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ACCELERATING THE CONVERGENCE
OF NEWTON-TYPE ITERATIONS∗

T. ZHANLAV§, O. CHULUUNBAATAR§,† and V. ULZIIBAYAR§,‡

Abstract. In this paper, we present a new accelerating procedure in order to
speed up the convergence of Newton-type methods. In particular, we derive
iterations with a high and optimal order of convergence. This technique can
be applied to any iteration with a low order of convergence. As expected, the
convergence of the proposed methods is remarkably fast. The effectiveness of
this technique is illustrated by numerical experiments.
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1. INTRODUCTION

As it is known, the monotone approximations for the solutions of nonlinear
equations in R is interesting not only from theoretical, but also from practical
view points. In particular, two-sided approximations can be efficiently used as
a posteriori estimations for the errors in approximating the desired solution. It
means that one can control the error at each iteration step. In the last decade,
many authors have developed new monotone iterative methods [9,18,19]. The
main advantage of the monotone iterations is that it does not require good
initial approximations contrary to what occurs in the other iteration methods,
such as secant-like methods, Newton’s methods and others [4]. On the other
hand, accelerating the convergence of iterative methods is also of interest both
from theoretical and computational view points [1–3,5,10–14,16]. For example,
in [4] was constructed a family of the predictor-corrector iterative method from
the simplified secant method and a family of secant-like methods; the authors
analyzed the initial conditions on the starting point in order to improve the
semilocal convergence of the method. In general, it is desirable to choose the
starting point from the convergence domain [15,16,19].
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In recent years, many iterative methods for solving nonlinear equations have
been developed [1–3,5,10–14,16] to improve the local order of convergence of
some methods such as Newton, Ostrowski, Potra-Ptak’s methods and so on.
The most efficient methods studied in the literature are the optimal eighth-
order methods with four function evaluations per iteration, see [1–3,10,12] and
references therein. The methods developed in [1, 7, 12] are based on optimal
Ostrowski’s or King’s method and use arbitrary real parameters and weight
functions. The methods proposed in [2, 3, 10] are obtained by composing an
iterative method proposed by Chun and Potra-Ptak’s method with Newton’s
method.

In this paper we propose a new accelerating procedure for Newton-type
methods. By virtue of this procedure, we obtain a higher order, in particular
optimal order methods. The usage of the optimal choice of parameter allows
us to improve the convergence speed. This may be also helpful in order to
extend the domain of convergence.

The paper is organized as follows. Section 2 describes monotone and two-
sided approximations. In Section 3, we show the accelerating procedure and
establish a convergence order of the new proposed methods. Section 4 is de-
voted to finding an optimal parameter in the proposed iterations. Finally,
Section 5 presents various numerical examples which confirm the theoretical
results, and a numerical comparison with other existing optimal order meth-
ods.

2. STATEMENT OF THE PROBLEMS

Let a, b ∈ R, a < b, f : [a, b] → R and consider the following nonlinear
equation

f(x) = 0.(2.1)

Assume that f(x) ∈ C4[a, b], f ′(x) 6= 0, x ∈ (a, b) and Eq. (2.1) has a unique
root x∗ ∈ (a, b). In [18,19] the following iterations were proposed:

x2n+1 = x2n − τn f(x2n)
f ′(x2n) ,(2.2)

x2n+2 = x2n+1 − f(x2n+1)
f ′(x2n+1) , n = 0, 1, . . .(2.3)

In [19] it is shown that the iterations (2.2) and (2.3) monotone convergent
under conditions

0 < τn ≤ 1, an = M2|f(xn)|
(f ′(xn))2 < 1

2 , M2 = sup
x∈Ur(x∗)

|f ′′(x)|,(2.4)

and under the assumption H : f ′(x) 6= 0, f ′′(x) preserve sign in the small
neighborhood Ur(x∗) = {x : |f(x)| < r}. However the iterations (2.2) and (2.3)
are not equipped with a suitable choice of parameter τn. In [18] it was shown
that the iterations (2.2) and (2.3) have a two-sided approximation behavior
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under conditions

τn ∈ I2n =
[
t1−
√

1−2a2n
a2n

, −1+
√

1+4a2n
a2n

)
⊆ (1, 2), a2n <

4
9 .(2.5)

It is also proved that the convergence rate of these iterations is at least 2, and
the order of convergence is increased up to 4, when τn → 1. From this it is
clear that the accelerating of the convergence of iterations (2.2) and (2.3) is
important, especially at the early stage of iterations.

3. MONOTONE AND TWO-SIDED CONVERGENCE OF ITERATIONS

AND THEIR ACCELERATION

If τn ≡ 1, then the iterations (2.2) and (2.3) become as Newton’s one

xn+1 = xn − f(xn)
f ′(xn) , n = 0, 1 . . .(3.1)

According to [19] the iteration (3.1) is a monotone convergent under condition
(2.4) and assumption H.

