in the two-scale coefficients of B-splines. Binomial coef-
ficients can be derived from Pascal’s triangle, which is related to urn models
in probability. So it should not come as a great surprise that we can link the
B-spline to urn models as well.

We consider an urn model introduced in very general form already by Fried-
man [24]. Initially the urn contains w white balls and b black balls. One ball
at a time is drawn at random from the urn and its color is inspected. It is
then returned to the urn and a constant number c1 of balls of the same color
and a constant number c2 of balls of the opposite color are added to the urn.

The aim is to study the probability of selecting exactly K white balls in
the first N trials. It turns out (see Goldman [25], where this material is
taken from) that this probability can be described in dependence on three
parameters: the probability of selecting a white ball on the first trial and the
percentages of balls of the same and of the opposite color added to the urn
after the first trial.

Using the notation
t = ω

ω+b
for the probability of selecting a white ball on the first trial, we use the term
BN
K (t) for the probability of selecting exactly K white balls in the first N

trials.
For the simplest case of c1 = c2 = 0 we obtain the binomial distribution for

sampling with replacement, i.e.

BN
K (t) =

(N
K

)
tK (1− t)N−K , t ∈ [0, 1] .

The case c1 6= 0, c2 = 0 corresponds to classical Polya-Eggenberger models
[21].

The urn models for the cases c2 = ω+b+c1 are called spline (!) models,and
we will just look at the simplest case c1 = 0, c2 = ω + b. This means that
the number of balls after the first N trials is always (N + 1)(w + b), but the
number of white and black balls is determined by the outcome of those trials.

We introduce two more probabilities (dependent on t):fNK (t) as the proba-
bility of selecting a black ball after selecting exactly K white balls in the first
N trials and sNK (t) as the probability of selecting a white ball after selecting
exactly K white balls in the first N trials.

We can now set up a recursion for the terms BN
K (t). After the trial number

N + 1, we can only have K white balls in two mutually exclusive cases:
i) if we already have drawn K white balls after trial N and we draw a

black ball in the last trial,
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ii) if we have K − 1 white balls after trial N and draw a white ball in the
last trial.

In probability terms this means

BN+1
K (t) = fNK (t)BN

K (t) + sNK−1 (t)BN
K−1 (t) .

In case i) the number of black balls after the first N trials is b + K(w + b),
while in case ii) the number of white balls after the first N trials is w +
(N −K + 1) (w + b). Thus we obtain

fNK (t) = b+K(ω+b)
(N+1)(ω+b) = 1−t+K

N+1 ,

sNK−1 (t) = ω+(N−K+1)(ω+b)
(N+1)(ω+b) = t+N−K+1

N+1

and the specific recursion for K = 0, . . . , n

(8.1) Bn+1
k (t) = 1−t+K

N+1 BN
K (t) + t+N+1−K

N+1 BN
K−1 (t) .

The initial conditions are

B1
0 (t) = 1− t,

B1
1 (t) = t,

and we see that we get hat function as

N (x) = M2 (x) =


B1

1 (x+ 1) , if − 1 ≤ x < 0,
B1

0 (x) , if 0 ≤ x < 1,
0, if |x| ≥ 1.

By induction we can derive a closed formula for the functions BN
K based on

the recursion (8.1), namely

(8.2) BN
K (t) = 1

N !

N−K∑
j=0

(−1)j
(N+1

j

)
(t+N −K − j)N .

We see that the formula is correct for N = 1. By the recursion (8.1) and the
induction hypothesis, we get

BN+1
K (t) = 1−t+K

N+1 BN
K (t) + 1+N+1−K

N+1 BN
K−1 (t)

= 1
(N+1)!

N+1−K∑
j=1

(−1)j−1 (N+1
j−1

)
(t+N + 1−K − j)N (1− t+K)

+ 1
(N+1)!

N+1−K∑
j=0

(−1)j
(N+1

j

)
(t+N + 1−K − j)N (t+N + 1−K)

= 1
(N+1)!

