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THE SECOND ZOLOTAREV CASE IN THE ERDÖS-SZEGÖ SOLUTION
TO A MARKOV-TYPE EXTREMAL PROBLEM OF SCHUR

HEINZ-JOACHIM RACK†

Abstract. Schur’s [21] Markov-type extremal problem is to determine (i) Mn =
sup−1≤ξ≤1 supPn∈Bn,ξ,2 (|P (1)

n (ξ)|/n2), where Bn,ξ,2 = {Pn ∈ Bn : P (2)
n (ξ) =

0} ⊂ Bn = {Pn : |Pn(x)| ≤ 1 for |x| ≤ 1} and Pn is an algebraic polynomial of
degree ≤ n. Erdös and Szegö [4] found that for n ≥ 4 this maximum is attained if
ξ = ±1 and Pn ∈ Bn,±1,2 is a (unspecified) member of the one-parameter family
of hard-core Zolotarev polynomials. An extremal such polynomial as well as the
constant Mn we have explicitly specified for n = 4 in [18], and in this paper we
strive to obtain an analogous amendment to the Erdös - Szegö solution for n = 5.
The cases n > 5 still remain arcane. Our approach is based on the quite recently
discovered explicit algebraic power form representation [6], [7] of the quintic
hard-core Zolotarev polynomial, Z5,t, to which we add here explicit descriptions
of its critical points, the explicit form of Pell’s (aka: Abel’s) equation, as well as
an alternative proof for the range of the parameter, t. The optimal t = t∗ which
yields M5 = |Z(1)

5,t∗ (1)|/25 we identify as the negative zero with smallest modulus
of a minimal P10. We then turn to an extension of (i), to higher derivatives
as proposed by Shadrin [23], and we provide an analogous solution for n = 5.
Finally, we describe, again for n = 5, two new algebraic approaches towards a
solution to Zolotarev’s so-called first problem [2], [25] which was originally solved
by means of elliptic functions.
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1. INTRODUCTION

The famous A.A. Markov inequality of 1889 [12] asks for an estimate on the
size of the first derivative |P (1)

n (x)| of an algebraic polynomial Pn of degree
≤ n when x varies in the unit interval I := [−1, 1] and Pn varies in the unit
ball Bn := {Pn : |Pn(x)| ≤ 1 for x ∈ I}, see also G.V. Milovanović et al. [15,
p. 529], Th.J. Rivlin [19, p. 123]. Markov showed that |P (1)

n (x)|/n2 ≤ 1 holds
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and equality will be attained only for x = ±1 and for Pn = ±Tn (Chebyshev
polynomial of the first kind relative to I), defined by

(1) Tn(x) := 2xTn−1(x)− Tn−2(x), with T1(x) = x, T0(x) = 1.

In 1919 I. Schur [21, § 2], inspired by Markov’s problem, was led to the prob-
lem of finding the maximum of |P (1)

n (ξ)|/n2 under the additional restriction
P

(2)
n (ξ) = 0 where ξ ∈ I is a given number.
In 1942 P. Erdös and G. Szegö addressed Schur’s problem and they showed

in [4, Th. 2] that under the said restriction the value |P (1)
n (ξ)|/n2, n ≥ 4, will

attain the maximum, Mn, only if ξ = ±1 and Pn ∈ Bn coincides with an
n-th degree proper Zolotarev polynomial relative to I. Such a polynomial is,
for each n, a member of some one-parameter family of polynomials and an
extremal one among that family was therefore coined Schur polynomial by F.
Peherstorfer and K. Schiefermayr [16, Section 5d], see Section 3 for details.

Although both solutions to the stated problems have in common that the
maximum is attained at the endpoints ±1 of I, they differ greatly when it
comes to exhibit an explicit extremal polynomial from Bn: The algebraic
power form representation of an extremizer ±Tn in Markov’ problem is ex-
plicitly known [19]. On the contrary, a (parameterized) algebraic power form
representation of a proper Zolotarev polynomial is not known for a general n,
nor is the optimal parameter known which singles out the Schur polynomial.
Rather, proper Zolotarev polynomials are usually expressed by means of ellip-
tic functions (see N. I. Achieser [1, p. 280], B. C. Carlson and J. Todd [2], [15,
p. 407], E. I. Zolotarev [25]), a presentation form which is considered as very
complicated [2].

The purpose of this note is threefold: To describe, for n = 5, in more detail
the Erdös-Szegö solution [4] to Schur’s problem, the A. Shadrin solution [23]
to the generalized Schur’s problem, and to provide new algebraic solutions to
Zolotarev’s so-called first problem [2], [25]. To this end, we take advantage of
a quite recently published explicit (parameterized) power form representation
of the proper quintic Zolotarev polynomial [6], [7].

In Section 2 we introduce the (parameterized) proper Zolotarev polynomial
and in particular the said novel power form representation for the degree n = 5
due to G. Grasegger and N. Th. Vo. As a supplement to their result we provide
explicit formulas for its critical points (to be defined below), the explicit form
of Pell’s (aka: Abel’s) equation and an alternative proof for the range of its
parameter.

In Section 3 we turn to the Erdös-Szegö solution [4] of Schur’s problem for
n = 5. The optimal parameter of the Schur polynomial we describe as a zero
of a dedicated P10. From this we deduce numerical approximations for the
coefficients of the Schur polynomial as well as for the sought-for constant M5.

In Section 4 we consider a generalization of Schur’s problem due to Shadrin
[23]. It is based on V. A. Markov’s inequality of 1892 [13] for the higher
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derivatives of Pn. Again we will exemplify the degree n = 5, now making use
of Proposition 4.4 in [23].

In Section 5 we describe, taking recourse to results from Section 2, two new
algebraic approaches to Zolotarev’s first problem of 1877 [2], [25] (for n = 5)
which asks to determine a Pn, with prescribed values for its first and second
leading coefficient, that deviates least (in the uniform norm) from the zero
function in I.

The explicit quartic Schur polynomial (first Zolotarev case, see [18]) and
the here introduced approximate quintic Schur polynomial (second Zolotarev
case), may well serve as illustrating instances of the result in [4, Th. 2], which
is referred to in S. R. Finch’s book [5, Section 3.9].

2. THE QUINTIC HARD-CORE ZOLOTAREV POLYNOMIAL

We distinguish between the hard-core or proper Zolotarev polynomial in-
troduced in this Section, and the improper Zolotarev polynomial which will
be introduced in Section 4, see also [1], [2], [4], [15], [23], [25].

According to [4, p. 453], [23, p. 1190], a proper Zolotarev polynomial belongs
to Bn, is of exact degree n, and equioscillates n times in I. The equioscillation
points −1 ≤ z0 < z1 < z2 < ... < zn−2 < zn−1 ≤ 1, at which the values
±1 are attained alternately, include both endpoints of I, that is, −1 = z0
and zn−1 = 1. To be compliant with [4], we assume that at the endpoint
−1 = z0 the value (−1)n−1 is attained. Thus a proper Zolotarev polynomial
has n − 1 roots in the interior of I, and it is furthermore required that it
has one additional root outside of I, and we assume, again following [4], that
this root is to the right of I. According to the quoted references above, it is
more specifically required that there exist three points An, Bn and Cn with
1 < An < Bn < Cn, which we call Zolotarev points, having the property that
the proper Zolotarev polynomial of degree n attains the value 1 at x = Bn
and the value −1 at x = Cn (so that its n-th root is sandwiched between Bn
and Cn) and that its first derivative vanishes at x = An.

