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AN IMPROVED SEMILOCAL CONVERGENCE ANALYSIS
FOR THE MIDPOINT METHOD
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Abstract. We expand the applicability of the midpoint method for approximat-
ing a locally unique solution of nonlinear equations in a Banach space setting.
Our majorizing sequences are finer than the known results in scientific literature
[1, 3, 4, 10–16, 24–26, 28] and the convergence criteria can be weaker. Finally,
numerical work is reported that compares favorably to the existing approaches
in the literature [6, 8–16, 24–26,28].
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1. INTRODUCTION

In this study, we are concerned with the problem of approximating a locally
unique solution x? of equation

(1.1) F(x) = 0,

where, F is a twice Fréchet differentiable operator defined on a convex subset
D of a Banach space X with values in a Banach space Y. Numerous problems
in science and engineering can be reduced to solving the above equation [23,
32]. Consequently, solving these equations is an important scientific field of
research. In many situations, finding a closed form solution for the non-linear
equation (1.1) is not possible. Therefore, iterative solution techniques are
employed for solving these equations.

The study about convergence analysis of iterative methods is usually divided
into two categories: semi-local and local convergence analysis. The semilocal
convergence analysis is based upon the information around an initial point to
give criteria ensuring the convergence of the iterative procedure. While the
local convergence analysis is based on the information around a solution to
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find estimates of the radii of convergence balls. In this paper, we study the
semilocal convergence of the midpoint method defined as

yn = xn −F ′(xn)−1F(xn),(1.2)

xn+1 = xn −F ′
(
xn+yn

2

)−1
F(xn), for each n = 0, 1, 2, . . . ,

where x0 ∈ D is an initial point. Here, F ′(x) denotes the first Fréchet-
derivative of the operator F [23, 32]. It is well-known that the Midpoint
method is cubically convergent and it has a long history [see 27–32]. Let
U(w,R) and U(w,R) stand, respectively, for the open and closed balls in X
with center w and radius R > 0. Let the space of bounded linear operators
from X into Y be denoted by L(X,Y). The following set of (C) conditions
have been used

(1) There exists x0 ∈ D such that F ′(x0)−1 ∈ L(Y,X).
(2)

∥∥F ′(x0)−1F(x0)
∥∥ ≤ η.

(3)
∥∥F ′(x0)−1F ′′(x)

∥∥ ≤ L for all x ∈ D.
(4)

∥∥F ′(x0)−1 (F ′′(x)−F ′′(y))
∥∥ ≤M‖x− y‖, for all x, y ∈ D.

The following sufficient convergence criteria have been given in connection to
the (C) conditions

η ≤ 4M+L2−L
√
L2+2M

3M(L+
√
L2+2M) [1, 3, 4, 23–26](1.3)

or

η ≤ 1
2K [12, 14],(1.4)

where

K = L
√

1 + 7M
6L2 .

However, simple numerical examples can be used to show that criteria (1.3)
and (1.4) are unsatisfied but the midpoint method (1.2) still converges to the
solution x?. As an example, let X = Y = R, x0 = 1 and D = [ζ, 2 − ζ] for
ζ ∈ (0, 1). Define function F on D by

(1.5) F(x) = x5 − ζ.

Then, using conditions (C), we get

η = (1−ζ)
5 , L = 4(2− ζ)3, M = 12(2− ζ)2.

Figure 1.1 plots the criteria (1.3) and (1.4) for the problem (1.5). The curve
(defined by the right hand side of the inequality (1.3)) intersect the line η (see
Figure 1.1) at ζ ≈ 0.73 while the curve (defined by the right hand side of the
criteria (1.4)) intersect the η line at ζ ≈ 0.72. We notice in the Figure 1.1
that for ζ < 0.72 the criteria (1.3) and (1.4) are not satisfied. However, one
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Fig. 1.1. Convergence criteria (1.3) and (1.4) for (1.5).

may see that the method (1.2) is convergent. For additional examples, see the
Section 4.

In our work we expand the applicability of the midpoint method (1.2), in
cases where (1.3) or (1.4) are not satisfied, using the (C) conditions together
with the following center Lipschitz condition

(1)
∥∥F ′(x0)−1 (F ′(x)−F ′(x0))

∥∥ ≤ L0 ‖x− x0‖ for all x ∈ D.
We shall refer to (C1)-(C5) as the (H) conditions.

As can be inferred from the studies [1–28], several techniques are usually
employed for analyzing the convergence of iterative methods. Among these,
the most popular technique is based on the concept of majorizing sequences.
In the studies that lead to the convergence conditions (1.3) and (1.4) the
computation of the upper bounds on

∥∥F ′(xn)−1F ′(x0)
∥∥ was based on (C3)

and the estimate
(1.6)

∥∥∥F ′(xn)−1F ′(x0)
∥∥∥ ≤ 1

1−L‖xn−x0‖ .

Instead of (C3) we use the more precise and less expensive condition (C5)
which leads to
(1.7)

∥∥∥F ′(xn)−1F ′(x0)
∥∥∥ ≤ 1

1−L0‖xn−x0‖ .

Note that
(1.8) L0 ≤ L
holds in general and L/L0 can be arbitrarily large [22, 23]. This change in the
study of the semilocal convergence of the midpoint method leads to tighter
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error estimates on the distances ‖yn − xn‖, ‖xn+1 − yn‖, ‖yn − x?‖, ‖xn − x?‖
and weaker convergence criteria.

The rest of the paper is organized as follows. Section 2 develop results on
majorizing sequences for the midpoint method (1.2), where as in the Section
3 we present the semilocal convergence of the Midpoint method. Numerical
examples are given in the concluding section 4.