N+1−K∑
j=0

(−1)j (t+N + 1−K − j)N R (t)
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with
R (t) = −

(N+1
j−1

)
(1− t+K) +

(N+1
j

)
(t+N + 1−K)

= (N+1)!
j!(N+2−j)! ((N + 2− j) (t+N + 1−K)− j (1− t+K))

= (N+1)!
j!(N+2−j)! ((N + 2) (t+N + 1−K − j))

=
(N+2

j

)
(t+N + 1−K − j) ,

establishing the desired formula (8.2).
We now define a piecewise polynomial function UN by setting for 0 ≤ K ≤

N and x ∈ [K − (N + 1) /2,K + 1− (N + 1) /2]

UN (x) = BN
N−K

(
x+ N+1

2 −K
)

= 1
N !

K∑
j=0

(−1)j
(N+1

j

) (
x+ N+1

2 − j
)N

.

Invoking the truncated power function x+, we obtain, similar to (5.7), for all
x ∈ R

UN (x) = 1
N !

N+1∑
j=0

(−1)j
(N+1

j

) (
x+ N+1

2 − j
)N

+

= 1
N !

N+1∑
j=0

(−1)N+1−j (N+1
j

) (
j − N+1

2 − x
)N

+
,

yielding U3 = B and item 2.14 for N = 3.

8.2. A probability density function (Item 2.15). In subsection 4.2 and
5.3 we have observed the following two properties of the spline B:

B (x) ≥ 0 for all x ∈ R and
∫ ∞
−∞

B (x) dx = 1.

Thus the function B qualifies as a probability density function in the
sense that we can investigate a real random variable T for which the probability
P that an observed value of T lies between a and b is given by

P (a ≤ T ≤ b) =
∫ b

a
B (T ) dT.

Let us look a little bit more into this. Note first that M1 also satisfies

M1 (x) ≥ 0 for all x ∈ R and
∫ +∞

−∞
M1 (t) dt = 1,

and thus can be interpreted as well as a probability density function of a real
random variable X1.

The convolution property (6.2) yields that B = M4 is the probability density
function of the sum Y = X1 + X2 + X3 + X4, where each independent real
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random variable Xj has the density function M1. So what kind of experiment
does this density function M1 represent, producing

P
(
−∞ < X1 ≤ −1

2

)
= 0,

P
(

1
2 ≤ X1 <∞

)
= 0,

P (a ≤ X1 ≤ b) = b− a, if [a, b] ⊂
[
−1

2 ,
1
2

]
?

In fact, when rounding, let for any x ∈ R denote r (x) ∈ Z the integer which
closest to x, i.e., using the largest integer function [[·]]:

r (x) =
[[
x+ 1

2

]]
.

This implies of course that

r (x)− x ∈
[
−1

2 ,
1
2

)
is the error when replacing the value x by its closest integer r(x), resolving item
2.15. This interpretation was given by Schoenberg in 1946 [38], but it turns
out (see [7] for a historical account) that such probability distributions were
studied by a number of people, resulting in approaches quite different from
the ones we have taken so far and which we will examine in the following.

8.3. Sommerfeld’s approach in 1904 (Items 2.16 and 2.17). Starting
from the sum

∑n
j=1Xj , where each real random variable Xj represents the

error when replacing a real number by its closest integer, Sommerfeld in 1904
[43] wanted to investigate the limit behaviour if the number n of terms goes
to infinity. We will have a look how he set out to compute the probability
density functions explicitly for the first few values of n. We will refer to the
corresponding probability density functions as Mn and follow Sommerfeld’s
approach, thus ignoring the closed formulae we are able to derive by convolu-
tion.We have already covered M1, so we can continue with M2, i.e., the sum
X1 + X2. Figure 3 is taken directly from Sommerfeld’s paper. Working in
R2 with axes x1 and x2, all possible outcomes for X1 and X2 are represented
by pairs of numbers lying in a unit square centered at the origin, i.e., Q2 =[
−1

2 ,
1
2

]
×
[
−1

2 ,
1
2

]
. All outcomes (x1, x2) resulting in the same sum x lie on

the line x1 + x2 = x . Anyway, for small dx > 0 (the negative case is handled
analogously) we are looking for the area of the region cut out of the square Q2
by the strip S (x, x+ dx) between the two lines x1+x2 = x and x1+x2 = x+dx
in the sense that

P (x ≤ X1 +X2 ≤ x+ dx) =
∫ x+dx

x
M2 (t) dt = area (Q2 ∩ S2 (x, x+ dx)) .