But all these stated requirements do not uniquely determine a polynomial
of degree n; rather, there are infinitely many polynomials which fulfill these
conditions. Therefore we will denote a proper Zolotarev polynomial of degree
n by Zn,t. The additional parameter t indicates that the coefficients of Zn,t
are not constant but vary with t, which in turn varies in some interval of R
(which may be different for different n’s). The equioscillation points of Zn,t in
the interior of I also depend on t, so that we will denote them more precisely
by z1(t) < z2(t) < ... < zn−2(t), and the Zolotarev points An < Bn < Cn we
will likewise denote more precisely by An(t) < Bn(t) < Cn(t). These n + 1
parameterized points on the x-axis which characterize Zn,t (together with the
identities Zn,t(−1) = (−1)n−1 and Zn,t(1) = 1) will be called the critical
points of Zn,t. Besides Zn,t, the polynomials −Zn,t as well as ±Qn,t, where
Qn,t(x) = Zn,t(−x), are also considered as proper Zolotarev polynomials.
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When trying to represent Zn,t in the usual (parameterized) algebraic power
form as a linear combination of monomials,

(2) Zn,t(x) =
n∑
i=0

ai(t)xi,

one encounters severe difficulties. According to [11, p. 932], A. A. Markov
himself tried to find an algebraic solution, but he was not fully successful,
because an algebraic solution requires an amazing amount of calculations. To
the best of our knowledge, the current situation concerning the algebraic power
form representation of hardcore Zolotarev polynomials relative to I can be
delineated as follows:

n = 2: An algebraic representation is readily found, e.g., Z2,t(x) =
1+2tx−x2

2t , t > 1, see also [2, pp. 2]. But it is unexpectedly complicated to
derive it from the elliptic representation, see [2, pp. 11].

n = 3: The task to determine Z3,t is posed as a problem in [19, p. 94].
A solution has been provided by several authors and is given by Z3,t(x) =
−1+4t2+t4−4tx−2(−1+3t2)x2+4tx3

(−1+t2)2 , where −1
3 < t < 0; see also [2, pp. 4].

n = 4: Algebraic representations have been provided by the present author
[17, p. 357] and by Shadrin [22, p. 242], and can be traced back to a result
of V. A. Markov [13, p. 73], which is not contained in the abridged German
translation [14] of [13], see [18] for details.

According to [23, p. 1185], there is no explicit expression for (proper)
Zolotarev polynomials of degree n > 4. But only quite recently it was claimed
by Grasegger and Vo [6] that such an expression has been obtained for 5 ≤
n ≤ 6 by making use of symbolic computation (they also treat n ≤ 4). We
focus here on the representation for the degree n = 5 in [6] and may leave
aside the degree n = 6, see Remark 9 below. In order to be compliant with
the assumptions made about Zn,t, we transform the term y(x) ≡ y5,t(x) as
given in [6, p. 12] to Y5,t(x) := −y(−x). In this way we get

(3) Y5,t(x) :=
5∑
i=0

ai(t)xi,

where the parameterized coefficients ai(t) are defined as follows:

a0(t) := κ(1 + 10t+ 17t2 − 56t3 − 174t4 − 500t5 − 966t6(4)
+1128t7 + 6221t8 + 8122t9 + 2581t10)

a1(t) := −8κ
√

2t5v3
1(1 + 2t+ 5t2)(−1− 2t+ 11t2)(5)

a2(t) := −4κ(−1 + 5t2)(−2− 17t− 21t2 + 43t3 + 83t4(6)
+237t5 + 625t6 + 825t7 + 275t8)
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a3(t) := 8κ
√

2t5v3
1(−3− 10t+ 6t2 + 40t3 + 85t4 + 10t5)(7)

a4(t) := 8κ(1 + t)3(1− 5t2)2(1 + 5t− 5t2 + 15t3)(8)
a5(t) := −16κ

√
2(1 + t)4v1(t− 5t3)2,(9)

with

(10) κ := κ(t) = 1
(−1+t)6(1+3t)4 and v1 := v1(t) =

√
(1+t)(−1+5t2)

t3 .

It is readily verified that for certain values of the parameter t the monomial
representation Y5,t is not defined (e.g., for t = 1), is complex-valued (e.g., for
t = −0.5), or does not belong to B5 (e.g., for t = 2 (and x = 0)). In order that
Y5,t should represent a quintic hard-core Zolotarev polynomial, it is therefore
mandatory to appropriately restrict the range of the parameter t. This need we
have communicated to one of the authors of [6], and in [7] Grasegger was able
to provide the maximal range for the parameter t appearing in y(x) ≡ y5,t(x),
respectively in Y5,t. We concede that an explicit algebraic power form repre-
sentation of the quintic hard-core Zolotarev polynomial constitutes a major
breakthrough in the long history of these intricate polynomials.

Proposition 1. (see [6], [7]). The (parameterized) algebraic power form
of the quintic hard-core Zolotarev polynomial on I, Z5,t, coincides with that of
Y5,t as given in (3)-(10), provided the parameter t belongs to the open interval

(11) J5 := (t◦, 0), where t◦ := − tan2( π10) = 2√
5 − 1 = −0.1055728090... .

From now on we will identify Z5,t with Y5,t but will assume that the param-
eter t belongs to J5. Below we will provide an alternative proof for the range
(11) of t. The algebraic power form representation of y(x) ≡ y5,t(x) in [6], [7]
does not include the determination of the critical points, a goal which we are
now going to address for Z5,t. To begin with, it is readily verified that there
holds
(12) Z5,t(−1) = Z5,t(1) = 1.
We first turn to the determination of the three equioscillation points of Z5,t

in the interior of I. The equation Z
(1)
5,t (x) = 0 in the variable x, which is

equivalent to

−
√

2t5(1 + 2t+ 5t2)(−1− 2t+ 11t2)v3
1 − (−1 + 5t2)×(13)

×(−2− 17t− 21t2 + 43t3 + 83t4 + 237t5 + 625t6 + 825t7 + 275t8)x+
+3
√

2t5v3
1(−3− 10t+ 6t2 + 40t3 + 85t4 + 10t5)x2 +

+4(1 + t)3(1− 5t2)2(1 + 5t− 5t2 + 15t3)x3 −
−10
√

2(1 + t)4(t− 5t3)2v1x
4 = 0,

(with v1 from (10)) we have solved with a symbolic mathematical computation
program (Mathematica™, version 10, symbol Solve). It renders in particular
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the following three solutions x1, x2, x3, as can be verified by inserting them
backwards into the left hand side of (13):

x1 := x1(t) = v2−v3−
√
v4+v5

10
√

2 ,(14)

x2 := x2(t) = v2+v3−
√
v4−v5

10
√

2 ,(15)

x3 := x3(t) = v2−v3+
√
v4+v5

10
√

2 ,(16)

where
v2 := v2(t) = 3−2t−5t2

t3v1
+ 3(1+t2)v1

(1+t)2 ,(17)
with v1 according to (10),

v3 := v3(t) =
√

(1+5t2(1+2t))2

t(1+t)3(−1+5t2) ,(18)

v4 := v4(t) = 175− 2
t −

68
(1+t)3 + 82

(1+t)2 − 148
1+t + 25(−1+5t)

−1+5t2 ,(19)

v5 := v5(t) = 2t(1+5t(2+t))2v1v3
(1+t)2(1+5t2(1+2t)) .(20)

Plugging these zeros of Z(1)
5,t into the initial function Z5,t gives Z5,t(x1) =

−1, Z5,t(x2) = 1 and Z5,t(x3) = −1. Thus x1, x2, x3 behave like the three
ordered equioscillation points zi(t), i = 1, 2, 3, of Z5,t in the interior of I. And
in fact they coincide with the zi(t)’s since there is no other choice left: From
the requirements which Z5,t must fulfill we know that we have