Let θn = f(xn+1)
f(xn) . Then the Taylor expansion of f(xn+1) gives

0 < θn ≤ an
2 < 1

4 .(3.2)

Now we proceed to accelerate the convergence of monotone iteration (3.1).
To this end, we use two known approximations xn, xn+m satisfying either
xn < xn+m < x∗ or x∗ < xn+m < xn and consider

yn = xn + t(xn+m − xn), t > 1.(3.3)

From (3.3) it is clear that yn belongs to interval connecting xn and xn+m
under condition 0 ≤ t ≤ 1. Hence, the extrapolating approach corresponds to
the case t > 1. Our aim is to find the optimal value of t = topt in (3.3) such
that the new approximation yn given by (3.3) will be situated more close to
x∗ as compared with xn and xn+m. We use Taylor expansion of the smooth
function f(x) ∈ Ck+1[a, b]:

f(yn) = f(xn) + f ′(xn)t(xn+m − xn) + . . .

+f (k)(xn)
k! tk(xn+m − xn)k +O

(
(xn+m − xn)k+1).(3.4)

Neglecting small term O
(
(xn+m − xn)k+1) in (3.4), we have

(3.5)
f(yn) ≈ f(xn) + f ′(xn)t(xn+m − xn) + . . .+ f (k)(xn)

k! tk(xn+m − xn)k ≡ Pk(t).

From (3.5) it is clear that

f(xn) = Pk(0).(3.6)

We also require that

f(xn+m) = Pk(1).(3.7)
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From (3.7) we find f (k)(xn)
k! (xn+m − xn)k and substituting it into (3.5), we get

Pk(t). From this we find t > 1 such that

f(yn) ≈ Pk(t) = 0.(3.8)

Geometrically, (3.5) means that the graph (plot) of f(x) in the vicinity of root
x∗ is replaced by curve Pk(t) passing through the given points (xn, f(xn)) and
(xn+m, f(xn+m)). Thus, Eq. (3.5) for k = 1, 2 and k = 3 gives us

P0(t) = f(xn) ≈ f(yn), yn = xn,(3.9)
P1(t) = f(xn) + (f(xn+m)− f(xn)) t,(3.10)
P2(t) = f(xn) + f ′(xn) (xn+m − xn) t

+
(
f(xn+m)− f(xn)− f ′(xn)(xn+m − xn)

)
t2,(3.11)

P3(t) = f(xn) + f ′(xn) (xn+m − xn) t+ f ′′(xn)
2 (xn+m − xn)2t2

+
(
f(xn+m)− f(xn)− f ′(xn)(xn+m − xn)(3.12)

−f ′′(xn)
2 (xn+m − xn)2

)
t3,

respectively. Thus, the parameter t in (3.3) is calculated as a root greater
than 1 of Eq. (3.8). In particular, for k = 1, we have

topt = f(xn)
f(xn)−f(xn+m) > 1.(3.13)

Since Pk(0)Pk(1) = f(xn)f(xn+m) > 0 for k ≥ 1, Eq. (3.8) may have at least
one root satisfying the condition t∗ > 1. From (3.2) it follows that

|f(xn+1)| < 1
4 |f(xn)|.(3.14)

Therefore, it is desirable to choose n and m such that

|f(xn+m)| <
(1

4
)m|f(xn)| � 0.1.(3.15)

This inequality is written in term of Pk(t) as

|Pk(1)| ≤
(1

4
)m|Pk(0)| < 0.1.(3.16)

On the other hand, from (3.5) we see that P ′k(1) is not equal to 0 under the
assumption H, i.e. t = 1 is not a critical point of Pk(t). Thus, Pk(t) is de-
creasing around t = 1. Therefore, there exists topt > 1 such that Pk(topt) = 0.

Lemma 3.1. Assume that f ∈ C4[a, b], the assumption H is satisfied and

|x∗ − xn| = εn < 1.(3.17)

Then the following holds

topt − 1 = O(εn).(3.18)

Proof. First of all, let us note that the inequality (3.17) is equivalent to

|f(xn)| = O(εn),(3.19)
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which follows from the expansion
0 = f(x∗) = f(xn) + f ′(ξ)(x∗ − xn).

Of course, |x∗ − xn+m| < εn and |xn+m − xn| < εn under (3.17).
We also use an analogous expansion for Pk(t)

0 = Pk(topt) = Pk(1) + P ′k(η)(topt − 1), η ∈ (1, topt).(3.20)
Since Pk(t) is decreasing around t = 1, then P ′k(η) 6= 0.

Hence, from (3.19), (3.20) and (3.15) we conclude that

topt − 1 = −f(xn+m)
P ′
k
(η) ≈ O(εn).(3.21)

The Lemma is proved. �

Note that in [16] the iterations was proposed:

x2n+1 = x2n − τn f(x2n)
f ′(x2n) ,(3.22)

x2n+2 = x2n+1 − x2n+1−x2n
f(x2n+1)−f(x2n)f(x2n+1), n = 0, 1, . . . ,(3.23)

which has a third order of convergence when τn = 1 or τn tends to 1. It is
easy to show that the iteration (3.23) coincides fully with our acceleration
procedure (3.3) and (3.13) with m = 1 and k = 1. Therefore, one can expect
a high acceleration when k = 2, 3 for Newton’s method.