2. MAJORIZING SEQUENCES

In this section, we study the convergence of scalar sequences that are ma-
jorizing for the Midpoint method (1.2). Let the positive constants be L0 > 0,
L > 0, M ≥ 0 and η > 0. It is convenient for us to define functions γ, a, α,
hi, i = 1, 2, 3 by

γ(t) = L t

2
[
1− L0 t

2

] , γ = γ(η),(2.1)

a(t) = 1
24

(
12Lγ(t)2 + 12Lγ(t) + 7Mη

)
, a = a(η),(2.2)

α(t) = a(t)t[
1− L0

2 (1 + γ(t))t
] , α = α(η),(2.3)

h1(t) = a(t)t+ L0
2 (1 + γ(t))t− 1(2.4)

h2(t) = L
2α(t) t+ γ(t)L0

2 [2(1 + γ(t)) + α(t)] t− γ(t)(2.5)

and

h3(t) = a(t)t+ L0(1 + γ(t))(1 + α(t))t− 1.(2.6)

We denote the minimal positive zeros of the functions h1, h2 and h3 by η1, η2
and η3, respectively. Note that α(t) is well defined on (0, η1) by the choice of
η1. Let us set

(2.7) η0 = min{η1, η2, η3}.

Then, for all t ∈ (0, η0) we have

α ∈ (0, 1),(2.8)
h1(t) < 0,(2.9)
h2(t) ≤ 0(2.10)

and

h3(t) ≤ 0.(2.11)

We can show the following result on the convergence of majorizing sequences
for the Midpoint method.
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Lemma 2.1. Let the positive constants be L0 > 0, L > 0, M≥ 0 and η > 0.
Suppose that

(2.12) η

{
≤ η0 if η0 6= η1,

< η0 if η0 = η1.

Then, scalar sequence {tn} generated by
(2.13)

t0 = 0, s0 = η, tn+1 = sn + L(sn − tn)2

2
[
1− L0

2 (sn + tn)
] ,

sn+1 = tn+1 +
12L(tn+1 − sn)2 + 6L2(sn−tn)3

1−L0
2 (tn+tn)

(sn − tn)3 + 7M(sn − tn)3

24(1− L0 tn+1)

is increasing, bounded from above by

(2.14) t?? =
(

1+γ
1−α

)
η

and converges to its unique least upper bound t? which satisfies

(2.15) 0 ≤ t? ≤ t??.

Moreover, the following estimates hold for each n = 0, 1, 2, . . .

0 < tn+1 − sn ≤ γ(sn − tn) ≤ γαnη(2.16)

and

0 < sn+1 − tn+1 ≤ α(sn − tn) ≤ αn+1η.(2.17)

Proof. We use mathematical induction to prove (2.16) and (2.17). Estimates
(2.16) and (2.17) hold for n = 0 by (2.1)-(2.3) and (2.13), since

s1 − t1 =
12L(t1 − s0)3 + 6L2(s0−t0)3

1−L0
2 (t0+s0)

+ 7M(s0 − t0)3

24(1− L0 t1)

≤ 12Lγ2 + 12Lγ + 7M(s0 − t0)
24
[
1− L0

2 (1 + γ)η
] (s0 − t0)2

≤ a

1− L0
2 (1 + γ)

(s0 − t0)(s0 − t0) ≤ α(s0 − t0) = αη.(2.18)

Let us assume that (2.16) and (2.17) hold for all k ≤ η. Then, we have

tk+1 − sk ≤ γ(sk − tk) ≤ γαkη,
sk+1 − tk+1 ≤ α(sk − tk) ≤ αk+1η,
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tn+1 ≤ sk + γαkη ≤ tk + αkη + γαkη

≤ tk−1 + αk−1η + αkη + γαk−1η + γαkη

≤ · · · ≤ t2 + (α2η + α3η + · · ·+ αkη) + (γα2η + · · ·+ γαkη)
≤ s1 + γαη + (α2η + α3η + · · ·+ αkη) + (γα2η + · · ·+ γαkη)
≤ t1 + αη + γαη + (α2η + α3η + · · ·+ αkη) + (γα2η + · · ·+ γαkη)
≤ η + γη + αη + γαη + (α2η + · · ·+ αkη) + (γα2η + · · ·+ γαkη)

≤ 1−αk+1

1−α (1 + γ)η < 1+γ
1−αη = t??,(2.19)

and
sk+1 ≤ tk+1 + αk+1η ≤

[
1−αk+1

1−α (1 + γ) + αk+1
]
η

<
(

1+γ
1−γ + αk+1

)
η ≤ t??.

Evidently, estimates (2.16) and (2.17) are true provided that
L(sk − tk)

2
(
1− L0

2 (sk + tk)
) ≤ γ(2.20)

and
a(sk − tk)

2(1− L0tk+1) ≤ α.(2.21)

Inequality (2.20) can be written as

(2.22) Lαkη
2 + γL0

2

(
21−αk

1−α (1 + γ) + αk
)
η − γ ≤ 0.

Estimate (2.22) motivates us to define recurrent functions fk on [0, 1) for each
k = 1, 2, . . . by

(2.23) fk(t) = L tkη
2 + γL0

2

(
21−tk

1−t (1 + γ) + tk
)
η − γ.

We need a relationship between two consecutive functions fk. We have by
(2.23)

fk+1(t) = fk(t) + L tk+1η
2 − L tkη

2 + γL0
2

(
2(1 + γ)(tk − tk−1) + tk+1 − tk

)
η

= fk(t) + (t− 1)
[
L
2 t+ γ L0(1 + γ) + γαL0

2

]
tk−1η.(2.24)

It follows from (2.24) that
(2.25) fk+1(t) ≤ fk(t) ≤ · · · ≤ f1(t).
In view of (2.25), estimate (2.22) holds if
(2.26) f1(α) ≤ 0
which is true by the choice of η2. Similarly, estimate (2.21) can be written as

(2.27) aαkη + αL0(1 + γ)
(

1−αk+1

1−α

)
η − α ≤ 0.
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Define recurrent functions gk on [0, 1) for each k = 1, 2, . . . by

(2.28) gk(t) = atk−1η + L0(1 + γ)
(

1−tk+1

1−t

)
η − 1.