The width of the strip S (x, x+ dx) as the distance between the two lines
is dx/

√
2, so that

area (Q2 ∩ S2 (x, x+ dx)) = 1
2 (S2 (x) + S2 (x+ dx)) dx√

2 ,



35 About B-splines 71

u

u

X

X

S

S

u − 1

u − 1

X1

X2

V

U

g

g

O

dX

Fig. 3. M2- the piecewise linear case for X1 +X2.

where S2 (x) denotes the length of that part of the line x1 + x2 = x which lies
within the square Q2, since Q2 ∩ S2 (x, x+ dx) is a trapezoid.

We obtain therefore that

M2 (x) = lim
dx→0

1
dx

∫ x+dx

x
M2 (t) dt

= lim
dx→0

1
2 (S2 (x) + S2 (x+ dx)) 1√

2 = S2(x)√
2 .

Thus our task is now reduced to finding a formula for S2 (x). The line intersects
the square iff −1 ≤ x < 1, so S2 (x) = 0 for |x| ≥ 1: To simplify we introduce
u = 1 + x, so that we still have to investigate the case 0 ≤ u < 2. Note that u
is the distance from the corner of

(
−1

2 ,−
1
2

)
of Q2 to the point

(
x+ 1

2 ,−
1
2

)
,

where the line x1 +x2 = x intersects the line containing that side of Q2, which
originates at

(
−1

2 ,
1
2

)
and is parallel to the x1-axis (the same for

(
−1

2 , x+ 1
2

)
and the side parallel to the x2-axis).

For 0 ≤ u < 1 the point of intersection lies within Q2 and so the right trian-
gle with the vertices

(
−1

2 ,−
1
2

)
,
(
x+ 1

2 ,−
1
2

)
,
(
−1

2 , x+ 1
2

)
has a hypotenuse of

length S2 (x) and the other two sides are both of length u. Thus by Pythago-
ras, since S2 (x) is nonnegative:

(S2 (x))2 = 2u2 or S2 (x) =
√

2u =
√

2 (1 + x) for − 1 ≤ x < 0.
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For 1 ≤ u < 2 the intersection point
(
x+ 1

2 ,−
1
2

)
lies outside of Q2, so

the length of the hypotenuse
√

2u of the triangle with vertices
(
−1

2 ,−
1
2

)
,(

x+ 1
2 ,−

1
2

)
and

(
−1

2 , x+ 1
2

)
is in fact too long and we must subtract the

length of the hypotenuses of the two small right triangles, one with ver-
tices

(
−1

2 ,
1
2

)
,
(
−1

2 , x+ 1
2

)
and

(
x− 1

2 ,
1
2

)
, the other with vertices

(
1
2 ,−

1
2

)
,(

x+ 1
2 ,−

1
2

)
and

(
1
2 , x+ 1

2

)
, whose other sides have both length u − 1. This

yields

S2 (x) =
√

2u−2
√

2 (u− 1) =
√

2 ((1 + x)− 2x) =
√

2 (1− x) , for 0 ≤ x < 1,

so that we obtain, just as we should, M2 (x) = S2(x)√
2 = N (x).

We proceed now to M3 and the sum X1 +X2 +X3. Again Figure 4 is the
original one from Sommerfeld’s paper. Now the outcomes lie in the unit cube
Q3 =

[
−1

2 ,
1
2

)
×
[
−1

2 ,
1
2

)
×
[
−1

2 ,
1
2

)
and all outcomes with the same sum x on

the plane x1 +x2 +x3 = x: Arguing as before for two variables, this time with
the strip between the two planes for x and x+ dx, we find that the strip has
width dx/

√
3 and

M3 (x) = S3 (x)√
3
,

where S3 (x) is the area of the piece of the plane x1+x2+x3 = x that lies within
the cube Q3. This time we have intersection iff −3

2 ≤ x < 3
2 , so S3 (x) = 0

for |x| ≥ 3
2 . The substitution u = 3

2 + x introduces again the length of the
(now three) segments from the corner

(
−1

2 ,−
1
2 ,−

1
2

)
to the intersections of

the lines containing a side of the cube originating at this corner with the plane
x1 + x2 + x3 = x.