How to accelerate the convergence rate of iteration (3.1)? The answer of
this question gives the following theorem.

Theorem 3.2. Assume f(x) ∈ Ck+2 and the condition (3.17) is satisfied.
Then for yn with topt we have

|x∗−yn|
|x∗−xn|k+2 ≈ O(1),(3.24)

where O is the Landau symbol.

Proof. Let
x∗ = xn + t∗(xn+m − xn), t∗ ≥ 1,
yn = xn + topt(xn+m − xn).(3.25)

We use Taylor expansions of f(x) ∈ Ck+2

0 =f(x∗) =(3.26)

=
k∑
p=0

f (p)(xn)
p! (t∗)p(xn+m − xn)p+ f (k+1)(ηn)

(k+1)! (t∗)(k+1)(xn+m−xn)(k+1),

f(xn+m)−
k−1∑
p=0

f (p)(xn)
p! (xn+m − xn)p =(3.27)

= f (k)(xn)
k! (xn+m − xn)k + f (k+1)(ξn)

(k+1)! (xn+m − xn)k+1,
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and

0 = Pk(topt) =
k−1∑
p=0

f (p)(xn)
p! (topt)p(xn+m − xn)p(3.28)

+
(
f(xn+m)−

k−1∑
p=0

f (p)(xn)
p! (xn+m − xn)p

)
(topt)k,

where ηn ∈ (xn, x∗) and ξn ∈ (xn, xn+m). Using (3.27) in (3.28) and subtract-
ing (3.28) from (3.26) we get[

f ′(xn) + f ′′(xn)
2 (xn+m − xn)(t∗ + topt) + f ′′′(xn)

6 (xn+m − xn)2

(t∗2 + t∗topt + t2opt) + · · ·+ f (k)(xn)
k!

(
t∗
k−1 + t∗

k−2
topt + · · ·+ tk−1

opt

)
(xn+m − xn)k−1

]
(t∗ − topt) =

= − (xn+m−xn)k
(k+1)!

(
f (k+1)(ηn)t∗k+1 − f (k+1)(ξn)tkopt

)
.(3.29)

Since f ′(xn) 6= 0, then from last expression we deduce that

t∗ − topt = O(εkn).(3.30)

It is possible to derive a more precise estimation than (3.30). Indeed, using
(3.30) and f ∈ Ck+2 we evaluate

An = f (k+1)(ηn)t∗k+1 − f (k+1)(ξn)tkopt

= f (k+1)(ξn)(t∗k+1 − tkopt) + f (k+2)(ωn)(ηn − ξn).(3.31)

By definition we have

|ηn − ξn| ≤ |x∗ − xn| = εn.(3.32)

Using (3.18) and (3.30) we have

t∗
k+1 − tkopt =

(
topt +O(εkn)

)k+1 − tkopt

= tkopt

(
topt(1 +O(εkn))k+1 − 1

)
= tkopt

(
topt +O(εkn)− 1

)
= O(εn).(3.33)

Then An = O(εn) and thereby from (3.29) we get

t∗ − topt = O(εk+1
n ).(3.34)

Hence, from (3.25) and (3.26) we find that

x∗ − yn = O(εk+2
n ).

which proves (3.24). �

The sequence {yn} given by formula (3.3) can be considered as a new a
iteration. For it we have the followlng:
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Theorem 3.3. Assume f(x) ∈ Ck+1 and the convergence order of iterations
(3.1) equal to 2 i.e., the following holds

|x∗ − xn| ≤Mq2n |x∗ − x0|, 0 < q < 1, M = const.(3.35)

If the equation (3.8) has at least one root topt, greater than 1, then the con-
vergence order of new iteration (3.3) is the same as (3.1) and we have

(3.36) |x∗ − yn| ≤M1q
2n
1 |x∗ − y0|, 0 < q1 = qk+1 < 1, M1 = const.

Proof. By virtue of (3.35) the condition (3.17) is satisfied for large n. Then
by Theorem 3.2, the relation (3.24) holds. Using (3.35) in (3.24), we get

|x∗ − yn| ≤ C
(
qd
n)k+2|x∗ − x0|k+2 = C

(
qk+2)dn |x∗ − x0|k+2

= Cqd
n

1 |x∗ − x0|k+2 ≤M1q
dn

1 |x∗ − y0|, q1 = qk+2 < q < 1.(3.37)

The proof is completed. �

Theorem 3.3 shows that the convergence order of iteration (3.3) is the same
as iteration (3.1).

However, the speed of convergence of these iterations depends on the factor
q1 and q in (3.35) and (3.36), respectively. Since q1 = qk+2 < q for k = 1, 2, 3,
one can expect a more rapid convergence of iteration (3.3). Of course, the
higher is acceleration of iteration attained at k = 3.