Z5,t(x) = −1 only if x ∈ {z1(t), z3(t), C5(t)},(21)
Z5,t(x) = 1 only if x ∈ {−1, z2(t), 1, B5(t)},(22)
Z

(1)
5,t (x) = 0 only if x ∈ {z1(t), z2(t), z3(t), A5(t)}.(23)

Consider first x1 with property Z5,t(x1) = −1 and Z(1)
5,t (x1) = 0. Consequently,

in view of (21) and (23), x1 ∈ {z1(t), z3(t), C5(t)} ∩ {z1(t), z2(t), z3(t), A5(t)},
which implies x1 ∈ {z1(t), z3(t)}. Analogously we get x3 ∈ {z1(t), z3(t)} and
obviously x1 6= x3 holds as can be seen by evaluating x1 = x1(t) and x3 = x3(t)
at t = −0.1 ∈ J5, for example. Hence either x1 = z1(t) and x3 = z3(t) with
x1 < x3 or x3 = z1(t) and x1 = z3(t) with x3 < x1. But the latter inequality
cannot occur as can be seen by evaluating x1 = x1(t) and x3 = x3(t) at
t = −0.1, for example. Hence we have x1 = z1(t) < x3 = z3(t). Consider
next x2 = x2(t) with property Z5,t(x2) = 1 and Z

(1)
5,t (x2) = 0. Consequently,

in view of (22) and (23), x2 ∈ {−1, z2(t), 1, B5(t)} ∩ {z1(t), z2(t), z3(t), A5(t)},
which implies x2 = z2(t). Hence we have as claimed
(24) x1 = z1(t) < x2 = z2(t) < x3 = z3(t).
We now turn to the determination of the three Zolotarev points A5(t) <
B5(t) < C5(t) of Z5,t , where 1 < A5(t). It is tempting to determine B5(t)
and C5(t) as solutions of the polynomial equations Z5,t(x) ± 1 = 0 with the
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aid of a symbolic computation program. This approach, however, leads to
complex-valued solutions. We therefore proceed as follows:

According to [16, Formula (5.11)], the numbers B5(t) and C5(t) satisfy a
set of four equations of which the first two of these read (using the shorthand
zi = zi(t), i = 1, 2, 3)

2(−z1 + z2 − z3) +B5(t) = C5(t)(25)
2 + 2(−z2

1 + z2
2 − z2

3) +B5(t)2 = C5(t)2,(26)
from which B5(t) and C5(t) can be recovered by substitution:

(27)
B5(t) = 1

2

(
z1 − z2 + 3z3 + −1+2z1(z1−z2)

z1−z2+z3

)
=

= 1
10
√

2(3v2 − 2v3 + 2
√
v4 − v5)

and

(28)
C5(t) = −1+z2

1+3z2
2−4z2z3+z2

3+4z1(−z2+z3)
2(z1−z2+z3) =

= 1
10
√

2(1+t(5+t(−5+4v1v3+t(15+4v1v3)))
t2(1+t)v1

).

The value of A5(t) we deduce from Formula (5.21) in [16] where A5(t) is
expressed with the aid of B5(t) and C5(t):

(29) A5(t) = 1
5(2B5(t) + 2C5(t)− z1 − z2 − z3) = −2−z2

2+(z1−z3)2

5(z1−z2+z3) =
= 1

10
√

2(v2 + v3 +
√
v4 − v5).

The employed terms v1, v2, v3, v4, v5 above have been defined in (10), (17)-
(20). Virtually for any parameter t ∈ J5 one is now able to determine Z5,t (by
calculating its six coefficients (4)-(9)) as well as its six critical points given in
(14)-(16) (identifying there xi = zi(t), i = 1, 2, 3) and in (27)-(29). The knowl-
edge of these points allows one to calculate Z5,t in alternative fashions, for
example, by means of interpolation formulas since the values of Z5,t at those
points (and at z0, z4) are known. A particular alternative form to represent
Z5,t (t ∈ J5) can be deduced from [20, Lemma 1]. It is a concrete implementa-
tion of the expression as given in [20] since we know the critical points which
enter into this expression:

(30) Z5,t(x) = 1− 2(x2 − 1)(x−B5(t))(x− z2(t))2

(d2 − 1)(d−B5(t))(d− z2(t))2 , with d := C5(t).

The knowledge of the Zolotarev points allows to provide a concrete imple-
mentation of the famous Pell’s equation (aka: Abel’s equation) for hard-core
Zolotarev polynomials (see [20, p. 149], [24, p. 2486]), stated here for n = 5:

(31) (Z5,t(x))2 − (x2 − 1)(x−B5(t))(x− C5(t))
(

Z
(1)
5,t (x)

5(x−A5(t))

)2
= 1.

Summarizing we get
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Proposition 2. At the four points −1 = z0 < z2(t) < z4 = 1 < B5(t)
the polynomial Z5,t attains the value 1, whereas at the three points z1(t) <
z3(t) < C5(t) it attains the value −1. The first derivative of Z5,t with respect
to x vanishes at the four points z1(t) < z2(t) < z3(t) < A5(t). There holds
1 < A5(t) < B5(t) < C5(t), so that |Z5,t(x)| ≤ 1 only for x ∈ I∪ [B5(t), C5(t)].
The six critical points of Z5,t are explicitly determined by (14)-(16) (identifying
there xi = zi(t), i = 1, 2, 3) and by (27)–(29). Pell’s (aka: Abel’s) equation for
the quintic hard-core Zolotarev polynomial is given in (31), with x ∈ I, t ∈ J5.

An alternative proof, compared to the one given in [7], for the maximal
range J5 in (11) of the parameter t of Z5,t can now be had as follows: We let
A5(t) ∈ (1,∞) tend first towards 1 and then towards infinity and study the
limiting behavior of t. Solving A5(t) = 1 numerically, we obtain the solutions
t = −0.1055728090... and t = 1, of which the latter drops out because Z5,1
is not defined. The former one, evaluated to high precision, is readily seen
(e.g., by applying Mathematica™’s RootApproximant - symbol) to be identical
to the irrational number t◦. And indeed A5(t◦) = 1 holds as is verified by
insertion. Thus, t → t◦ from the right. Employing Mathematica™’s Limit
- symbol would have produced the same finding. If A5(t) → ∞, then also
B5(t) → ∞ as well as C5(t) → ∞ since 1 < A5(t) < B5(t) < C5(t). To guess
for which parameter t the expression C5(t) becomes infinite, we numerically
solve the equation C5(t)− 10n = 0 for t and various large values of n and get,
approximately, t = −5

410−2n−1. This indicates that for t→ 0 from the left the
value C5(t) will tend to infinity. And this is indeed the case as can be seen
from the power series expansion of C5(t) about the point t = 0:

(32) C5(t) = 3i
10
√

2
√
t
− 19i

√
t

20
√

2 + 73it3/2

16
√

2 −
167it5/2

32
√

2 + 3869it7/2

256
√

2 +O(t)9/2.