Fig. 4. M3 - the piecewise quadratic case for X1 +X2 +X3.
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For 0 ≤ u < 1 these intersection points
(
x+ 1,−1

2 ,−
1
2

)
,
(
−1

2 , x+ 1,−1
2

)
and

(
−1

2 ,−
1
2 , x+ 1

)
lie within the cube and S3 (x) is the area of the equilateral

triangle with these three vertices, so that its side length is
√

2u and thus

S3 (x) =
√

3
2 u

2, for 0 ≤ u < 1.

For 1 ≤ u < 2, the intersection is a hexagon, obtained from the triangle
with vertices

(
x+ 1,−1

2 ,−
1
2

)
,
(
−1

2 , x+ 1,−1
2

)
,
(
−1

2 ,−
1
2 , x+ 1

)
by removing

small equilateral triangles of length
√

2 (u− 1) at the corner, for example the
one with the vertices

(
x+ 1,−1

2 ,−
1
2

)
,
(
−1

2 , x,−
1
2

)
,
(
−1

2 ,−
1
2 , x

)
, yielding

S3 (x) =
√

3
2

(
u2 − 3 (u− 1)2

)
, for 1 ≤ u < 2.

For 2 ≤ u < 3, the intersection is again a triangle. Instead of computing
its area directly, we observe that by taking away the triangles as we did for
1 ≤ u < 2, we are now removing too much and have to add in again 3 triangles
at each corner of side length

√
2 (u− 2) to obtain

S3 (x) =
√

3
2

(
u2 − 3 (u− 1)2 + 3 (u− 2)2

)
, for 2 ≤ u < 3.

Finally, we consider M3 and the sum X1 +X2 +X3 +X4. We find

M4 (x) = S4(x)√
4 ,

where S4 (x) is the (3-dimensional) volume of the piece of the hyperplane
x1 +x2 +x3 +x4 = x that lies within the (4-dimensional) cube Q4 =

[
−1

2 ,
1
2

)4
.

With the substitution u = 2 + x, we obtain a regular tetrahedron as the
intersection for 0 ≤ u < 1, yielding

S4 (x) =
√

4
6 u

3, for 0 ≤ u < 1.

For 1 ≤ u < 2, we obtain an octahedron, resulting from cutting four small
tetrahedra at the 4 corners of the original tetrahedron, in order to get

S4 (x) =
√

4
6

(
u3 − 4 (u− 1)3

)
, for 1 ≤ u < 2.

For 2 ≤ u < 3, we still obtain an octahedron, but the four tetrahedra added
in the previous step are overlapping now. As a compensation we have to add
tetrahedra again, one for each edge of the original tetrahedron, i.e. a total of
six to obtain

S4 (x) =
√

4
6

(
u3 − 4 (u− 1)3 + 6 (u− 2)3

)
, for 2 ≤ u < 3.

Finally, for 3 ≤ u < 4 the intersection is a tetrahedron again, and we need
to take away again a tetrahedron for each face of the original tetrahedron, so
that

S4 (x) =
√

4
6

(
u3 − 4 (u− 1)3 + 6 (u− 2)3 − 4 (u− 3)3

)
, for 3 ≤ u < 4.
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A quick check shows that the function derived as M4 is indeed the originally
introduced M4 and thus B, establishing representation 2.16.

Sommerfeld was the first one (as far as I know) to present a graph of B
alias M4, together with those for M1,M2 and M3 in his original paper from
1904, which is given in Figure 5, resolving item 2.17.

