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BERNSTEIN OPERATORS OF SECOND KIND
AND BLENDING SYSTEMS

DANIELA INOAN∗, FADEL NASAIREH∗ and IOAN RAŞA∗

Abstract. We consider the fundamental polynomials associated with the Bern-
stein operators of second kind. They form a blending system for which we study
some shape preserving properties. Modified operators are introduced; they have
better interpolation properties. The corresponding blending system is also stud-
ied.
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1. INTRODUCTION

A system (f0, f1, . . . , fm) of nonnegative, continuous functions on an interval
[a, b] is said to be a blending system if

m∑
i=1

fi(x) = 1, for all x ∈ [a, b].

If P0, P1, . . . , Pm ∈ Rs are some given points, using a blending system one can
define the curve

γ(t) =
m∑
i=1

fi(t)Pi, t ∈ [a, b].

The points P0, P1, . . . , Pm are called control points of the curve γ with respect
to the blending system (f0, f1, . . . , fm).

Blending systems are important instruments in Computer Aided Geometric
Design (see [1], [2] and the references therein). Of particular interest are the
blending systems for which some shape properties of the curve γ are inherited
from the properties of the control polygon P0P1 . . . Pm. Bernstein and B-
spline bases are well-known systems of totally positive blending functions that
preserve monotonicity and convexity. In [1], [3] were given general results that
connect shape preservation with the total positivity of the system of functions.

We will study some properties of two particular blending systems derived
from an operator introduced by P. Soardi in [9].
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Let n ≥ 1, n ∈ N and m = [n/2]. The positive linear Soardi operator βn is
defined for a function f ∈ C[0, 1] and x ∈ [0, 1] by

βnf(x) =
m∑
k=0

f
(
n−2m+2k

n

)
wn,k(x),

where wn,k are the fundamental polynomials
wn,k(x) =

= n+1−2m+2k
(n+1)2n+1x

(n+1
m−k

)(
(1− x)m−k(1 + x)n+1−m+k−(1− x)n+1−m+k(1 + x)m−k

)
.

Monotonicity or convexity preserving properties and a Voronovskaja-type for-
mula for this operator can be found in [8]. In [7] there were given some
inequalities for generalized convex functions that involve the operator βn. A
recursive de Casteljau type algorithm for this operator was described in [5].

Theorem 1. The system (wn,0(x), wn,1(x), . . . , wn,m(x)), x ∈ [0, 1] is a
blending system.

Proof. It follows directly from the fact that βn1 = 1, which is proved in
[9]. �

2. TOTAL POSITIVITY

We recall (see [6], [4] for instance) that a system of functions (u0, . . . , um)
defined on an interval I is totally positive (TP) if for any t0, . . . , tp ∈ I with
t0 < t1 < · · · < tp the corresponding collocation matrix

(1) M

(
u0, . . . , um
t0, . . . , tp

)
= (uj(ti))i=0,...,p;j=0,...,m

has only nonnegative minors.
The system is totally positive of order r (TPr), 1 ≤ r ≤ m + 1 if for any

collocation matrix (1), all the k × k minors, k ∈ {1, . . . , r} are nonnegative.
A system of functions (u0, . . . , um) is a Chebyshev system if all its square

collocation matrices M
(
u0, . . . , um
t0, . . . , tm

)
have positive determinant. If the de-

terminant is nonnegative, the system is weak Chebyshev.

Lemma 2. Let 0 < a0 < a1 < · · · < am, m ∈ N. The system
(sinh a0t, sinh a1t, . . . , sinh amt)

is totally positive on [0,∞).

Proof. Let 0 ≤ t0 < t1 < · · · < tm. We study the minors of the correspond-
ing collocation matrix.

For s ∈ {0, . . . ,m} denote

M(s, t) = sinh ast =
∞∑
i=0

a2i+1
s t2i+1

(2i+1)! , K(s, i) = a2i+1
s

(2i+1)! , E(i, t) = t2i+1.
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Let {s1, . . . , sk} ⊂ {0, . . . ,m} be row indices and {s′1, . . . , s′k} ⊂ {0, . . . ,m}
column indices in a minor of the collocation matrix. Then, using the basic
composition formula (see for instance [6]) we have:∣∣∣∣∣∣∣

sinh as1ts′1 . . . sinh ask
ts′1

. . . . . . . . .
sinh as1ts′k . . . sinh ask

ts′
k

∣∣∣∣∣∣∣ =

= M

(
s1, . . . , sk
ts′1 , . . . , ts′k

)

=
∑

0≤i1<···<ik<∞
K

(
s1, . . . , sk
i1, . . . , ik

)
E

(
i1, . . . , ik
ts′1 , . . . , ts′k

)

=
∑

0≤i1<···<ik<∞

1
(2i1+1)!...(2ik+1)!

∣∣∣∣∣∣∣
a2i1+1
s1 . . . a2i1+1

sk

. . . . . . . . .
a2ik+1
s1 . . . a2ik+1

sk

∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣∣
t2i1+1
s′1

. . . t2i1+1
s′

k

. . . . . . . . .

t2ik+1
s′1

. . . t2ik+1
s′

k

∣∣∣∣∣∣∣∣
≥ 0.