From (3.35) and (3.36) it is clear that the iteration (3.3) converges to x∗

more rapidly than iteration (3.1) by virtue of q1 = qk+1 < q. This accelerating
procedure is useful, especially at the beginning of iterations, but under condi-
tion (3.17). From Theorem 3.3, it is clear that the sequence {yn} given by (3.3)
together with (3.1) can be considered as a new iteration process with a small
factor compared to (3.1). The acceleration procedure is achieved without ad-
ditional calculations, so that the iteration (3.3) possesses a high computational
efficiency. However, despite the sequence xn is monotone, the new iteration
(3.3) may not be monotone. For instance, when k = 1 it is easy to show that

f(yn) = f ′′(ξn)
2 (xn+m − xn)2.(3.38)

From this it is clear that

f(yn) > 0 if f ′′(x) > 0,(3.39)

and

f(yn) < 0 if f ′′(x) < 0.(3.40)

Let us know two successive approximations xn and xn+1, for which

f(xn)f(xn+1) < 0(3.41)

holds. We consider

yn = xn + t(xn+1 − xn), 0 ≤ t ≤ 1.(3.42)
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The acceleration technique will be the same as a previous case with m = 1.
In this case, according to (3.41) we have Pk(0)Pk(1) = f(xn)f(xn+1) < 0 for
k = 1, 2, 3. Hence, Eq. (3.8) has a root topt ∈ (0, 1). Obviously, the new
approximation

yn = xn + topt(xn+1 − xn), 0 ≤ t ≤ 1,(3.43)

will be situated more close to x∗ as compared to xn, xn+1 and Theorem 3.2
holds true for this case, too. It indicates that the two-sided approximations are
useful not only for estimations of roots, but also for finding it approximately
with a higher accuracy. Of course, the acceleration procedure (3.3) can be
continued further with xn+m := yn, xn := xn+m and with t > 1 if yn and
xn+m are located on side of x∗ and with t ∈ (0, 1) if yn and xn+m are located
on two-sides of root. Note that the accelerating procedure (3.3) is applicable
not only for iterations (3.1), but also for any iteration, in particular, for the
following iterations (A), (B), (C) and (D).

Now we consider the accelerated iteration

(A) yn = xn − f(xn)
f ′(xn) , xn+1 = xn + topt(yn − xn), n = 0, 1, . . .

The iteration (A) is a damped Newton’s method [17,20] with optimal param-
eter τn = topt. The first step yn is used for finding the optimal parameter.

Theorem 3.4. Assume that the assumptions of Theorem 3.2 are fulfilled.
Then the convergence order of iteration (A) with optimal topt is d = k+2, k =
1, 2, 3, depending on the smoothness of f .

Proof. If we compare (A) with (3.1) and (3.3), then xn+m := yn and yn :=
xn+1. Therefore, the expression (3.24) in the Theorem 3.2 has a form

|x∗−xn+1|
|x∗−xn|k+2 = O(1)⇐⇒ |x∗ − xn+1| ≤M |x∗ − xn|k+2,(3.44)

which completes the proof of the Theorem 3.4. �

Now let us consider another three-step iteration

yn =xn − f(xn)
f ′(xn) , zn = yn − f(yn)

f ′(xn) ,

xn+1 =yn + t(zn − yn), n = 0, 1, . . .(B)

Note that if t ≡ 1 in (B), then it leads to

(B′) yn = xn − f(xn)
f ′(xn) , xn+1 = yn − f(yn)

f ′(xn) , n = 0, 1, . . .

The iteration (B′) is a particular case of scheme (40) given in [16] with σ = 0
end τ = 1 and has a third order of convergence. Therefore, the iteration (B)
can be considered as improvement of iteration (B′).

Theorem 3.5. The assumptions of the Theorem 3.2 are fulfilled. Then the
convergence order of iteration (B) with optimal topt equal to d = 2k + 3.
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Proof. If we compare (B) with (3.3), then xn := yn, xn+m := zn, yn := xn+1.
Then form (3.29) and (3.19) we get

t∗ − topt = MAn(zn − yn)k ≈ O(ε2k+1
n ),(3.45)

where

x∗ = yn + t∗(zn − yn), xn+1 = yn + topt(zn − yn).(3.46)

From this and from (3.45) we obtained

(3.47) x∗ − xn+1 = (t∗ − topt)(zn − yn) ≈ O(ε2k+1
n )O(ε2

n) = O(ε2k+3
n ),

i.e., we have

|x∗ − xn+1| ≤M1|x∗ − xn|2k+3,

which means that the convergence order of iteration (B) is equal to d = 2k+3,
k = 1, 2, 3. �

From the Theorem 3.5, we see that the convergence order of iteration (B′)
can be increased two or four units at the expense of only two additional eval-
uations of the function. So the order of convergence and the computational
efficiency of the method are greatly improved.

In [5] Algorithm 2 was constructed:

zn = xn − (xn)
f ′(xn) , xn+1 = zn −H(xn, yn) f(zn)

f ′(xn) ,

and it is proved that the order of convergence equals 5, 6, 7 depending on a
suitable choice of two-variable function H(xn, yn). For comparison purpose
we can rewrite iteration (B) as

yn = xn − f(xn)
f ′(xn) , xn+1 = yn − t f(yn)

f ′(yn) .