Then using (2.28) we get

(2.29) gk+1(t) = gk(t) + (t− 1) [a+ L0(1 + t)t] tk−1η.

Hence, it follows from (2.29) that

(2.30) gk+1(t) ≤ gk(t) ≤ · · · ≤ g1(t).

In view of (2.30), instead of (2.27), we can show that

(2.31) g1(α) ≤ 0,

which is true by the choice of η3. The induction for (2.16) and (2.17) is
complete. Hence, sequence {tn} is an increasing, bounded from above by t??

and as such it converges to its unique least upper bound t?. The proof of the
Lemma is complete. �

We have the following useful and obvious extension of Lemma 2.1

Lemma 2.2. Suppose there exists N ≥ 0 such that

t0 < s0 < t1 < · · · < tN < sN < tN+1 <
1
L0
.(2.32)

and

sN − tN

{
≤ η0 if η0 6= η1

< η0 if η0 = η1.
(2.33)

Then, the conclusions of the Lemma 2.1 hold for sequence {tn}. Moreover,
the following estimates hold for each n = 0, 1, 2, 3, . . .

0 < tN+1+n − sN+n ≤ γN (sN+n − tN+n)(2.34)

and

0 < sN+1+n − tN+1+n ≤ αN (sN+n − tN+n)(2.35)

where γN = γ(sN − tN ), αN = α(sN − tN ) and t??N = 1+γN
1−αN

(sN − tN ).

Remark 2.3.
(1) Note that for N = 0, the Lemma 2.2 reduces to Lemma 2.1 with

α0 = α and γ0 = γ.
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(2) Let us define sequences {rn} and {vn} by
(2.36)

r0 = 0, q0 = η, r1 = q0 + K0(q0 − r0)2

2 (1− L3η/2) ,

q1 = r1 +

(
12L1(r1 − q0)2 + 6L2L′2(q0−r0)3

1−L0 r0/2 + 7M0(q0 − r0)3
)

24(1− L3r1) ,

rn+1 = qn + L(qn − rn)2

2
[
1− L0

2 (qn + rn)
] ,

qn+1 = rn+1 +

(
12L(rn+1 − qn)2 + 6L2(qn−rn)3

1−L0(rn+qn)/2 + 7M(rn − qn)3
)

24(1− L0rn+1) (n ≥ 1)

for some L0, L1, L2, L3, K0, M0 such that

(2.37) L1 ≤ L, L2 ≤ L, L′2 ≤ L, K0 ≤ L, L3 ≤ L0 and M0 ≤M

and

(2.38)

v0 = 0, u0 = η, vn+1 = un + L(un − vn)2

2
[
1− L0

2 (vn + un)
] ,

un+1 = vn+1 +
12L(vn+1 − un)2 + 6L2(un−vn)3

1−L0
2 (vn+un)

+ 7M(un − vn)3

24(1− Lvn+1) .

In view of (1.8), (2.13), (2.36), (2.37)–(2.38) a simple inductive argu-
ment shows that

rn ≤ tn ≤ vn(2.39)
qn ≤ sn ≤ un,(2.40)

rn+1 − qn ≤ sn+1 − tn ≤ un+1 − vn,(2.41)
qn+1 − rn+1 ≤ sn+1 − tn+1 ≤ un+1 − vn+1(2.42)

and

r? = lim
n→∞

rn ≤ t? ≤ v? = lim
n→∞

vn.(2.43)

Moreover, (2.39)-(2.42) hold as strict inequalities for n ≥ 1 if (1.8)
and (2.37) hold as strict inequalities. Sequence {vn} was shown to
be majorizing for the Midpoint method (1.2) provided that (1.3) or
(1.4) hold [1, 3, 4, 10–16, 24–26, 28]. We shall prove in the next
section that tighter sequences {rn} and {vn} are also majorizing for the
Midpoint method (1.2). Then, certainly these majorizing sequences
also converge under (1.3) or (1.4). However, these sequences converge
under the new convergence criteria given in the Lemma 2.1 which can
be weaker that (1.3) or (1.4) (see Section 4). In the next Section, we
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shall provide the connection of L0, L1, L2, L′2, L3, K0, M0 to the
equation (1.1) and the Midpoint method (1.2) so that estimates (2.37)
are satisfied.

3. SEMI-LOCAL CONVERGENCE OF THE MIDPOINT METHOD

We need the following Ostrowski-type representation for the Midpoint me-
thod (1.2).

Lemma 3.1. Suppose that the Midpoint method (1.2) is well defined for each
n = 0, 1, 2, . . .. Then, the following identities are true for each n = 0, 1, 2, . . .

F(xn+1) =

(3.1)

=
∫ 1

0
F ′′(yn + θ(xn+1 − yn))(1− θ) dθ(xn+1 − yn)2

+ 1
4

∫ 1

0
F ′′( (xn+yn)

2 + θ
2(yn − xn))(yn − xn) dθF ′(xn+yn

2 )−1×

×
∫ 1

0
F ′′(xn + θ

2(yn − xn)) dθ(yn − xn)2

+
∫ 1

0

[
F ′′(xn + θ(yn − xn))(1− θ)− 1

2F
′′(xn + θ

2(yn − xn))
]
dθ(yn − xn)2.

and

xn+1 − yn = −1
2F
′(xn+yn

2 )−1
∫ 1

0
F ′′(xn + θ

2(yn − xn)) dθ(yn − xn)2.