�

The next property was mentioned in [8]; we give here a more detailed proof.

Theorem 3. The system (wn,0, . . . , wn,m) is totally positive on [0, 1].

Proof. We have

wn,k(x) =

= n+1−2m+2k
(n+1)2n+1

(n+1
m−k

) 1
x(1− x2)

n+1
2

[(
1+x
1−x

)n+1
2 −m+k

−
(

1+x
1−x

)−n+1
2 +m−k

]
so with the exception of a strictly positive factor, the system is(

(et)
n+1

2 −m − (et)−
n+1

2 +m, . . . , (et)
n+1

2 − (et)−
n+1

2
)

where we used the notation 1+x
1−x = et. We get t = log 1+x

1−x , an increasing
function on [0,∞) and the system

(S) (sinh a0t, sinh a1t, . . . , sinh amt),

with aj = n+1
2 −m+ j.

From Lemma 2 we have that the system (S) is totally positive and according
to [4], page 161, this implies the total positivity of (wn,0, . . . , wn,m). �

Theorem 4. For each j = 0, 1, . . . ,m,

(Sj) (wn,j(x), wn,j+1(x), . . . , wn,m(x))

is a Chebyshev system on [0, 1].
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Proof. Let x ∈ (0, 1). As in the previous proof, we see that instead of
(Sj) is enough to study the system (sinh ajt, sinh aj+1t, . . . , sinh amt), with
0 < aj < · · · < am and t ∈ (0,∞). For any 0 < tj < tj+1 < · · · < tm,

the determinant ∆ =

∣∣∣∣∣∣
sinh ajtj . . . sinh amtj
. . . . . . . . .

sinh ajtm . . . sinh amtm

∣∣∣∣∣∣ can be written like in the

proof of Lemma 2 and we obtain that it is strictly positive.
Let x ∈ (0, 1] and consider 0 < xj < · · · < xm ≤ 1. The situation differs

from the previous case only if xm = 1. Then∣∣∣∣∣∣
wn,j(xj) wn,j+1(xj) . . . wn,m(xj)
. . . . . . . . . . . .

wn,j(1) wn,j+1(1) . . . wn,m(1)

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
wn,j(xj) wn,j+1(xj) . . . wn,m(xj)
. . . . . . . . . . . .
0 0 . . . 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
wn,j(xj) wn,j+1(xj) . . . wn,m−1(xj)
. . . . . . . . . . . .

wn,j(xm−1) wn,j+1(xm−1) . . . wn,m−1(xm−1)

∣∣∣∣∣∣ > 0,

like in the previous case.
Let x ∈ [0, 1) and consider 0 ≤ xj < · · · < xm < 1. The situation differs

from the first case only if x1 = 0. Then, instead of ∆ we will have, with
0 = tj < tj+1 < · · · < tm,∣∣∣∣∣∣∣∣∣

sinh ajtj
tj

. . .
sinh amtj

tj

sinh ajtj+1 . . . sinh amtj+1
. . . . . . . . .

sinh ajtm . . . sinh amtm

∣∣∣∣∣∣∣∣∣ =
∑

0≤ij<···<im<∞

1
(2ij+1)! . . .

1
(2im+1)!∆1 ·∆2 > 0,

since we have ∆1 =

∣∣∣∣∣∣∣
a

2ij+1
j . . . a

2ij+1
m

. . . . . . . . .

a2im+1
j . . . a2im+1

m

∣∣∣∣∣∣∣ > 0,

∆2 =

∣∣∣∣∣∣∣
t
2ij
j t

2ij+1
j+1 . . . t

2ij+1
m

. . . . . . . . . . . .

t2imj t2im+1
j+1 . . . t2im+1

m

∣∣∣∣∣∣∣ = 0 for ij > 0 and ∆2 > 0 for ij = 0.

The case x ∈ [0, 1], with 0 = xj < xj+1 < · · · < xm = 1 can be treated as a
combination of the previous three cases. �

3. SHAPE PRESERVING PROPERTIES

A blending system (f0, . . . , fm) is said to be monotonicity preserving [1] if
α0 ≤ α1 ≤ · · · ≤ αm implies that

∑m
i=0 αifi(t) is an increasing function.

The system is said to be strictly monotonicity preserving if α0 < α1 < · · · <
αm implies that

∑m
i=0 αifi(t) is strictly increasing.
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In the case of a monotonicity preserving blending system, if the projections
of the control points P0, . . . , Pm onto a line are ordered, then the projections
of the points of the curve γ on the same line are also ordered.

Lemma 5. [1, Corollary 2.4] A totally positive blending system is mono-
tonicity preserving.

This allows us to state, following directly from Theorem 3:

Theorem 6. Soardi’s blending system (wn,0, . . . , wn,m) is monotonicity pre-
serving.