We see that these two methods are different from one another only by chosen
factors t and H(xn, yn).

Now we consider the following iteration:

(C) yn = xn − f(xn)
f ′(xn) , zn = yn − f(yn)

f ′(yn) , xn+1 = yn + t(zn − yn), n = 0, 1, . . .

The iteration (C) can be considered as improvement of iteration

(C′) yn = xn − f(xn)
f ′(xn) , xn+1 = yn − f(yn)

f ′(yn) , n = 0, 1, . . . ,

since if t ≡ 1 in (C), then it leads to (C′).
In [16], it was proven that the convergence order of (C′) is four.

Theorem 3.6. The assumptions of Theorem 3.2 are fulfilled. Then the
convergence order of iteration (C) with optimal topt equal to d = 2(k + 2),
k = 1, 2, 3.
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Proof. If we compare (C) with (3.3), then xn := yn, xn+m := zn, yn := xn+1.
Therefore, the expression (3.24) reads as

|x∗−xn+1|
|x∗−yn|k+2 = O(1)⇐⇒ |x∗ − xn+1| ≤M |x∗ − yn|k+2.(3.48)

From (C), we find that

x∗ − yn = x∗ − xn + f(xn)−f(x∗)
f ′(xn) .(3.49)

Substituting here the expansion of f(x∗)

f(x∗) = f(xn) + f ′(xn)(x∗ − xn) + f ′′(ξn)
2 (x∗ − xn)2,(3.50)

we have

|x∗ − yn| ≤ |f
′′(ξn)|
|f ′(xn)| |x

∗ − xn|2.(3.51)

Using the last estimate in (3.45), we obtain

|x∗ − xn+1| ≤M1|x∗ − xn|2(k+2),

which means that the convergence order of iteration (C) equals d = 2(k + 2),
k = 1, 2, 3. �

Note that the iterations (A), (B) and (C) can be rewritten as a damped
Newton’s method [20]

xn+1 =xn − τn f(xn)
f ′(xn) ,(3.52)

τn =topt,(3.53)

τn =1 + topt
f(yn)
f(xn) ,(3.54)

τn =1 + topt
f(yn)
f(xn)

f ′(xn)
f ′(yn) ,(3.55)

respectively. The unified representation (3.52) of different iterations shows
that the choice of the damped parameter τn in (3.52) is essentially affected
for the convergence order. Of course, the parameter τn in (3.52) is defined by
different ways, but in all cases τn → 1 as n→∞.

The speed of convergence of sequence {τn} to unit is different for each
iteration methods. In [17] the conjecture was proposed:

|1− τn| ≤Mqρ
n
, 0 < q < 1.(3.56)

Now we consider the following three-point iterative method:

yn =xn − f(xn)
f ′(xn) , zn = xn + t̄(yn − xn),

xn+1 =yn + t(zn − yn), n = 0, 1, . . . ,(D)

where t̄ and t in (D) are some parameters to be determined. We can formulate
the following theorem.
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Theorem 3.7. Assume that f(x) ∈ C4(a, b) and an initial approximation
x0 is sufficiently close to the zero x∗ ∈ (a, b) and the parameter t̄ is chosen by
as a root of equation

θnt̄
2 − t̄+ 1 = 0, θn = f(yn)

f(xn) ,(3.57)

and t is a root of equation
Ψ(t, α) = αΨ1(t) + (1− α)Ψ2(t) = 0,(3.58)

where
Ψ1(t) = at2 −

(
a+ f(xn)

f(yn)
(
f(zn)− f(yn)

))
t− f(xn),(3.59)

a = −2f(zn)− f(xn)(1− t̄)2,

and
Ψ2(t) =

(
(1− t̄)(2− t̄)f(xn)− (2− 3t̄)f(zn)

)
t

+ (1− t̄)
(
2f(zn)− (2− t̄)f(xn)

)
.(3.60)

Then the three-point methods (D) is of eight order of convergence.

Proof. Using zn − yn = (1− t̄) f(xn)
f ′(xn) in Taylor expansion

f(xn+1) = f(yn) + f ′(yn)t(zn − yn) + f ′′(yn)
2 t2(zn − yn)2 +O

(
(zn − yn)3),

we get

f(xn+1) = f(yn) + t(1− t̄) f
′(yn)
f ′(xn)f(xn)

+ f ′′(yn)
2 t2(1− t̄)2 f2(xn)(

f ′(xn)
)2 +O

(
f6(xn)

)
.(3.61)

Analogously, the Taylor expansion of f(xn+1) at point x = zn gives

f(xn+1) = f(zn)− (1− t)(1− t̄) f
′(zn)
f ′(xn)f(xn)

+ f ′′(zn)
2 (1− t)2(1− t̄)2 f2(xn)(

f ′(xn)
)2 +O

(
(1− t)3f6(xn)

)
.(3.62)

Using f ′(zn) = f ′(yn) + f ′′(yn)(zn− yn) +O
(
(zn− yn)2) in the last expansion,

we have
f(xn+1) = f(zn)− (1− t)(1− t̄) f

′(zn)
f ′(xn)f(xn)