Employing Mathematica™’s Limit - symbol would have produced the same
finding. This completes our alternative proof for the maximal range J5 of
the parameter t of Z5,t. We leave it to the reader to verify that when t

is approaching the limits of J5, then Z5,t(x) will transform into −T5(x+t◦
1−t◦ )

respectively into T4(x), see also [4, p. 456] and Section 4 below.
Subsequently we shall need the values of the first four derivatives of Z5,t

evaluated at the point x = z4 = 1. We provide them here for the reader’s
convenience:

Z
(1)
5,t (1) =− 8κ(−1 + t)3(−1 + 5t2)(−2− 21t+ 2t2(−34 +

√
2v1)+(33)

+ 6t3(−15 + 2
√

2v1) + 10t4(−5 + 3
√

2v1)+
+ 5t5(−5 + 4

√
2v1)),

Z
(2)
5,t (1) =8κ(−40

√
2(1 + t)4(t− 5t3)2v1+(34)

+ 12(1 + t)3(1− 5t2)2(1 + 5t− 5t2 + 15t3)+
+ 6
√

2t5v3
1(−3− 10t+ 6t2 + 40t3 + 85t4 + 10t5)−
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− (−1 + 5t2)(−2− 17t− 21t2 + 43t3 + 83t4 + 237t5+
+ 625t6 + 825t7 + 275t8)),

Z
(3)
5,t (1) =48κ(−20

√
2(1 + t)4(t− 5t3)2v1+(35)

+ 4(1 + t)3(1− 5t2)2(1 + 5t− 5t2 + 15t3)+
+
√

2t5v3
1(−3− 10t+ 6t2 + 40t3 + 85t4 + 10t5)),

Z
(4)
5,t (1) =192κ(1 + t)3(−10

√
2(1 + t)(t− 5t3)2v1+(36)

+ (1− 5t2)2(1 + 5t− 5t2 + 15t3)),
with κ and v1 according to (10).

3. THE QUINTIC SCHUR POLYNOMIAL

A. A. Markov’s inequality [12] asserts an estimate on |P (1)
n (x)| and can be

restated as

(37) sup
x∈I

sup
Pn∈Bn

|P (1)
n (x)|
n2 = 1.

This maximum will be attained if, up to the sign, x = 1 and Pn = Tn ∈ Bn.
Schur [21, § 2], considered the related extremal problem under the additional
condition P

(2)
n (ξ) = 0, where ξ ∈ I is given:

Determine ξ ∈ I and Pn ∈ Bn for which

(38) Mn := sup
ξ∈I

sup
Pn∈Bn,ξ,2

|P (1)
n (ξ)|
n2 ,

is attained, where
(39) Bn,ξ,2 = {Pn ∈ Bn : P (2)

n (ξ) = 0}.
Erdös and Szegö provided the following solution in terms of the hard-core
Zolotarev polynomial Zn,t [4, Th. 2]:

Let n ≥ 4. The maximum (38) will be attained only if ξ = 1 and Pn = ±Zn,t
or if ξ = −1 and Pn = ±Qn,t (where Qn,t(x) = Zn,t(−x)). For n = 3 the
maximum (38) will be attained only if ξ = 0 and P3 = ±T3.

For a general polynomial degree n the coefficients ai(t) of Zn,t and the opti-
mal parameter t = t∗ for which the corresponding Zn,t∗ attains the maximum
in (38), as well as the value Mn itself, remain arcane. However, as for the first
Zolotarev case, n = 4, we have shed some new light on the above Erdös-Szegö
solution by providing explicit analytical expressions for the value M4 as well
as for the optimal parameter t = t∗, and hence for the extremal coefficients
ai(t∗), i = 0, 1, 2, 3, 4, of the extremizer polynomial Z4,t∗ , see [18].

We now proceed to provide an analogous amendment for the second Zolotarev
case in the above Erdös-Szegö solution, but with the reservation that for n = 5
the optimal parameter t = t∗ of the sought-for Schur polynomial cannot be
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expressed by radicals. Rather, t∗ will be derived numerically (to any precision,
and in three different fashions). Therefore, also the coefficients ai(t∗) of Z5,t∗
as well as the value M5 cannot be determined in a closed analytic form so that
we resort to numerical approximations. In the presentation of our results we
will chop numerical results after the tenth valid decimal place.

Let now n = 5. According to [4, Th. 2], it suffices to consider the polynomi-
als Z5,t ∈ B5,1,2. The equation Z(2)

5,t (1) = 0 in the variable t (see (34)) renders,
when solved with Mathematica™’s NSolve - symbol, six real (approximate)
solutions:

t1 = −3.1614415379..., t2 = −1.3939833463...,(40)
t3 = − 1√

5 = −0.4472135954...,

t4 = −0.0582703679..., t5 = 1√
5 , t6 = 0.4591395093... .

Of these only t∗ := t4 is applicable since it satisfies t∗ ∈ J5. Hence the largest
value of |Z(1)

5,t (1)| subject to Z(2)
5,t (1) = 0 is attained if

(41) t = t∗ = −0.0582703679...,

and we get, after inserting t∗ into |Z(1)
5,t (1)|,

(42) |Z(1)
5,t∗(1)| = 7.5924835389...,

which implies

(43) M5 = sup
ξ∈I

sup
P5∈B5,ξ,2

|P (1)
5 (ξ)|
52 = 0.3036993415... .

An alternative way to deduce the optimal parameter t = t∗ of Z5,t with
regard to (38) is, utilizing our knowledge of the Zolotarev points A5(t) <
B5(t) < C5(t), to solve an equation which necessarily must be satisfied by
t = t∗, see [4, formula (2.17)] and [16, formula (5.20)]:

(44) 25(A5(t)−1)2

(B5(t)−1)(C5(t)−1) − 2
(

2
A5(t)−1 −

1
B5(t)−1 −

1
C5(t)−1

)
− 1 = 0.

Solving (44) with Mathematica™’s NSolve - symbol produces (after an ex-
cessive runtime) the identical root t = t∗ as given in (41). A third way to
compute t = t∗ is to construct a polynomial, say Pm, with smallest possible
degree m and smallest integer coefficients which has t∗ among its real roots,
and then to solve the polynomial equation Pm(s) = 0, either by radicals (if
possible) or numerically. A desired such minimal polynomial Pm of degree
m = 10 can be obtained by means of Mathematica™’s Solve - symbol (applied
to Z

(2)
5,t (1) = 0) or RootApproximant - symbol (applied to sufficiently many

(> 70) decimal places of t∗ when computation is done with high precision in
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(40)). In this way we get

P10(s) = 50 + 949s+ 1269s2 − 5772s3 − 13600s4 − 5802s5 +(45)
+19518s6 + 49380s7 + 54230s8 + 26525s9 + 4325s10.

First we are going to check if the equation P10(s) = 0 can be solved by
radicals. To this end we employ the open source symbolic mathematical com-
putation program GAP (package Radiroot, function IsSolvablePolynomial) to
find out that the answer is in the negative: The Galois group of P10 is not
solvable so that the zeros of P10 cannot be expressed by radicals. Solving the
equation P10(s) = 0 numerically (to a desired precision), e.g., with Mathemat-
ica™’s NSolve - symbol, yields the six real solutions

s1 = −3.1614415379..., s2 = −1.3939833463...,(46)
s3 = −0.4385675589..., s4 = −0.0582703679...,
s5 = 0.4591395093..., s6 = 0.4627324263...,

of which s4 coincides with t∗ as given in (41). It is obvious from this set of
solutions that s4 = t∗ is that negative zero of P10 which has smallest modulus.
It is not unusual to describe a sought-for constant (here: t∗) as a certain
zero of a minimal algebraic polynomial with integer coefficients: Consider, for
example, the definition of J. H. Conway’s constant as the unique positive zero
of some polynomial P71, see ([5], p. 453).