Note also that the formulae given for the pieces of the function S4 are
divided differences of the truncated power functions

S4 (x) =
√

4
6 [0, 1, 2, 3, 4]t (u− t)3

+ ,

yielding also

S4 (x) =
√

4
6

(
u3 − 4 (u− 1)3 + 6 (u− 2)3 − 4 (u− 3)3 + (u− 4)3

)
=
√

4
6 [0, 1, 2, 3, 4]t (u− t)3

+
√

4
6 [0, 1, 2, 3, 4]t (u− t)3 = 0, for u ≥ 4.

We will not sketch here how Sommerfeld pursued his original goal of investi-
gating the limit behaviour, let it suffice to remark that indeed properly nor-
malized B-splines tend to Gaussian (i.e., exponential) functions, if we let the
polynomial degree go to infinity. Since Sommerfeld did not give a closed for-
mula expression for his probability density functions Mn, there were further
attempts to shed some light on this problem, which did not become so widely
known.

9. AND SOMETHING FROM NORWAY, TOO !

9.1. Brun 1932 (Item 2.18). This section is devoted to the efforts of two
Norwegian mathematicians, whose contributions and biographies are described
in [7]. The first one is V. Brun, who is also the man who rediscovered Abel’s
long lost original manuscript on transcendental functions, which Abel had
submitted to the Academy in Paris in 1826. The text was finally printed in
1841, but the original was considered lost until Brun rediscovered it in Firenze
in 1952. There were 8 pages missing, however, but that is another story, so
back to our subject.

In his paper [6] in 1932, Brun had another look at the problem of the density
functions Mn as considered by Sommerfeld. He had the idea of relating these
functions by an integral recursion corresponding to the convolution (6.5). He
then found the following representation for M1: introducing the jump function

(9.1) Q (x) = lim
λ→0+

arctan
(
x
λ

)
=


π
2 if x > 0,
0 if x = 0,
−π

2 if x < 0,

we have

∆Q (x) = Q
(
x+ 1

2

)
−Q

(
x− 1

2

)
=


π if − 1

2 < x < 1
2 ,

0 if |x| > 1
2 ,

π
2 if x = ±1

2 ,
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Fig. 5. Sommerfeld’s graphs for M1,M2,M3,M4 = B and the limit
for n→∞.

so that 1
π∆Q and M1 only differ in the two points ±1/2, which is irrelevant

for integration, yielding

1
π

∫ x+ 1
2

x− 1
2

∆Q (t) dt =
∫ x+ 1

2

x− 1
2

M1 (t) dt = M2 (x) ,

and thus by iteration

1
π

∫ x+ 1
2

x− 1
2

∫ t3+ 1
2

t3− 1
2

∫ t2+ 1
2

t2− 1
2

∆Q (t1) dt1dt2dt3 = M4 (x) ,

i.e. representation 2.18. Brun then used 1
π∆Q and the integral recursion to

establish the functionsMn in the integral form (6.6), and gave some quadrature
formulae for the integration.
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9.2. Fjelstaad 1937 (Items 2.19 and 2.20). In his paper [6], Brun stated:
Vi ser herav det h̊apløse i å fremstille ϕn (x) efter potenser av x (We see
from here how hopeless it is to represent ϕn (x) [his notation for Mn (2x)] in
powers of x). According to the introduction in [23], this spurred on another
Norwegian, J. E. Fjelstaad, to derive in fact such a representation from the
integral form (6.6), bringing us to the end of our cubic B-spline tour.

Replacing x by x/2 we obtain from (6.6)

Mn
(
x
2
)

= 1
π

∫ +∞

0

(
sin( ω

2 )
ω
2

)n
cos

(
xω
2
)
dω

= 2
π

∫ +∞

0

(
sin(ω)
ω

)n
cos (xω) dω.

Integration by parts yields then formula

1
3!

∫ +∞

0
e−uωu3du = 1

ω4 ,

so we obtain the double integral formula

M4
(
x
2
)

= 2
3!π

∫ +∞

0

(∫ +∞

0
e−uωu3du

)
sin4 ω cos (xω) dω

= 2
3!π

∫ +∞

0
u3
(∫ +∞

0
e−uω sin4 ω cos (xω) dω

)
du.