Proof. The proof of (3.1) can be found in [1–4]. Using (1.2), we get in turn
that
xn+1 − yn =
= F ′(xn)−1F(xn)−F ′(xn+yn

2 )−1F(xn)

=
(
F ′(xn)−1 −F ′(xn+yn

2 )−1
)
F(xn)

= F ′(xn+yn

2 )−1
[
F ′(xn+yn

2 )F ′(xn)−1 − I
]

= F ′(xn+yn

2 )−1
[
F ′(xn+yn

2 )−F ′(xn)
]
F ′(xn)−1F(xn)

= F ′(xn+yn

2 )−1
∫ 1

0
F ′′(xn + θ(xn+yn

2 − xn))(xn+yn

2 − xn)[−(yn − xn)] dθ

= −1
2F
′(xn+yn

2 )−1
∫ 1

0
F ′′(xn + θ

2yn − xn) dθ(yn − xn)2.

The proof of the Lemma is complete. �

We can show the main semi-local convergence result for the Midpoint me-
thod (1.2) under the (H) conditions.
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Theorem 3.2. Suppose that the (H) conditions and those of the Lemma
2.1 hold. Moreover, suppose that
(3.2) U(x0, t

?) ⊆ D.
Then, sequence {xn} generated by the Midpoint method (1.2) is well defined,
remains in U(x0, t

?) for all n ≥ 0 and converges to a solution x? ∈ U(x0, t
?)

of equation F(x) = 0. Moreover, the following estimates hold
‖yn − xn‖ ≤ sn − tn,(3.3)
‖xn+1 − yn‖ ≤ tn+1 − sn,(3.4)
‖xn − x?‖ ≤ t? − tn(3.5)

and

‖yn − x?‖ ≤ t? − sn.(3.6)
Furthermore, if there exists R ≥ t? such that
(3.7) U(x0, R) ⊆ D
and

(3.8) L0
2 (t? +R) < 1,

then, the solution x? is unique in U(x0, R)

Proof. We shall prove that (3.7) and (3.8) hold using mathematical induc-
tion. Using (1.2), (C2) and (2.13), we get that ‖y0 − x0‖ = ‖F ′(x0)−1F ′(x0)‖ ≤
η = s0− t0 ≤ t?. That is (3.3) holds for n = 0 and y0 ∈ U(x0, t

?). We have by
(C5) and the choice of η1 that

‖F ′(x0)−1
[
F ′(x0+y0

2 )−F ′(x0)
]
‖ ≤ L0

2 ‖y0 − x0‖

≤ L0
2 (s0 − t0) = L0

2 η < 1.(3.9)

It then follows from (3.9) and the Banach Lemma on invertible operators
[23, 32] that

(3.10)
F ′(x0+y0

2 )−1 ∈ L(Y,X),∥∥∥F ′(x0+y0
2 )−1F ′(x0)

∥∥∥ ≤ 1
1−L0

2 η
.

Using (1.2), (2.13), Lemma 3.1 and (3.10) we obtain

‖x1 − y0‖ ≤ 1
2
L ‖y0−x0‖2

1−L0
2 η

≤ 1
2
L (s0−t0)2

1−L0
2 η

(3.11)

and
(3.12) ‖x1 − y0‖ ≤ t1 − s0 ≤ γ(s0 − t0).



11 An improved semilocal convergence 119

Hence, (3.4) holds for n = 0. We also get that ‖x1 − x0‖ ≤ ‖x1 − y0‖ +
‖y0 − x0‖ ≤ t1 − s0 + s0 − t0 = t1 ≤ t?, which implies x1 ∈ U(x0, t

?). Let
us assume that (3.3), (3.4), y? ∈ U(x0, t

?) and xk+1 ∈ U(x0, t
?) hold for all

k ≤ n. It follows from the proof of the Lemma 2.1 and (C5) that∥∥∥F ′(x0)−1
(
F ′(xk+yk

2 )−F ′(x0)
)∥∥∥ ≤ L0

2 (‖xk − x0‖+ ‖yk − x0‖)

≤ L0
2 (tk + sk) < 1(3.13)

and ∥∥∥F ′(x0)−1 (F ′(xk+1)−F ′(x0)
)∥∥∥ ≤ L0‖xk+1 − x0‖

≤ L0tk+1 < 1.(3.14)

It then follows from (3.13) and (3.14) that

F ′(xk+yk
2 )−1 ∈ L(Y,X),

F ′(xk+1)−1 ∈ L(Y,X),∥∥∥F ′(xk+yk
2 )−1F ′(x0)

∥∥∥ ≤ 1
1− L0

2 (tk + sk)
,(3.15) ∥∥∥F ′(xk+1)−1F ′(x0)

∥∥∥ ≤ 1
1−L0tk+1

.(3.16)

Then, we have by (1.2), (C3), Lemma 3.1, (2.13), (3.15) and the induction
hypothesis that

‖xk+1 − yk‖ ≤ 1
2
L‖yk − xk‖2

1− L0
2 (sk + tk)

≤ L(sk−tk)2

2
[
1−L0

2 (sk+tk)
] = tk+1 − sk,(3.17)

which shows (3.4). Moreover, using (1.2), (C3), (C4), (2.13), Lemma 3.1, we
obtain in turn∥∥∥∥∫ 1

0
F ′(x0)−1

[
F ′′(xk + θ(yk − xk))(1− θ)− 1

2F
′′(xk + θ

2(yk − xk))
]
dθ

∥∥∥∥
≤
∥∥∥∥∫ 1

0
F ′(x0)−1 [F ′′(xk + θ(yk − xk))−F ′′(xk)

]
dθ

∥∥∥∥
+ 1

2

∥∥∥∥∫ 1

0
F ′(x0)−1

[
F ′′(xk)−F ′′(xk + θ

2(yk − xk))
]
dθ

∥∥∥∥
≤M

∫ 1

0
θ(1− θ) dθ ‖yk − xk‖+ M

4

∫ 1

0
θ dθ ‖yk − xk‖

= 7M
24 ‖yk − xk‖.