+ f ′′(zn)
2 (1− t)2(1− t̄)2 f2(xn)(

f ′(xn)
)2 +O

(
(1− t)3f6(xn)

)
.(3.63)

Using f ′(zn) = f ′(yn)+f ′′(yn)(zn−yn)+O
(
(zn−yn)2

)
in the last expansion,

we have
f(xn+1)=f(zn)− (1− t)(1− t̄) f

′(yn)
f ′(xn)f(xn)

− f ′′(yn)f2(xn)

2
(
f ′(xn)

)2 (1− t2)(1− t̄)2+O
(
f8(xn)

)
.(3.64)
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From (3.61) and (3.64) one can eliminate term with f ′(yn)
f ′(xn)f(xn). As a result,

we have

f(xn+1)=tf(zn)+(1−t)f(yn)− f ′′(yn)f2(xn)

2
(
f ′(xn)

)2 (1− t̄)2t(1−t)+O
(
f8(xn)

)
.

(3.65)

Note that in driving (3.65), we keep in mind that

1− t = O
(
f2(xn)

)
.(3.66)

Further, using Taylor expansion of f(x) ∈ C4(D) at points yn we obtain

f ′′(yn) = 2
(
f ′(xn)

)2

f2(xn)t̄(1−t̄)
[
(1− t̄)f(xn) + t̄f(yn)− f(zn)

)
− f ′′′(yn)

3
f(xn)
f ′(xn)(2− t̄) +O

(
f2(xn)

]
.(3.67)

The same technique gives us

f ′′(yn) =2
(
f(zn)−(1−t̄)f(xn)

)
t̄2f2(xn)

(
f ′(xn)

)2− f ′′′(yn)
3

f(xn)
f ′(xn)(3− t̄)+O

(
f2(xn)

)
.(3.68)

For (3.67) and (3.68) one can eliminate the term with f ′′′(yn). As a result, we
obtain

f ′′(yn)f2(xn)

2
(
f ′(xn)

)2 = 1
t̄2(1−t̄)

(
(3− t̄)t̄

(
− f(zn) + t̄f(yn) + (1− t̄)f(xn)

)
−(2− t̄)(1− t̄)

(
f(zn)− (1− t̄)f(xn)

))
+O

(
f4(xn)

)
.(3.69)

Substituting (3.69) into (3.64), we obtain

f(xn+1) = Ψ1(t) +O
(
f8(xn)

)
,(3.70)

where

Ψ1(t) = at2 −
(
a+ f(xn)

f(yn)
(
f(zn)− f(yn)

))
t− f(xn),(3.71)

a = −2f(zn)− f(xn)(1− t̄)2.

On the other hand, by virtue of (D) we have

xn+1 − zn = −(1− t̄)(1− t) f(xn)
f ′(xn) .(3.72)

If we take (3.57) and (3.66) into account in (3.72), from it we deduce

xn+1 − zn = O
(
f4(xn)

)
.

Then, from (3.62) we get

f(xn+1) = f(zn) + (1− t̄)(1− t) f
′(zn)
f ′(xn)f(xn) +O

(
f8(xn)

)
.(3.73)
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Now we approximate f ′(zn) by the method of undetermined coefficient such
that
(3.74) f ′(zn) ≈ anf(xn) + bnf(yn) + cnf(zn) + dnf

′(xn) +O
(
f4(xn)

)
,

This can be done by means of Taylor expansion of f(x) ∈ C4(a, b) at point zn
and we obtain the following linear system of equations

an + bn + cn = 0,
an(xn − zn) + bn(yn − zn) + dn = 1,
an(xn − zn)2 + bn(yn − zn)2 + 2dn(xn − zn) = 0,
an(xn − zn)3 + bn(yn − zn)3 + 2dn(xn − zn)2 = 0,

which has a unique solution

an = βn(2βn−3ωn)
ωn(βn−ωn)2 , bn = ω2

n
βn(βn−ωn)2 ,(3.75)

cn = −2βn+ωn
βnωn

, dn = − βn
βn−ωn ,

where
ωn = xn − zn = t̄ f(xn)

f ′(xn) , βn = yn − zn = (1− t̄) f(xn)
f ′(xn) .

Substituting (3.74) with coefficients defined by (3.76) into (3.73), we get
f(xn+1) = Ψ2(t) +O

(
f8(xn)

)
,(3.76)

where
Ψ2(t) =

(
(1− t̄)(2− t̄)f(xn)− (2− 3t̄)f(zn)

)
t(3.77)

+ (1− t̄)
(
2f(zn)− (2− t̄)f(xn)

)
.

The linear combination of (3.70) and (3.76) gives
f(xn+1) = αΨ1(t) + (1− α)Ψ2(t) +O

(
f8(xn)

)
.