We compute that for the integral

I4 =
∫ +∞

0
e−(u−ix)ω sin4 ωdω

we have

Re I4 =
∫ +∞

0
e−uω sin4 ω cos (xω) dω.

One integration by parts yields

I4 = 4·3
42+(u−ix)2

∫ +∞

0
e−(u−ix)ω sin2 ωdω

and yet another one

I4 = 4·3
42+(u−ix)2

2·1
22+(u−ix)2

∫ +∞

0
e−(u−ix)ωdω

= 4
(42+(u−ix)2)(22+(u−ix)2)(u−ix) .

Thus we obtain

M4
(
x
2
)

= 8
π Re

∫ +∞

0
u3

(42+(u−ix)2)(22+(u−ix)2)(u−ix)du,

establishing item 2.19.
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From here we want to proceed by using partial fractions. The zeros in the
denominator are i (x+ 4− 2k), k = 0, 1, 2, 3, 4 and we have

u3

(42+(u−ix)2)(22+(u−ix)2)(u−ix) =
4∑

k=0

Ak
u−i(x+4−2k) ,

where the factors Ak can be computed to be

Ak = i3(x+4−2k)3

4∏
p=0,p 6=k

(i(4−2k)−i(4−2p))
= −i (x+4−2k)3

4∏
p=0,p6=k

(2(p−k))
= −i (x+4−2k)3

(−1)p24k!(4−k)! .

Since
4∑

k=0

Ak
u−i(x+4−2k) =

4∑
k=0

Ak(u+i(x+4−2k))
u2+(x+4−2k)2 ,

we have

Re
4∑

k=0

Ak
u−i(x+4−2k) =

4∑
k=0

(x+4−2k)3

(−1)p24k!(4−k)!
(x+4−2k)

u2+(x+4−2k)2 .

Integration from 0 to z yields∫ z

0
Re

4∑
k=0

Ak
u−i(x+4−2k)du =

4∑
k=0

(x+4−2k)3

(−1)k24k!(4−k)!
arctan

(
2

x+4−2k

)
.

Earlier we have already used limit properties of arctan in (9.1), here we see
that

lim
z→∞

arctan
(

z
x+4−2k

)
=
{ π

2 , if x+ 4− 2k > 0,
−π

2 , if x+ 4− 2k < 0,
so we finally establish

Re
∫ +∞

0

4∑
k=0

Ak
u−i(x+4−2k)du =

= π
25

4∑
k=0

|x+4−2k|3

(−1)kk!(4−k)!
= π

254!

4∑
k=0

(−1)k
(4
k

)
|x+ 4− 2k|3

and

M4
(
x
2
)

= 1
3!

1
24

4∑
k=0

(−1)k
(4
k

)
|x+ 4− 2k|3

or

M4 (x) = 1
3!

1
24

4∑
k=0

(−1)k
(4
k

)
|2x+ 4− 2k|3 = 1

3!
1
2

4∑
k=0

(−1)k
(4
k

)
|x+ 2− k|3 ,

establishing item 2.20. In the general case - which is of course the one con-
sidered in [23], the signum function appears for odd polynomial orders (even
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degrees) in the sense that

Mn (x) = 1
(n−1)!

1
2

n∑
k=0

(−1)k
(n
k

) ∣∣x+ n
2 − k

∣∣n−1 sign
(
x+ n

2 − k
)n
.

10. AN OUTLOOK

A good way to wrap up our treatment now is to consider the general def-
inition of a B-spline of arbitrary degree and make some comments in light
of the 20 representations we have covered. For a more detailed introduction
with examples and references I would like to refer to a recent tutorial [33],
standard spline monographs such as [3], [42] and for the cardinal setting [40],
and specifically for CAGD [22], [28].

Schoenberg wrote his book [40] mainly about interpolation of infinite data
by spline series of the form (4.1) for arbitrary polynomial degree. Still, in
practical applications we regularly need to address situations with finitely
many data points given over some finite interval, introducing the nontrivial
problem of handling boundaries.

At first, let us check that divided differences can be defined recursively not
just for simple distinct knots, but also for coalescing knots in the following
way.