(3.18)
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Thus, ∥∥∥F ′(x0)−1F(xk+1)
∥∥∥(3.19)

≤ L
2 ‖xk+1 − yk‖2 + L2

4
1

1−L0
2 (sk+tk)

‖yk − xk‖3 + 7M
24 ‖yk − xk‖

3

≤ L
2 (tk+1 − sk)2 + L2(sk−tk)3

4
[
1−L0

2 (sk+tk)
] + 7M

24 (sk − tk)3

and
‖yk+1 − xk+1‖ ≤

∥∥∥F ′(xk+1)−1F ′(x0)
∥∥∥ ∥∥∥F ′(x0)−1F(xk+1)

∥∥∥
≤

L(tk+1−sk)2

2 + L2(sk−tk)3

4
[
1−L0

2 (tk+sk)
] + 7M

24 (sk − tk)3

1− L0 tk+1
= sk+1 − tk+1,(3.20)

which shows (3.3). We also have that
‖yk+1 − x0‖ ≤ ‖yk+1 − xk+1‖+ ‖xk+1 − x0‖

≤ sk+1 − tk+1 + tk+1 − t0 = sk+1 ≤ t?.
and

‖xk+2 − x0‖ ≤ ‖xk+2 − yk+1‖+ ‖yk+1 − x0‖
≤ tk+2 − sk+1 + sk+1 − t0 = tk+2 ≤ t?.

Hence, yk+1 and xk+2 belong in U(x0, t
?). It follows from (3.3), (3.4) and the

Lemma 2.1 that sequence {xn} is complete in a Banach space X and as such
it converges to some x? ∈ U(x0, t

?) (since U(x0, t
?) is a closed set). By letting

k →∞ in (3.19) we obtain F(x?) = 0. Estimates (3.5) and (3.6) follows from
(3.3) by using standard majorization techniques [23, 32]. Finally to show the
uniqueness part. Let y? ∈ U(x0, R) be a solution of the equation F(x) = 0.
Let Q =

∫ 1
0 F ′(x? + θ(y? − x?)) dθ. Using (C5), (3.7) and (3.8), we get that∥∥∥F ′(x0)−1 [Q−F ′(x0)

]∥∥∥ ≤ ∫ 1

0
‖F ′(x0)−1 [F ′(x? + θ(y? − x?))−F ′(x0)

]
dθ‖

≤ L0

∫ 1

0
[(1− θ)‖x? − x0‖+ θ‖y? − x0‖] dθ

≤ L0
2 (t? +R) < 1.(3.21)

It follows from (3.21) and the Banach lemma on invertible operators [23, 32]
that Q−1 ∈ L(Y,X). Then, using the identity

0 = F(y?)−F(x?) = Q(y? − x?)
we deduce that x? = y?. The proof of the Theorem is complete. �

Remark 3.3.
(1) The limit point t? can be replaced by t?? (given in closed from by

(2.14)) in Theorem 3.2.
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(2) The conclusions of Theorem 3.2 hold if hypotheses of Lemma 2.1 are
replaced by those of Lemma 2.2.

(3) It follows from the (H) conditions that there exists constants K0, L1,
L2, L3, M0 satisfying∥∥∥F ′(x0)−1F ′′(x0 + θ

2(y0 − x0))
∥∥∥ ≤ K0(3.22) ∥∥∥F ′(x0)−1F ′′(y0 + θ(x1 − y0))
∥∥∥ ≤ L1(3.23) ∥∥∥F ′(x0)−1F ′′(x0 + θ

2(y0 − x0))
∥∥∥ ≤ L2(3.24) ∥∥∥F ′(x0)−1F ′′(x0+y0

2 + θ
2(y0 − x0))

∥∥∥ ≤ L′2(3.25) ∥∥∥F ′(x0)−1
[
F ′(x0+y0

2 )−F ′(x0)
]∥∥∥ ≤ L3

2 ‖y0 − x0‖(3.26) ∥∥∥F ′(x0)−1
[
F ′′(x0 + θ(y0 − x0))−F ′′(x0)

]∥∥∥ ≤M0θ‖y0 − x0‖(3.27)

θ = θ or θ/2. For all θ ∈ [0, 1], where, y0 = x0 − F ′(x0)−1F(x0)
and x1 = x0 − F ′(x0+y0

2 )−1F(x0). Estimates (3.22) -(3.27) are not
additional to the (H) conditions, since in practice the verification of
(C2) - (C5) requires the computation of K0, L1, L2, L3 andM0. Note
that finding these constants only involves computations at the initial
data. Moreover, these constants satisfy (2.37). Furthermore, according
to the proof of Theorem 3.2, {rn} is a majorizing sequence for {xn}
which is finer than {tn} and {vn} (see also (2.39)-(2.43) and the Tables
in the next section).

4. NUMERICAL EXAMPLES

Example 4.1. Let X = Y = R be equipped with the max-norm, x0 = 1,
D = [ψ, 2− ψ]. Let us define F on D by
(4.1) F(x) = xm − ψ.
Here, a ∈ (0, 1.0). Through some algebraic manipulations, for the conditions
(H), we obtain

η = 1− ψ
m

, L = (2− ψ)m−2 (m− 1), L0 = (2−ψ)m−1−1
1−ψ

and M = (m− 1)(m− 2)(2− ψ)m−3.