Clearly, if we choose t as a root of quadratic equations
Ψ(t, α) = αΨ1(t) + (1− α)Ψ2(t) = 0,(3.78)

then we have
f(xn+1) = O

(
f8(xn)

)
which completes the proof. �

Remark 3.8. Since t is a root of Eq. (3.78), it depends on the parameter
α, i.e. t = t(α). Therefore, (D) are one parameter family of iterations. �

It is easy to show that
Ψ2(t̂) = 0, t̂→ 1, Ψ1(t̆) = 0, t̆→ 1.

Then taking this into account and passing to the limit t → 1 in Eq. (3.78),
we get

Ψ(t, α) t→1−−→ αΨ1(1) + (1− α)Ψ2(1) ≈ 0.
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Methods k d E

1 3 3 1
3 ≈ 1.442249

(A) 2 4 4 1
3 ≈ 1.587401

3 5 5 1
4 ≈ 1.495348

1 5 5 1
4 ≈ 1.495348

(B) 2 7 7 1
5 ≈ 1.475773

3 9 9 1
5 ≈ 1.551845

1 6 6 1
5 ≈ 1.430969

(C) 2 8 8 1
5 ≈ 1.515716

3 10 10 1
6 ≈ 1.467799

(D) - 8 8 1
4 ≈ 1.681792

Table 3.1. The efficiency index of the methods (A), (B), (C) and (D).

It means that Eq. (3.78) or (3.58) has a root tending to unit for any α ∈ [0, 1].
We recall that, according to Kung-Traub hypothesis, the order of conver-

gence of any multipoint method without memory cannot exceed the bound
2n−1 (called optimal order), where n is the number of function evaluations
per iteration. As is known, the efficiency index of iteration defined by formula
E = d

1
m , where d is the convergence order and m is the number of function

and its derivative evaluations per iteration. Therefore, the optimal efficiency
index would be 2

n−1
n .

According to the Theorem 3.4, the iteration (A) has the convergence order
fourth for k = 2, requiring only three function evaluations (f(xn), f(yn) and
f ′(xn)), whereas Theorem 3.7 shows that the iteration (D) has the convergence
order eight, requiring four function evaluations (f(xn), f(yn), f(zn), f ′(xn)).

Hence, this order of convergence is optimal in the above mentioned sense
of the Kung-Traub conjecture. This efficiency index is 4

1
3 ≈ 1.587 and 8

1
4 ≈

1.681, respectively.
Thus, we obtain the iterations (A) and (D) with the optimal order of conver-

gence 4 and 8, accelerating Newton’s method. Our procedure of accelerations
gives a genuine improvement of Newton’s method. One of the advantages
of iterations (A) and (D) is that these methods work well for the system of
nonlinear equations, whereas the optimal order methods in [1–3,10,12] do not
extend to the system of equations.

For convenience we present the efficiency index of the proposed above meth-
ods (A), (B), (C) and (D) in Table 3.1. From Table 3.1 one can see that the
efficiency index of the iterations (A), (B), (C) and (D) is better or much better
than that of Newton’s method

√
2 ≈ 1.414.

4. FINDING OPTIMAL PARAMETER

Let m = 1 in (3.3). Then the root (3.13) can be written as

t
(1)
opt = 1

1−θn , θn = f(yn)
f(xn) .(4.1)
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For k = 2, from (3.11) we obtain
P2(t) ≡ f(yn)t2 − f(xn)t+ f(xn) = 0,(4.2a)

or
P2(t) ≡ θnt2 − t+ 1 = 0.(4.2b)

By the well known assertion and (3.14) we have

t1 + t2 = f(xn)
f(yn) > 1, t1t2 = f(xn)

f(yn) .

Hence
t1 + t2 = t1t2.

From this we obtian
t21 −

f(xn)
f(yn) t1 + f(xn)

f(yn) = 0.(4.3)

The root of (4.3) greater than 1 is

t
(2)
opt = 1−

√
1−4θn

2θn = 2
1+
√

1−4θn
.(4.4)

In a similar way, from (3.1) and (3.13) we obtain
P3(t) = (θn − ωn)t3 + ωnt

2 − t+ 1 = 0,(4.5)
where

ωn = f ′′(xn)f(xn)

2
(
f ′(xn)

)2 .(4.6)

Since in all iterations (A), (B), (C) we have

f(yn) = f ′′(xn)
2

f2
n

(f ′n)2 +O
(
f3(xn)

)
,(4.7)

then
ωn = f(yn)

f(xn) +O
(
f2(xn)

)
.(4.8)

Using (3.21) and (4.8) in (4.5) we obtain approximates equation(
f(zn)
f(yn) −

f(yn)
f(xn)

)
t3 + f(yn)

f(xn) t
2 − t+ 1 = 0.(4.9)

Eq. (4.9) approximates (4.5) with accuracy O(f4
n) in case of (A) and with

accuracy O(f5
n) in case of (B) and (C) since topt − 1 = O(ε2

n) for (A) and
topt−1 = O(ε3

n) for (B) and (C). Therefore, Eq. (4.9) may be useful especially
for (A).