Lemma 7. [1, Proposition 2.1] Let (f0, . . . , fm) be a blending system on [a, b]
and let

gi =
m∑
j=i

fj , i = 0, . . . ,m.

Then:
a) (f0, . . . , fm) is monotonicity preserving if and only if g1, . . . , gm are in-

creasing functions.
b) (f0, . . . , fm) is strictly monotonicity preserving if and only if g1, . . . , gm

are increasing functions and
∑m
i=1 gi is strictly increasing.

Theorem 8. Soardi’s blending system (wn,0, . . . , wn,m) is strictly mono-
tonicity preserving.

Proof. According to Theorem 6 and Lemma 7 we have to prove only that
the function

∑m
i=1 gi =

∑m
i=1 iwn,i is strictly increasing.

It was proved in [8, Theorem 2.1], that if a function f ∈ C[0, 1] is strictly
increasing then βnf is also strictly increasing.

Let f ∈ C[0, 1] be such that f
(
n−2m+2k

n

)
= k, for k = 0, . . . ,m and such

that it is strictly increasing. Then also
m∑
i=1

iwn,i =
m∑
i=1

f
(
n−2m+2i

n

)
wn,i = βnf

is strictly increasing. �

As a consequence of the property of monotonicity preserving, the blending
system (wn,0, . . . , wn,m) is also length diminishing (see [1]), that is the length
of the curve

∑m
i=0 Piwn,i is smaller then the length of the control polygon

P0P1 . . . Pm.
The fact that Soardi’s blending system is totally positive and a Cheby-

shev system implies also some other properties: geometrically (strictly) con-
vexity preserving (see [1, Theorems 3.9 and 3.10]) or geometrically (strictly)
k-convexity preserving (see [1, Proposition 5.7 and 5.8]).
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4. A MODIFIED SOARDI OPERATOR

Starting from Soardi’s operator we define Γn : C[0, 1]→ C[0, 1] by

Γnf = e1
βne1

βnf +
(
1− e1

βne1

)
f(0).

This is a positive linear operator. It easy to prove, by direct computation,
that Γne0 = e0, Γne1 = e1 and Γnf(0) = f(0), Γnf(1) = f(1) for every
f ∈ C[0, 1]. To obtain a blending system we consider two situations: n being
even or odd.

For n = 2m, we have

Γnf(x) =
m∑
k=0

f
(
n−2m+2k

n

)
γn,k(x),

where
γn,0(x) = x

βne1(x) (wn,0(x)− 1) + 1,
γn,k(x) = x

βne1(x)wn,k(x), for k = 1, 2, . . . ,m.

For n = 2m+ 1, we have

Γnf(x) = f(0)θn,0(x) +
m∑
k=0

f
(
n−2m+2k

n

)
θn,k+1(x),

where
θn,0(x) =− x

βne1(x) + 1,
θn,k+1(x) = x

βne1(x)wn,k(x), for k = 0, 1, . . . ,m.

Theorem 9. For n = 2m the system (γn,0(x), γn,1(x), . . . , γn,m(x)), x ∈
[0, 1] is a blending system.

For n = 2m + 1 the system (θn,0(x), θn,1(x), . . . , θn,m+1(x)), x ∈ [0, 1] is a
blending system.

Proof. It follows directly from Γne0 = e0. �

Lemma 10. For any n ∈ N, the function g : [0, 1] → R, g(x) = x
βne1(x) is

strictly increasing.

Proof. Denote h(x) = βne1(x)−xβ′ne1(x). We have h′(x) = −xβ′′ne1(x) ≤ 0,
since βne1(x) is a convex function (see [8, Theorem 2.1]). Thus h is decreasing
on [0, 1]. By direct computation we get h(1) = 1

n > 0, which implies h(x) > 0
for any x ∈ [0, 1]. Finally the conclusion follows from g′(x) = h(x)

(βne1(x))2 >

0. �

Theorem 11. a) For any even number n = 2m, the blending system
(γn,0(x), γn,1(x), . . . , γn,m(x)) is strictly monotonicity preserving.

b) For any odd number n = 2m+ 1, the blending system
(θn,0(x), θn,1(x), . . . , θn,m+1(x))
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is strictly monotonicity preserving.

Proof. We will use Lemma 7. For n = 2m and i = 1, . . . ,m we have

gi =
m∑
j=i

γn,j(x) = x
βne1(x)

m∑
j=i

wn,j(x)

By the previous lemma, the function x
βne1(x) is strictly increasing. Also the

function
∑m
j=iwn,j(x) is strictly increasing since (wn,0, . . . , wn,m) is monotonic-

ity preserving. So gi is increasing and Lemma 7 gives the monotonicity pre-
serving property of (γn,0(x), γn,1(x), . . . , γn,m(x)).

Moreover, the function
m∑
i=1

gi = x
βne1(x)

m∑
i=1

iwn,i(x)

is strictly increasing, so the blending system is strictly monotonicity preserv-
ing.

The case n = 2m+ 1 can be treated in the same way. �
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