Furthermore, we see that for m = 8 and ψ = 0.79 the criteria (1.3) and (1.4)
yield

0.026 ≤ 0.021 and 0.026 ≤ 0.020
respectively. Thus we observe that the criteria (1.3) and (1.4) are not satis-
fied. Even though the criteria (1.3) and (1.4) fall short but Midpoint method,
starting at x0 = 1, converges for m = 8 and a = 0.79 as reported in Table 4.1.
Moreover from equations (2.4)–(2.6) we obtain

η1 = 0.038, η2 = 0.028, η3 = 0.027.
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n ‖xn+1 − xn‖ ‖F(xn)‖ xn

0 2.879× 10−02 2.100× 10−01 1.000× 10+00

1 2.419× 10−04 1.576× 10−03 9.712× 10−01

2 1.576× 10−10 1.026× 10−09 9.710× 10−01

3 4.357× 10−29 2.836× 10−28 9.710× 10−01

4 9.209× 10−85 5.994× 10−84 9.710× 10−01

5 8.697× 10−252 5.661× 10−251 9.710× 10−01

6 7.327× 10−753 4.769× 10−752 9.710× 10−01

7 0.000× 10+00 1.198× 10−2,023 9.710× 10−01

Table 4.1. Midpoint method applied to (4.1).

From (2.7), we get η0 = η3 = 0.027. We notice that the assumption (2.12), of
Lemma 2.1, holds. That is η = 0.026 < η0 = 0.027. From (3.22)-(3.26), we
obtain

K0 = 7, L1 = 7
(

7+ψ
8

)6
, L2 = 7, L3 = 6

∥∥∥(2/3+1/3ψ−(−1/3+1/3ψ)2)2−1
∥∥∥

‖−1/3+1/3ψ−(−1/3+1/3ψ)2‖ ,

M0 = 7, L′2 = 6
(

5+ψ
3

)
.

We can verify that the conditions (2.37) are fulfilled. Additionally, for the
sequences {tn} (given by (2.12)), {rn} (given by (2.36)) and {vn} (given by
(2.38)), we produce the Table 4.2. In Table 4.2, we observe that the sequence

n tn+1 − tn rn+1 − rn vn+1 − vn
0 3.084× 10−02 2.909× 10−02 3.542× 10−02

1 6.199× 10−03 6.515× 10−04 2.818× 10−02

2 1.022× 10−04 7.473× 10−08 −4.567× 10−03

3 5.692× 10−10 1.162× 10−19 6.400× 10−04

4 9.876× 10−26 4.366× 10−55 −4.798× 10−07

5 5.158× 10−73 2.317× 10−161 2.204× 10−16

6 7.350× 10−215 3.463× 10−480 −2.134× 10−44

7 2.126× 10−640 1.156× 10−1,436 1.937× 10−128

8 5.147× 10−1,917 0.000× 10+00 −1.450× 10−380

9 0.000× 10+00 0.000× 10+00 6.081× 10−1,137

Table 4.2. Sequences {tn}, {rn} and {vn}.

{rn} provides tighter error bounds than the sequence {tn}. The convergence
of the sequence {vn} is not expected, since (1.3) or (1.4) are not satisfied. Note
also that {vn} was essentially used as a majorizing sequence for the Midpoint
method in [1, 3, 4, 10–16, 24–26, 28]. �
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Example 4.2. In this example, we provide an application of our results to a
special nonlinear Hammerstein integral equation of the second kind. Consider
the integral equation

(4.2) x(s) = 1 + 4
5

∫ 1

0
G(s, t)x(t)3 dt, s ∈ [0, 1],

where, G is the Green kernel on [0, 1]× [0, 1] defined by

(4.3) G(s, t) =
{
t(1− s), t ≤ s;
s(1− t), s ≤ t.

Let X = Y = C[0, 1] and D be a suitable open convex subset of X1 := {x ∈
X : x(s) > 0, s ∈ [0, 1]}, which will be given below. Define F : D→ Y by

(4.4) [F(x)](s) = x(s)− 1− 4
5

∫ 1

0
G(s, t)x(t)3 dt, s ∈ [0, 1].

The first and second derivatives of F are given by

[F(x)′y](s) = y(s)− 12
5

∫ 1

0
G(s, t)x(t)2y(t) dt, s ∈ [0, 1],(4.5)

and

[F(x)′′yz](s) = 24
5

∫ 1

0
G(s, t)x(t)y(t)z(t) dt, s ∈ [0, 1],(4.6)

respectively. We use the max-norm. Let x0(s) = 1 for all s ∈ [0, 1]. Then, for
any y ∈ D, we have

[(I −F ′(x0))(y)](s) = 12
5

∫ 1

0
G(s, t)y(t) dt, s ∈ [0, 1],(4.7)

which means

‖I −F ′(x0)‖ ≤ 12
5 max
s∈[0,1]

∫ 1

0
G(s, t) dt = 12

5×8 = 3
10 < 1.(4.8)

It follows from the Banach theorem that F ′(x0)−1 exists and
(4.9) ‖F ′(x0)−1‖ ≤ 1

1− 3
10

= 10
7 .

On the other hand, we have from (4.4) that

‖F(x0)‖ = 4
5 max
s∈[0,1]

∫ 1

0
G(s, t) dt = 1

10 .