Definition 10.1. (Divided differences) Provided that a function f is
smooth enough so that all occurring derivatives are defined, the divided
difference of order ` for the function f in the points tk ≤ . . . ≤
tk+` is defined recursively as

[tk] f = f (tk) , for ` = 0

and

[tk, . . . , tk+`] f =


[tk+1,...,tk+`]f−[tk,...,tk+`−1]f

tk+`−tk , if tk < tk+`,
f (`)(tk)

`! , if tk = · · · = tk+`,
for ` ≥ 1 .

We now start from a knot sequence t of non-decreasing knots tk, which will
serve as the breakpoints for the polynomial pieces

t : · · · ≤ tk ≤ tk+1 ≤ · · ·

To define B(asis)-splines of a given degree d ≥ 0, we need at least d + 1
knots and tk < tk+d+1 for all possible k to avoid functions identically zero.

Definition 10.2. (B-spline) For a given knot sequence t the k-th
B-spline of degree d is defined as the divided difference with respect to y of
the truncated power function (y − x)d+ in the knots tk, . . . , tk+d+1, multiplied
by the distance of the last and first knot in this subsequence, i.e.,

Bk,d,t (x) = Bk,d (x) = (tk+d+1 − tk) [tk, . . . , tk+d+1]y (y − x)d+ .



43 About B-splines 79

At this point we have to say a bit more about knot sequences. There are
two main settings. One is a biinfinite sequence of simple knots tk, k ∈ Z,
with the most common example being the integers. For this cardinal setting
tC : tk = k, we have of course

B−2,tC ,3 (x) = M (x| − 2,−1, 0, 1, 2)
= M4 (x) = 4 [−2,−1, 0, 1, 2, ]t (t− x)3

+ = B (x)
The other main setting is a finite knot sequence for a closed and bounded
interval [a, b], typically a standard so-called (d + 1)-regular knot sequence
where, with n ≥ d+ 1,

t : t1 ≤ t2 ≤ · · · ≤ tn+d ≤ tn+d+1,

where tk < tk+d+1, k = 1, . . . , n,
i.e., the maximum multiplicity of any given knots is d+ 1
t1 = t1 = · · · = td+1 = 0,
tn+1 = tn+2 = · · · = tn+d+1 = b,

i.e., the multiplicity of the endpoints is exactly d+ 1.
It must be strongly emphasized – although here we have mostly looked at
just one spline function B – that it is the set of all B-splines over a knot
sequence that is needed in applications, such as manipulating a curve or solving
a differential equation by collocation.

Based on Leibniz’ formula for divided differences

[tj , tj+1, · · · , tj+k] (g · h) =
j+k∑
`=j

([tj , · · · , tj+`] g) ([tj+`, · · · , tj+k]h) .

one can establish a general recursion for B-splines (see item 2.4). With the
B-splines of the initial level d = 0, i.e., piecewise constants, defined as

Bk,0 (x) =
{

1, if x ∈ [tk, tk+1)
0, if x /∈ [tk, tx+1)

we have the following recursion for d ≥ 1

(10.1) Bk,t,d (x) = x−tk
tk+d−tkBk,t,d−1 (x) + tk+d+1−x

tk+d+1−tk+1
Bk+1,t,d−1 (x)

and thus triangular schemes for the evaluation of splines of the form

(10.2)
∑
k

ckBk,t,d (x)

analogous to the one introduced in subsection 3.6.
The continuity of a function of the form (10.2) is more tricky to describe. If

all knots are simple, the polynomial pieces are glued together with continuity
d− 1. For a multiple knot, i.e., a number which occurs repeatedly in the knot
sequence, the continuity in this breakpoint is reduced by the multiplicity of
the knot. For a more detailed discussion see [33]. The flexibility of different
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orders of smoothness in different breakpoints is especially important in curve
design for CAD/CAM.