Having determined (numerically) the optimal parameter t∗ which selects,
according to [4, Th. 2], the quintic Schur polynomial Z5,t∗ among the infinitely
many quintic hard-core Zolotarev polynomials Z5,t, we obtain, by insertion,
the numerical approximations for the coefficients of Z5,t∗ (and hence for the
coefficients of its first and second derivative) as well as the numerical approx-
imations for its critical points:

Z5,t∗(x) =
5∑
i=0

ai(t∗)xi = 0.7437050451...− 2.8454432113...x−

−6.5707799509...x2 + 8.9780145139...x3 + 6.8270749058...x4 −(47)
−6.1325713026...x5,

and it is readily checked that there holds Z
(1)
5,t∗(1) = 7.5924835389... and

Z
(2)
5,t∗(1) = 0.
The equioscillation points of Z5,t∗ in the interior of I are, approximately,

see (14)–(16),

z1(t∗) = −0.7699336349... < z2(t∗) = −0.1696253638... <(48)
< z3(t∗) = 0.5589586326...,

and it is readily checked that there holds Z5,t∗(z1(t∗)) = −1, Z5,t∗(z2(t∗)) =
1, Z5,t∗(z3(t∗)) = −1 and, furthermore, Z(1)

5,t∗(zi(t∗)) = 0 for i = 1, 2, 3. The
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Zolotarev points of Z5,t∗ (to the right of I) are, approximately, see (27)–(29),
(49)
A5(t∗)=1.2711990490...<B5(t∗) = 1.4524990812...<C5(t∗) = 1.5351983581...,

and it is readily checked that there holds Z(1)
5,t∗(A5(t∗)) = 0, Z5,t∗(B5(t∗)) = 1

and Z5,t∗(C5(t∗)) = −1, and furthermore, that equation (31) holds for t = t∗.
According to [16, formula (5.26)], the first term in (44), evaluated at t = t∗,
coincides with Z

(1)
5,t∗(1), and also this auxiliary equation can now be readily

cross-checked. Summarizing we thus obtain the following amendment to [4,
Th. 2] for the second Zolotarev case, n = 5:

Proposition 3. Let t∗ denote the negative zero with smallest modulus of
the polynomial of degree n = 10 as given in (45), where the numerical value of
t∗ is given in (41). Let Z5,t denote the quintic hard-core Zolotarev polynomial
with parameterized coefficients as given in (4)-(9) and with critical points as
given in (14)-(16) and (27)-(29). Then, Z5,t∗ is a Schur polynomial which
solves Schur’s Markov-type extremal problem (38) for n = 5. The numerical
values of its coefficients and of its critical points are given in (47)-(49), and
the numerical value of the sought-for maximum M5 is given in (43).

4. THE QUINTIC SHADRIN POLYNOMIALS

A. A. Markov’s inequality (37) for the first derivative of Pn ∈ Bn was
generalized to the k-th derivatives by his half-brother V. A. Markov [13, p. 93]
in 1892. It can be restated as follows, see also [15, p. 545], [19, Th. 2.24]:

(50) sup
x∈I

sup
Pn∈Bn

|P (k)
n (x)|

k−1∏
j=0

n2−j2

2j+1

= 1 (1 ≤ k ≤ n).

For each k this maximum will be attained (up to the sign) if x = 1 and Pn = Tn.
Shadrin [23] has analogously generalized Schur’s problem, i.e., extending (38)
to the k-th derivatives, and it can be stated as follows: Determine ξ ∈ I and
Pn ∈ Bn for which

(51) Mn,k := sup
ξ∈I

sup
Pn∈Bn,ξ,k+1

|P (k)
n (ξ)|

k−1∏
j=0

n2−j2

2j+1

,

is attained, where Bn,ξ,k+1 = {Pn ∈ Bn : P (k+1)
n (ξ) = 0}, 2 ≤ k ≤ n −

2, and n ≥ 4.
Shadrin [23, Prop. 4.4], also provided the following solution:
Let n ≥ 4 and 2 ≤ k ≤ n − 2. The maximum (51) will be attained (up to

the sign) if ξ = 1 and Pn is a (proper or improper) Zolotarev polynomial, Zn,
or if ξ = ωk,n = the rightmost zero of T (k+1)

n and Pn = Tn, so that altogether
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there holds (under the assumptions Zn ∈ Bn,1,k+1 and T (k+1)
n (ωk,n) = 0)

(52) Mn,k := max{|Z(k)
n (1)|, |T (k)

n (ωk,n)|}
k−1∏
j=0

n2−j2

2j+1

.

The extremal polynomials for 2 ≤ k ≤ n−2 we therefore term Shadrin poly-
nomials. The proper Zolotarev polynomial Zn := Zn,t has been introduced in
Section 2. Apart from sign and reflection, the improper Zolotarev polynomial
relative to I is either the distorted Chebyshev polynomial Zn := Tn,σ, with
Tn,σ(x) := Tn(x−σ1+σ ), where 0 < σ ≤ tan2( π2n), or the familiar Chebyshev poly-
nomial of degree n or n− 1, Zn = Tn respectively Zn = Tn−1, see [1], [2], [15,
p. 406]. Let now n = 5 and choose k = 2 (the case n = 4 and k = 2 is treated
in [18]). In view of (52) the goal is to evaluate max{|Z(2)

5 (1)|, |T (2)
5 (ω2,5)|},

given that Z(3)
5 (1) = 0 = T

(3)
5 (ω2,5). It turns out that the improper Zolotarev

polynomial Z5 ∈ {T4, T5, T5,σ} cannot be extremal due to T (3)
4 (1) = 192 6= 0,

resp. T
(3)
5 (1) = 840 6= 0, resp. T

(3)
5,σ (1) = 120(7−18σ+7σ2)

(1+σ)5 6= 0 (for 0 < σ ≤
tan2( π10) = −t◦ = 1− 2√

5).
For the proper Zolotarev polynomial Z5 = Z5,t we find, again employing

Mathematica™, that the condition Z
(3)
5,t (1) = 0 (see (35)) renders seven real

(approximate) solutions for t:
t1 = −1.8058692666..., t2 = −1, t3 = − 1√

5 = −0.4472135954...,(53)

t4 = −0.0230782942..., t5 = 1√
5 ,

t6 = 0.5194288192..., t7 = 23.4433908091... .
Of these only t∗∗ := t4 is applicable since it satisfies t∗∗ ∈ J5. Hence the largest
value of |Z(2)

5,t (1)| subject to Z(3)
5,t (1) = 0 is attained for

(54) t = t∗∗ = −0.0230782942...
which leads, after insertion, to

(55) |Z(2)
5,t∗∗(1)| = 36.6462826529... .

It is tempting to express t4 = t∗∗ as a closed algebraic form in terms of radicals
of some polynomial equation. A desired such minimal polynomial can again be
deduced with the aid of Mathematica™, see Section 3. We so likewise obtain
here a minimal integer polynomial Pm of degree m = 10 which has t∗∗ among
its real roots:

Pm(s) = −8− 369s− 937s2 + 1539s3 + 7503s4 + 7245s5 −(56)
−8935s6 − 26415s7 − 23075s8 − 6000s9 + 300s10.

But similar to the case k = 1 and polynomial (45), t∗∗ cannot be expressed
in terms of radicals since the Galois group of (56) is not solvable, as we have
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checked with the aid of GAP. Among the three negative roots of the equa-
tion Pm(s) = 0, i.e., s1 = −1.8058692666..., s2 = −0.4119616991..., s3 = t∗∗,

obviously t∗∗ is the one with smallest modulus. Comparing |Z(2)
5,t∗∗(1)| to

|T (2)
5 (ω2,5)|, where ω2,5 = the rightmost zero of T (3)

5 = 1
2
√

2 , we get

(57)
∣∣∣T (2)

5

(
1

2
√

2

)∣∣∣ = 20
√

2 = 28.2842712474... < |Z(2)
5,t∗∗(1)|.