Then, we get η = 1/7. Note that F ′′(x) is not bounded in X or its subset X1.
Take into account that a solution x? of equation (1.1) with F given by (4.3)
must satisfy
(4.10) ‖x?‖ − 1− 1

10‖x
?‖3 ≤ 0,

i.e., ‖x?‖ ≤ ρ1 = 1.153467305 and ‖x?‖ ≥ ρ2 = 2.423622140, where ρ1 and ρ2
are the positive roots of the real equation z − 1− z3/10 = 0. Consequently, if
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we look for a solution such that x? < ρ1 ∈ X1, we can consider D := {x : x ∈
X1 and ‖x‖ < r}, with r ∈ (ρ1, ρ2), as a nonempty open convex subset of
X. For example, choose r = 1.7. Using (3.7) and (3.8), we have that for any
x, y, z ∈ D ∥∥[(F ′(x)−F ′(x0))y

]
(s)
∥∥ =(4.11)

= 12
5

∥∥∥∥∫ 1

0
G(s, t)(x(t)2 − x0(t)2)y(t) dt

∥∥∥∥
≤ 12

5

∫ 1

0
G(s, t)‖x(t)− x0(t)‖ ‖x(t) + x0(t)‖y(t) dt

≤ 12
5

∫ 1

0
G(s, t) (r + 1)‖x(t)− x0(t)‖y(t) dt, s ∈ [0, 1]

and

‖(F ′′(x)yz)(s)‖ = 24
5

∫ 1

0
G(s, t)x(t)y(t)z(t) dt, s ∈ [0, 1].

(4.12)

Then, we get
‖F ′(x)−F ′(x0)‖ ≤ 12

5
1
8(r + 1)‖x− x0‖ = 81

100‖x− x0‖,(4.13)
‖F ′′(x)‖ ≤ 24

5 ×
r
8 = 51

50(4.14)
and ∥∥[[F ′′(x)−F ′′(x)

]
yz
]
(s)
∥∥ = 24

5

∥∥∥∥∫ 1

0
G(s, t) (x(t)− x(t)))y(t)z(t)

∥∥∥∥ dt(4.15)

≤ 24
5

1
8‖x− x‖ = 3

5‖x− x‖.(4.16)
Now we can choose constants as follows:

M = 6
7 , L = 51

35 , L0 = 81
70 , and η = 1

7 .

From equations (2.4) – (2.6), we obtain
η1 = 0.578, η2 = 0.427, η3 = 0.408.

Thus from (2.7)
η0 = η2 = 0.427.

Since η0 6= η1. Thus from (2.12), we get
1
7 ≤ 0.3473064574.

Thus, the assumption (2.12) holds. Furthermore, it can be checked that the
criteria (1.3) (0.143 < 0.307) and (1.4) (0.143 < 0.304) also hold. Likewise we
select the constants

K0 = 51
50 , M0 = 4

9 , L1 = 51
50 , L2 = 52

55 , L′2 = 50
45 .

We can verify that the conditions (2.37) are fulfilled. Additionally, to verify
the criteria (2.33) and check the convergence of the sequences {tn} (given by
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(2.12)), {rn} (given by (2.36)) and {vn} (given by (2.38)), we produce the
Table 4.3.

n tn+1 − tn rn+1 − rn vn+1 − vn sn − tn
0 1.510× 10−01 1.548× 10−01 1.591× 10−01 1.429× 10−01

1 2.989× 10−03 1.689× 10−03 3.404× 10−03 2.985× 10−03

2 2.897× 10−08 2.334× 10−09 4.631× 10−08 2.897× 10−08

3 2.650× 10−23 6.183× 10−27 1.176× 10−22 2.650× 10−23

4 2.028× 10−68 1.150× 10−79 1.925× 10−66 2.028× 10−68

5 9.088× 10−204 7.386× 10−238 8.441× 10−198 9.088× 10−204

6 8.182× 10−610 1.959× 10−712 7.121× 10−592 8.182× 10−610

7 5.971× 10−1,828 0.000× 10+00 4.275× 10−1,774 5.971× 10−1,828

8 0.000× 10+00 0.000× 10+00 0.000× 10+00 0.000× 10+00

9 0.000× 10+00 0.000× 10+00 0.000× 10+00 0.000× 10+00

Table 4.3. Sequences {tn}, {rn} and {vn}.

In the Table 4.3, we observe that the sequence {rn} provides tighter error
bounds than sequences {tn} and {vn}. This is also true by (2.39). Additionally,
we notice in Table 4.3 that the criterion (2.33) holds. That is sn − tn ≤ η0.

Concerning the uniqueness balls, let us denote the radii corresponding to
(3.21), (1.4)[see 1, 3, 4, 23–26] and (1.3) [see 12, 14] by γ1, γ2 and γ3, respec-
tively. These are given as the smallest positive roots of the polynomials

p1(t) = L0 t− 1 (for t? = R),(4.17)
p2(t) = K

2 t
2 − t+ η,(4.18)

and

p3(t) = M
3 t

3 + L
2 t

2 − t+ η(4.19)

respectively. Using the values of L0, L, M and η we get

(4.20) γ1 = 0.864, γ2 = 0.168, γ3 = 0.164.

Here, K = 1.767. Note that U(x0, r − 1) ⊆ D, L0 < L and γ3 < γ2 < γ1.
Therefore, the new approach provides the largest uniqueness ball and since
r − 1 < γ1, we deduce that x? is unique in U(x0, r − 1) = U(1, 0.7) ⊆ D.
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[2] S. Amat, C. Bermúdez, S. Busquier, S. Plaza, On a third-order Newton-type
method free of bilinear operators, Num. Lin. Alg. Appl., 17 (2010) no. 4, pp. 639–653.

http://dx.doi.org/10.1155/2012/782170
http://dx.doi.org/10.1155/2012/782170
http://dx.doi.org/10.1155/2012/782170
http://dx.doi.org/10.1002/nla.654
http://dx.doi.org/10.1002/nla.654
http://dx.doi.org/10.1002/nla.654


126 Ioannis K. Argyros and Sanjay K. Khattri 18

[3] S. Amat, S. Busquier, Third-order iterative methods under Kantorovich conditions,
J. Math. Anal. Appl., 336 (2007) no. 1, 243–261.