The divided difference formulation (see item 2.5) shows that each B-spline
is a piecewise polynomial as a linear combination of truncated powers. One
can establish by induction, using the recursion (10.1), that

supBk,t,d = [tk, tk+d+1] and Bk.t,d > 0 for x ∈ (tk, tk+d+1) .
Using Peano’s theorem as in item 2.7, we can derive that the integral of a
B-spline is given as ∫ ∞

−∞
Bk,t,d (x) dx = tk+d+1−tk

d+1

Note that the normalization factor in the B-spline definition is chosen to
achieve a partition of unity, and we must change it to d + 1 to get spline
functions that qualify as probability density functions (item 2.15). Only in
the cardinal case we get both properties at the same time.

As for item 2.2, we can show the basis property of the set of B-splines,
namely that all piecewise polynomials of degree d, with smoothness in the
breakpoints prescribed by the knot multiplicities, can be written in the form
(10.2). This allows us also to show that the B-splines have smallest support
under the given smoothness requirements. Also as in item 2.2, we can de-
rive that the monomials can be represented as sums of the form (10.2), with
coefficients given in terms of symmetric functions. Specifically, one gets that
the B-splines form a partition of unity. The necessary general tool to show
polynomial representation is the so-called Marsden identity [31].

General multivariate splines are often defined by considering polynomi-
als pieces over polyhedral domains (in two dimensions typically triangles or
quadrilaterals) and gluing these pieces together at common facets with a given
order of smoothness [10], [4]. The geometric interpretation in item 2.18 is con-
sidered as the starting point for the investigation of so-called box splines [4]
as multivariate piecewise polynomials, see Chapter 4 of [32] for a historical
account including some reprints of Schoenberg’s letters from the early days.

Alternatively to the approach of gluing polynomial pieces, an extremal prop-
erty generalizing (3.11) from item 2.1 has been used to define multivariate
spline functions as those functions interpolating given data in some points
and minimizing among all such interpolants an integral expression involving
second order derivatives. These so-called thin-plate splines, introduced by
Duchon [17], however, are no longer piecewise polynomials for higher dimen-
sions. For introductions to this subject see for example [18], [19].

Another really interesting topic, related to item 2.1, is the placing of inter-
polation conditions in some x-values, called nodes, which do not necessarily
coincide with any knots (breakpoints), such that we have a unique interpolant
for a given spline space. The fundamental result stems from [41] for Lagrange
interpolation, was extended to Hermite and other settings in [29], and is also
related to Green’s functions as touched upon in item 2.6 [30]. The Schoenberg-
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Whitney theorem says that for a given B-spline basis, the evaluation matrix
needed for interpolation is non-singular if and only if its entries on the main
diagonal are positive, meaning that the value of the k-th B-spline in the k-th
interpolation node is positive. I will not even think of going into details here,
such as totally positive matrices, variation diminishing splines, etc., etc.

Your mission, if you decide to accept it, is to find out much more about
splines and their applications. Good Luck !
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Ordinaten, Z. f. Math. u. Phys. 46 (1901), pp. 224–243.

[36] M.A. Sabin, The use of piecewise forms for the numerical representation of shape,
Dissertation, Hungarian Academy of Sciences, 1977.

[37] M.A. Sabin, Subdivision of box-splines; Eigenanalysis and artifacts of subdivision
curves and surfaces, in Tutorials on Multiresolution in Geometric Modelling, A. Iske,
E. Quak, and M. S. Floater (eds.), Springer, Heidelberg, 2002, pp. 3–23, pp. 69–92.

[38] I.J. Schoenberg, Contributions to the problem of approximation of equidistant data
by analytic functions, Part A: On the problem of smoothing or graduation. A first class
of analytic approximation formulae. Part B: On the second problem of osculatory in-
terpolation. A second class of analytic approximation formulae. Quart. Appl. Math. 4
(1946), pp. 45–99 and pp. 112–141.

[39] I.J. Schoenberg, On spline functions, in Inequalities I, O. Shisha (ed.), Academic
Press, New York, 1967.

[40] I.J. Schoenberg, Cardinal Spline Interpolation, CBMS 12, SIAM, Philadelphia,
1973.

[41] I.J. Schoenberg, and A. Whitney, On Pólya frequency functions III. The positivity
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