Thus we have, subject to Z(3)
5 (1) = 0 = T

(3)
5 (ω2,5),

(58) max
{
|Z(2)

5 (1)|,
∣∣∣T (2)

5

(
1

2
√

2

)∣∣∣} = |Z(2)
5,t∗∗(1)| = 36.6462826529...

and obviously

(59)
1∏
j=0

52−j2

2j+1 = 200,

holds, so that finally we get
(60) M5,2 = 0.1832314132... .
Having determined (numerically) the optimal parameter t∗∗, we are in a posi-
tion to provide, by insertion, the numerical approximations for the coefficients
of the Shadrin polynomial Z5,t∗∗ (for k = 2) as well as for its critical points:

Z5,t∗∗(x) =
5∑
i=0

ai(t∗∗)xi = 0.9050563187...− 1.7415460912...x−(61)

−7.5064008470...x2 + 5.3134265584...x3 +
+7.6013445283...x4 − 3.5718804671...x5,

and it is readily checked that (55) holds and that Z(3)
5,t∗∗(1) vanishes. Further-

more, we get
z1(t∗∗) = −0.7501496712... < z2(t∗∗) = −0.1065526272... <(62)

< z3(t∗∗) = 0.6335508926...
and

A5(t∗∗) = 1.9256371632... < B5(t∗∗) = 2.3412124512... <(63)
< C5(t∗∗) = 2.3613047539... .

Summarizing we have thus established:

Proposition 4. Let t∗∗ denote the negative zero with smallest modulus of
the polynomial of degree n = 10 as given in (56), where the numerical value
of t∗∗ is given in (54). Let Z5,t denote the quintic hard-core Zolotarev polyno-
mial. Then, Z5,t∗∗ is a Shadrin polynomial which solves Shadrin’s Markov-type
extremal problem to determine (51) for n = 5 and k = 2. The numerical val-
ues of its coefficients and of its critical points are given in (61)–(63) and the
numerical value of the sought-for maximum M5,2 is given in (60).
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Let now n = 5 and k = 3, so that the goal is to evaluate
max{|Z(3)

5 (1)|, |T (3)
5 (ω3,5)|}, subject to Z

(4)
5 (1) = 0 = T

(4)
5 (ω3,5). It is left to

the reader to check that, likewise as for k = 2, Z5 ∈ {T4, T5, T5,σ} cannot be
extremal due to Z

(4)
5 (1) 6= 0. For Z5 = Z5,t the condition Z

(4)
5,t (1) = 0 (see

(36)) renders, likewise as for k = 2, six real (approximate) solutions for t:

t1 = −3.0314515138..., t2 = −1, t3 = − 1√
5 ,(64)

t4 = −0.0048304566..., t5 = 1√
5 , t6 = 0.4577656892... .

Of these only t∗∗∗ := t4 is applicable since it satisfies t∗∗∗ ∈ J5. Hence the
largest value of |Z(3)

5,t (1)| subject to Z(4)
5,t (1) = 0 is attained for

(65) t = t∗∗∗ = −0.0048304566...

which yields, after insertion,

(66) |Z(3)
5,t∗∗∗(1)| = 109.2942452670... .

Again one might ask whether t4 = t∗∗∗ can be expressed by radicals of some
polynomial equation. In this case the answer is in the positive, since the
following minimal polynomial P6, which contains t∗∗∗ as a zero, has a Galois
group which is solvable (as can be checked with GAP):

(67) P6(t) = −1− 210t− 615t2 + 420t3 + 2625t4 + 3150t5 + 775t6.

But we shall not dwell on this since it will turn out that Z5,t∗∗∗ , which is
approximately given by

Z5,t∗∗∗(x) =
5∑
i=0

ai(t∗∗∗)xi = 0.9805806750...− 0.7882729973...x−(68)

−7.9021418328...x2 + 2.3725852288...x3 +
+7.9215611578...x4 − 1.5843122315...x5,

is not a Shadrin polynomial for k = 3. Indeed, since
2∏
j=0

52−j2

2j+1 = 840 and

ω3,5 = the rightmost zero of T (4)
5 = 0, we get

(69) |T (3)
5 (0)| = 120 > |Z(3)

5,t∗∗∗(1)|,

and hence, subject to Z(4)
5,t (1) = 0 = T

(4)
5 (ω3,5),

(70) max{|Z(3)
5 (1)|, |T (3)

5 (0)|} = |T (3)
5 (0)| = 120,

(71) M5,3 = 1
7 = 0.1428571428... .

Summarizing we have thus established:
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Proposition 5. The quintic Chebyshev polynomial of the first kind, T5 ∈
B5 with T5(x) = 16x5 − 20x3 + 5x, is a Shadrin polynomial which solves
Shadrin’s Markov-type extremal problem to determine (51) for n = 5 and
k = 3. The sought-for maximum M5,3 has the value 1

7 .

In concluding this Section, we are going to compare our deduced maximum
values (43), (60), (71) to Shadrin’s estimates, λn,k, for Mn,k, see [23, Th. 7.1
and Rem. 5.5]):

(72) Mn,k ≤ λn,k = n−1
(k+1)(n−1+k) .

For n = 5 and k ∈ {1, 2, 3} we thus obtain

M5,1 := M5 = 0.3036993415... < 0.4 = 2
5 = λ5,1(73)

M5,2 = 0.1832314132... < 0.2 = 2
9 = λ5,2(74)

M5,3 = 0.1428571428... = 1
7 = λ5,3.(75)

5. TWO NEW ALGEBRAIC APPROACHES TO ZOLOTAREV’S FIRST PROBLEM FOR

QUINTIC POLYNOMIALS

Zolotarev’s first problem (out of four) calls for a best approximation by
polynomials of degree ≤ n−2 to the function fσ, with fσ(x) = xn−nσxn−1 and
x ∈ I, or equivalently, calls for a polynomial P̌n,σ of degree n with fixed first
and second leading coefficient, given by P̌n,σ(x) = xn − nσxn−1 + bn−2x

n−2 +
...+ b1x + b0, which deviates least from the zero function in I, see [2], [25].
Here, σ is a given real number and the deviation is measured in the uniform
norm. Equipped with the previous results we are able to solve Zolotarev’s
first problem, for n = 5, algebraically and even in two fashions, thus avoiding
the use of elliptic functions. Our solutions complement and simplify existing
algebraic approaches to solve Zolotarev’s first problem for n = 5. Note that
Zolotarev’s first problem extends P. L. Chebyshev’s classical approximation
problem [19, p. 67 and p. 87], to determine a monic polynomial of degree n
which deviates least from the zero function in I, measured in the uniform norm
(a solution is 21−nTn, which corresponds to σ = 0).