[4] S. Amat, S. Busquier, J.M. Gutiérrez, Third-order iterative methods with appli-
cations to Hammerstein equations: A unified approach, J. Comp. Appl. Math., 235
(2011) no. 9, 2936–2943.

[5] I.K. Argyros, D. Chen, The midpoint method for solving nonlinear operator equa-
tions in Banach space, Appl. Math. Lett., 5 (1992), pp. 7–9.

[6] I.K. Argyros, D. Chen, The midpoint method in Banach spaces and the Ptak error
estimates, Appl. Math. Comp., 62 (1994), 1–15.

[7] I.K. Argyros, D. Chen, On the midpoint iterative method for solving nonlinear
operator equations in Banach space and its applications in integral equations, Rev.
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28 (1999) no. 1, 23–35.

http://dx.doi.org/10.1016/j.jmaa.2007.02.052
http://dx.doi.org/10.1016/j.jmaa.2007.02.052
http://dx.doi.org/10.1016/j.cam.2010.12.011
http://dx.doi.org/10.1016/j.cam.2010.12.011
http://dx.doi.org/10.1016/j.cam.2010.12.011
http://dx.doi.org/10.1016/0893-9659(92)90076-L
http://dx.doi.org/10.1016/0893-9659(92)90076-L
http://dx.doi.org/10.1016/0096-3003(94)90129-5
http://dx.doi.org/10.1016/0096-3003(94)90129-5
http://ictp.acad.ro/jnaat/journal/article/view/1994-vol23-no2-art3
http://ictp.acad.ro/jnaat/journal/article/view/1994-vol23-no2-art3
http://ictp.acad.ro/jnaat/journal/article/view/1994-vol23-no2-art3
http://dx.doi.org/10.1016/j.amc.2010.03.076
http://dx.doi.org/10.1016/j.amc.2010.03.076
http://dx.doi.org/10.1016/0893-9659(93)90104-U
http://dx.doi.org/10.1016/0893-9659(93)90104-U
http://dx.doi.org/10.1016/0096-3003(93)90137-4
http://dx.doi.org/10.1016/0096-3003(93)90137-4
http://dx.doi.org/10.1016/S0893-9659(97)00065-7
http://dx.doi.org/10.1016/S0893-9659(97)00065-7
http://ictp.acad.ro/jnaat/journal/article/view/1998-vol27-no1-art4
http://ictp.acad.ro/jnaat/journal/article/view/1998-vol27-no1-art4
http://ictp.acad.ro/jnaat/journal/article/view/1998-vol27-no1-art4
http://dx.doi.org/10.1016/j.cam.2011.01.005
http://dx.doi.org/10.1016/j.cam.2011.01.005
http://dx.doi.org/10.1016/j.cam.2011.01.005
http://dx.doi.org/10.1093/imanum/17.4.511
http://dx.doi.org/10.1093/imanum/17.4.511
http://ictp.acad.ro/jnaat/journal/article/view/1999-vol28-no1-art3
http://ictp.acad.ro/jnaat/journal/article/view/1999-vol28-no1-art3
http://ictp.acad.ro/jnaat/journal/article/view/1999-vol28-no1-art3


19 An improved semilocal convergence 127

[26] J.A. Ezquerro, M.A. Hernández, New Kantorovich-type conditions for Halley’s
method, Appl. Numer. Anal. Comput. Math., 2 (2005) no. 1, 70–77.

[27] E. Halley, A new, exact, and easy method of finding roots of any equations generally,
and that without any previous reduction, Philos. Trans. Roy. Soc. London, 18 (1694),
136–145.

[28] M.A. Hernández, Second-Derivative-Free Variant of the Chebyshev method for non-
linear equations, J. Optim. Theory Appl., 104 (2000) no. 3, 501–515.

[29] W. Werner, Some improvements of classical iterative methods for the solution of non-
linear equations, Numerical Solution of Nonlinear Equations Lecture Notes in Mathe-
matics, 878/1981, (1981), 426–440.

[30] V. Candela, A. Marquina, Recurrence relations for rational cubic methods II: The
Chebyshev method, Computing, 45 (1990) no. 4, 355–367.

[31] S. Kanno, Convergence theorems for the method of tangent hyperbolas, Mathematica
Japonica, 87 (1992) no. 4, 711–722.

[32] A.M. Ostrowski, Solution of Equations in Euclidean and Banach Spaces, Academic
Press, New York, 3rd Ed., 1973.

[33] T. Yamamoto, On the method of tangent hyperbolas in Banach spaces, J. Comput.
Appl. Math., 21 (1988) no. 1, 75–86

Received by the editors: February 16, 2013.

http://dx.doi.org/10.1002/anac.200410024
http://dx.doi.org/10.1002/anac.200410024
http://dx.doi.org/10.1023/A:1004618223538
http://dx.doi.org/10.1023/A:1004618223538
http://dx.doi.org/10.1007/bfb0090691
http://dx.doi.org/10.1007/bfb0090691
http://dx.doi.org/10.1007/bfb0090691
http://dx.doi.org/10.1007/BF02238803
http://dx.doi.org/10.1007/BF02238803
http://dx.doi.org/10.1016/0377-0427(88)90389-5
http://dx.doi.org/10.1016/0377-0427(88)90389-5

	1. Introduction
	2. Majorizing Sequences
	3. Semi-local convergence of the Midpoint method
	4. Numerical examples
	References