Consider now P̌5,σ with some σ ∈ R\{0}. The goal is to specify, at least nu-
merically, its four variable coefficients bi(i = 0, 1, 2, 3) such that supx∈I |P̌5,σ(x)|
becomes least. The following is well known: For 0 < |σ| ≤ tan2( π10) = −t◦ =
1 − 2/

√
5 = 0.1055728090... the desired least-deviating quintic polynomial,

which is related to an improper quintic Zolotarev polynomial, can be deduced
by elementary means, see [2, Th. 1], [15, Th. 1.2.20], where a solution for an
arbitrary degree n is displayed. However, for n = 5 and for |σ| > tan2( π10)
the desired solution, which is related to a quintic hard-core Zolotarev polyno-
mial, is usually expressed by means of elliptic functions, see [2, Th. 2], [15,
Th. 1.2.21], where a solution for an arbitrary degree n is displayed. Schiefer-
mayr [20, p. 156], has established, for arbitrary n and |σ| > tan2( π2n), an
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algebraic solution formula which can be applied immediately provided a sub-
set of the critical points of Zn,t is known, a premise that holds for the case
n = 5 under consideration (see Section 2). If the critical points are not known
in advance, then an algorithm is advised how to compute that subset. This al-
gorithm, however, requires polynomial equations to be solved which for n ≥ 5
get very bulky [20]. Schiefermayr’s solution formula reads for n = 5:

A least-deviating polynomial P̌5,σ = P̌5,σ,ť with σ > tan2( π10) = −t◦ is given
by

P̌5,σ,ť(x) = (x−B5(ť))(x2 − 1)(x− z2(ť))2 −(76)
−1

2(C5(ť)−B5(ť))(C5(ť)2 − 1)(C5(ť)− z2(ť))2

subject to

(77) 2z2(t) +B5(t) = 5σ,

meaning that one has first to determine some t = ť ∈ J5 which solves equation
(77) and then to compute P̌5,σ,ť(x) with the aid of this value. To apply the
formula in this way, the three critical points B5(t), C5(t) and z2(t) of Z5,t need
to be known.

Example 6. We choose σ = 2, say, so that our goal is to determine P̌5,2,ť.
(77) yields

(78) 2z2(t) +B5(t) = v6
2
√

2 = 10

with

(79) v6 := v6(t) = 1+5t−5t2+15t3
t2(1+t)v1

= 1+5t−5t2+15t3

t2(1+t)
√

(1+t)(−1+5t2)
t3

.

Applying Mathematica™’s NSolve - symbol we get

(80) t = ť = −0.0012391497...

as the unique approximate solution to (78) from J5, which is a zero of the
minimal polynomial P6(u) = −1−810u−2415u2+1620u3+11025u4+12150u5+
3775u6, and the zeros of P6 cannot be expressed by radicals, as we have checked
with GAP. In an intermediate step we then rearrange terms, see (15), (27),
(28):

(x−B5(t))(x2 − 1)(x− z2(t))2 −(81)
−1

2(C5(t)−B5(t))(C5(t)2 − 1)(C5(t)− z2(t))2

= (3v2 − 6v3 + 2
√
v4 − v5 − v6)×

× (−v2+3v3+
√
v4−v5+v6)2(−1+ 1

200 (4v3+v6)2)
4000

√
2 +

+
(
−v2−v3+

√
v4−v5

10
√

2 + x
)2 (−3v2+2v3−2

√
v4−v5

10
√

2 + x
)

(−1 + x2).
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Inserting t = ť into v2, v3, v4, v5, v6 (which have been defined in (17)-(20), (79))
and expanding, finally gives

P̌5,2,ť(x) = −1.2468982438...+ 0.4993781094...x+(82)
+9.9937810175...x2 − 1.4993781094...x3 − 10x4 + x5.

This polynomial has the required two leading coefficients b5 = 1, b4 = −10 and
the resulting coefficients bi, i = 0, 1, 2, 3 (with b3 = −1 − b1, due to P̌5,σ(1) =
P̌5,σ(−1)) are optimal. Dividing P̌5,2,ť by its least deviation

|P̌5,2,ť(±1)| = 1
2(C5(ť)−B5(ť))(C5(ť)2 − 1)(C5(ť)− z2(ť))2(83)

= 1.2531172262...

renders the related hard-core Zolotarev polynomial −Z5,ť ∈ B5 with

−Z5,ť(x) = −0.9950371902...+ 0.3985086941...x+ 7.9751365698...x2 −

−1.1965186321...x3 − 7.9800993796...x4 + 0.7980099379...x5.(84)

�
Consider now P̌5,σ(x) assuming σ < 0 but |σ| > tan2( π10). Then the least-

deviating polynomial (76) changes to −P̌5,σ(x),ť(−x) and the right hand side
in (77) to 5|σ|.

Example 7. We reconsider an example from literature where a least-
deviating quintic polynomial with prescribed leading coefficients has been com-
puted algebraically, with different approaches, by G. E. Collins ([3], p. 186)
and independently by V. A. Malyshev [11, p. 937]: The goal is to find among
all polynomials of the form x5 +x4 +b3x

3 +b2x
2 +b1x+b0, where both leading

coefficients b5 and b4 are equated to 1, one that deviates least from the zero-
function in I (measured in the uniform norm). In the representation of P̌5,σ(x)
we now have 1 = −5σ, i.e., σ = −0.2 with |σ| > tan2( π10) = −t◦. Solving the
equation 2z2(t) +B5(t) = v6

2
√

2 = 5|σ| = 1 (e.g., with Mathematica™’s Solve -
symbol) renders the unique solution t = ť from J5 as an expression in radicals:

ť :=
√

10
185

(
−25√

10 +
√
−356 + 220

√
10√

−178+a − a−
√
−178 + a)

)
,(85)

with a := (74
√

37)2/3
(
(7− 3

√
5)1/3 + (7 + 3

√
5)1/3

)
,

= −0.0654947997...,

which is a zero of the minimal polynomial P4(u) = 1 + 20u+ 78u2 + 100u3 +
185u4. Inserting this ť into −P̌5,σ,ť(−x), see (76), yields a least deviating
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polynomial whose optimal numerical coefficients are:

b0 = 0.1065834340...(86)
b1 = 0.4581775889...(87)
b2 = −0.9557598788...(88)
b3 = −1.4581775889... = −1− b1(89)
b4 = b5 = 1.(90)

They indeed coincide with those numerical coefficients as derived in [3] (with
opposite signs) and [11]. We observe that the numerical coefficients (86), (87),
(89) as given in [11] are biased after the 34th decimal place, and (88) as given
in [11] is biased after the 33rd one. Dividing this polynomial by its least
deviation

(91) 1
2(C5(ť)−B5(ť))(C5(ť)2 − 1)(C5(ť)− z2(ť))2 = 0.1508235551...

renders the following related hard-core Zolotarev polynomial Q5,ť ∈ B5:

Q5,ť(x) = Z5,ť(−x) = 0.7066763140...+ 3.0378384100...x−(92)
−6.3369403942...x2 − 9.6681024902...x3 +
+6.6302640801...x4 + 6.6302640801...x5.

We can even provide explicit analytic expressions for the coefficients of the
least deviating polynomial −P̌5,σ,ť(−x) =

5∑
i=0

bix
i, where the bi’s are given

numerically in (86) - (90). Our procedure is to expand the right hand side
of (81) in powers of x and then to replace t by ť, according to (85), in those
terms which represent the bi’s. Let us proceed so exemplarily for the optimal
b3: From (81) we deduce that the coefficient of x3 in −P̌5,σ,ť(−x) is
(93)
−1+ 1

100(−3v2+2v3−2
√
v4−v5)(−v2−v3+

√
v4 − v5)+ 1

200(−v2−v3+
√
v4−v5)2.

Inserting now t = ť from (85) into the vi’s = vi(t)’s yields, after some simpli-
fications,

b3 = 1
15

(
−18−

√
−36 + 40

√
2
b − 2b+

√
2b
)
,(94)

with b := −6− 22
(

2
c

)1/3
+ 22/3c1/3 and c := 151 + 75

√
5,

= −1.4581775889...,

which is a zero of the minimal polynomial P4(u) = 1600 + 5120u + 6048u2 +
3240u3 + 675u4.

The coefficients b2, b1, b0 can be deduced in a similar vein. Collins [3], using
a different method, provides the quartic minimal polynomials for −b3,−b2,−b0
(and utilizes −b1 = 1 + b3) from which the explicit analytic expressions for
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−b3,−b2,−b0 (and hence for −b1) can be deduced with the aid of Mathe-
matica™’s Solve - symbol. We note that the minimal polynomial in [3] for
−b0 contains a misprint: The coefficient of x0 should read −1178141 (not
−117814). See also Remark 10 below. �

An alternative path to obtaining an algebraic solution to Zolotarev’s first
problem for n = 5 is via the novel power form representation (3) - (11):
Dividing (3) by the leading coefficient a5(t) results in a monic power form
representation of type

(95) x5 + (−v6)
2
√

2 x
4 + lower degree terms.

Identifying (95) with P̌5,σ(x) for σ = 2 means that the (parameterized) co-
efficient of x4 will be equated with −10. Solving the resulting equation
(−v6)
2
√

2 = −10 for t (again with Mathematica™’s NSolve - symbol) yields,
consistently with Example 6, t = ť = −0.0012391497... as the only solution
from J5. The hard-core Zolotarev polynomial Z5,ť has the leading coefficient
a5(ť) = −0.7980099379... , see (9). Dividing now Z5,ť by a5(ť) renders a poly-
nomial of type x5 − 10x4+ lower degree terms, which is identical to P̌5,2,ť(x),
see (82). For σ = −0.2 we consider the representation −Y5,t(−x), see (3), and
we proceed analogously, that is, we divide it by its leading coefficient, set the
residual coefficient of x4 equal to 1 and solve the resulting equation in the vari-
able t. This will yield, consistently with Example 7, t = ť = −0.0654947997...
as the unique solution from J5. The hard-core Zolotarev polynomial Z5,ť has
the leading coefficient a5(ť) = −6.6302640801... . Replacing Z5,ť by Q5,ť with
Q5,ť(x) = Z5,ť(−x) recovers the polynomial (92). Dividing it by its leading
coefficient yields the polynomial with the optimal coefficients (86) - (90). Its
graph is sketched in [11, p. 937]. �

In concluding this Section, we summarize, to the best our knowledge, the
currently available constructive approaches to solve Zolotarev’s first problem
algebraically for n = 5 and for a given σ with |σ| > tan2( π10):

(1) M. L. Sodin and P. M. Yuditskii [24] derive the least deviating P̌n,σ by
representing it by means of involved determinants. No explicit power
form representation of the optimal P̌n,σ and also no explicit example
is given.

(2) Malyshev [11, pp. 934], too derives the coefficients of the optimal P̌n,σ
by means of determinants, but no explicit power form representation
of the optimal P̌n,σ is given. For n = 5 two auxiliary polynomials
U6,−5σ (of degree 6 in the variable x) and V6,−5σ (of degree 6 in the
variable y) are provided which depend on the parameter −5σ, and
hence on σ. For σ = −0.2 the zeros of U6,1 and V6,1 are computed and
are then employed to determine, by computing certain determinants,
the explicit least deviating polynomial with coefficients (86) - (90), see
Example 7 above. The reference [24] is not given.
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(3) Schiefermayr [20] derives the least deviating P̌n,σ by representing it in
a modified power form which entails the Zolotarev points Bn(t) and
Cn(t) as well as a subset of the equioscillation points of Zn,t. This
subset of the critical points of Zn,t has to be computed by means of
a given algorithm which involves determinants. For n = 5 this subset
consists of {B5(t), C5(t), z2(t)}, see (76), (77). References [11] and [24]
are given, but no explicit example for n = 5.

(4) Our modification of Schiefermayr’s approach [20] for n = 5 which
uses the prior knowledge of the set {B5(t), C5(t), z2(t)} from Section
2. The computation of this set by the algorithm stipulated in [20] is
thus dispensable, see (76), (77) and Examples 6 and 7.

(5) Our alternative approach as indicated above (after Example 7) which
is justified by [4, Th. 3]. It builds on the novel explicit algebraic
power form representation of Z5,t (see Section 2), that is, identifying
Z5,t(x)/a5(t) with P̌n,σ and equating the coefficients of the respective
power x4 (and with obvious modifications if σ < 0 but |σ| > tan2 ( π

10
)
).

We note that Collins’ algebraic approach [3] for n = 5 solves Zolotarev’s first
problem only for the single dedicated parameter σ = −0.2, see [3, p. 185]. E.
Kaltofen [8, p. 8], with reference to [3], but not mentioning that incompleteness
for n = 5 and also not mentioning the solution in [24], poses Zolotarev’s first
problem as an open problem for n ≥ 6. D. Lazard [9], in response to this
challenge, does notice (on p. 197) the incompleteness of Collins’ solution for
n = 5, but does not reference either to the solution in [24] and also not to
the then available solution in [11]. He claims to have solved Zolotarev’s first
problem algebraically, by symbolic computation, up to n = 12; however, no
constructive representation of the least deviating P̌n,σ and also no explicit
example is given.

6. CONCLUDING REMARKS

Remark 8. An iterative numerical method to compute, in particular, (42),
(48) and (49) is advised in [16, Section 5d].

Remark 9. V. I. Lebedev [10] considers a generalized proper Zolotarev
polynomial which depends on two parameters. The second parameter, µ, sat-
isfies 1 ≤ µ < n − 1 and the choice µ = 1 takes us back to the classical
proper Zolotarev polynomial (with only one parameter) as described in Sec-
tion 2 above. In particular, the sextic polynomial Z̃6 := T3(Z2,t), with t > 1, is
such a generalized Zolotarev polynomial with µ = 3, see [10, Formula (2.50)].
According to [10, Lemma 2.1], Z̃6 has only four (rather than six) equioscil-
lation points in I so that Z̃6 does not represent a classical proper Zolotarev
polynomial as described in Section 2 above, contrary to what is indicated in
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[6, p. 15], and [7, pp. 3]. Therefore, the problem to determine an explicit al-
gebraic power form representation of a sextic hard-core Zolotarev polynomial
(with six equioscillation points in I) is still open.

Remark 10. The quintic polynomial P ∗5 given by P ∗5 (x) = b0 +b1x+b2x
2 +

b3x
3 + x4 + x5 (with two fixed leading coefficients b4 = b5 = 1, see [3], [11],

and Example 7), which deviates least from the zero function in I, is worth the
effort to write down its optimal coefficients b0, b1, b2, b3 and its least deviation
in explicit form in terms of radicals. The corresponding numerical values are
given in (86)–(89) and (91). We already know the expression for b3, see (94),
and hence we know b1 = −1− b3. For b2 we get, by the methods described,

(96) b2 = 1
675

(
− 690 +

√
30
(√
−38 + 556

3

√
10
3d − d+

√
d

))
with

d = −38
3 + 22/3α1/3 + 22/3β1/3,(97)

α = (3053 + 1345
√

5), β = (3053− 1345
√

5).(98)
For b0 we get likewise the expression

(99) b0 = 1
84375

(
11211 +

√
6
(√
−9837934 + 210863861500

3

√
2

3D −D −
√
D

))
with

D = −9837934
3 + 22/3γ1/3 + 22/3δ1/3,(100)

γ = 84447248882562640537 + 36683761704646421875
√

5,(101)
δ = 84447248882562640537− 36683761704646421875

√
5.(102)

The least deviation of P ∗5 from the zero function is given by
(103) P ∗5 (±1) = b0 + b2 + 1,
which is the unique positive root of the minimal polynomial defined by

P4(z) = −11943936− 693026816z + 13578720768z2 −(104)
−85074300000z3 + 192216796875z4.
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[19] Th. J. Rivlin, Chebyshev Polynomials, 2nd ed., Wiley, New York, 1990.
[20] K. Schiefermayr, Inverse polynomial images which consists of two Jordan arcs - An

algebraic solution, J. Approx Theory 148 (2007), pp. 148–157.
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