Above, we obtain formula (4.2) for finding optimal value topt for iteration
(A). However, it may be changed for iteration (B) and (C). Since xn+m := zn,
xn := yn and yn := xn+1 for iteration (B), then according to (3.11) we have
P2(t) ≡ f(yn) + f ′(yn)(zn − yn)t+

(
f(zn)− f(yn)− f ′(yn)(zn − yn)

)
t2 = 0,

or
P2(t) ≡

(
f(zn)
f(yn) − 1 + f ′(yn)

f ′(xn)

)
t2 − f ′(yn)

f ′(xn) t+ 1 = 0.(4.10)
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We rewrite (4.10) as

P2(t) = f(zn)
f(yn) t

2 − t+ 1 +
(
1− f ′(yn)

f ′(xn)

)
t(1− t) = 0.(4.11)

From the last equation, it is clear that if we take into account the following
estimate

1− f ′(yn)
f ′(xn) = 2 f(yn)

f(xn) +O
(
f2(xn)

)
= O

(
f(xn)

)
(4.12)

and
1− t = O

(
f(xn+m)

)
= O

(
f(zn)

)
= O

(
f3(xn)

)
,(4.13)

which follows from (3.21), then the equation (4.2b) with θn = f(zn)
f(yn) holds

within the accuracy O
(
f4(xn)

)
.

If we wish to include the precise correction to (4.10), one can replace 1 −
f ′(yn)
f ′(xn) by 2 f(yn)

f(xn) , then we arrive at(
θn − 2 f(yn)

f(xn)

)
t2 +

(
2 f(yn)
f(xn) − 1

)
t+ 1 = 0.(4.14)

By virtue of (4.12) and (4.13), Eq. (4.14) approximates Eq. (4.10) with
accuracy O

(
f5(xn)

)
.

With respect to the iteration (C), Eq. (4.2b) remains true with θn = f(zn)
f(yn) .

Note that in most cases the value of the iteration parameter of the damped
Newton’s method varies from zero to unit, whereas in our case the value of
the optimal parameter may be greater than unit.

5. NUMERICAL EXPERIMENTS

We consider the following four examples [2, 8, 12,18].

Example 5.1. Let f(x) = exp(x)−4x2 = 0. This equation has three roots.
It is easy to show that

(a) f ′(x) > 0, f ′′(x) > 0 at x ∈
[
4, 9

2
]
, and x∗ ∈

(
4, 9

2
)
,

(b) f ′(x) > 0, f ′′(x) < 0 at x ∈
[
−1

2 , 0
]
, and x∗ ∈

(
−1

2 , 0
)
.

We considered only first and third roots.

Example 5.2. f(x) = x2− 2 cos(x) = 0. This equation has two roots. It is
also easy to show that

f ′(x) > 0, f ′′(x) > 0 at x ∈
[
π
6 ,

π
2
]
, and x∗ ∈

(
π
6 ,

π
2
)
,

We considered only first root, because f(x) is an even function with respect
to x.

Example 5.3. Let f(x) = (x− 2)(x10 + x+ 1) exp(−x− 1) = 0. We chose
the initial approximation x0 = 2.1 for x∗ = 2.
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Method k |x∗ − x0| |x∗ − x1| |x∗ − x2| |x∗ − x3| dx2 dx3 ρτ2 ρτ3

1 1.93(-01) 3.87(-03) 4.00(-08) 4.45(-023) 2.93 3.00 2.93 3.00
(A) 2 1.93(-01) 3.48(-04) 3.80(-15) 5.40(-059) 3.99 4.00 3.99 4.00

3 1.93(-01) 1.68(-05) 8.74(-26) 3.31(-127) 5.00 5.00 5.00 5.00
1 1.93(-01) 1.43(-04) 5.70(-20) 5.78(-097) 4.92 5.00 4.92 5.00

(B) 2 1.93(-01) 1.46(-06) 4.15(-42) 6.35(-291) 6.94 7.00 6.94 7.00
3 1.93(-01) 9.66(-09) 4.56(-74) 5.31(-662) 8.94 9.00 8.94 9.00
1 1.93(-01) 1.24(-05) 1.47(-30) 4.13(-180) 5.95 6.00 5.95 6.00

(C) 2 1.93(-01) 1.26(-07) 8.02(-57) 2.14(-450) 7.95 8.00 7.95 8.00
3 1.93(-01) 8.38(-10) 4.41(-93) 7.23(-926) 9.96 10.00 9.96 10.00

Table 5.1. Example 1a. x∗ = 4.306584 . . .

Method k |x∗ − x0| |x∗ − x1| |x∗ − x2| |x∗ − x3| dx2 dx3 ρτ2 ρτ3

1 9.22(-02) 5.38(-04) 1.36(-010) 2.18(-0030) 2.95 3.00 2.95 3.00
(A) 2 9.22(-02) 1.56(-06) 1.56(-025) 1.55(-0101) 3.98 4.00 3.98 4.00

3 9.22(-02) 3.56(-08) 3.77(-040) 5.04(-0200) 4.99 5.00 4.99 5.00
1 9.22(-02) 6.10(-06) 1.29(-026) 5.39(-0130) 4.95 5.00 4.95 5.00

(B) 2 9.22(-02) 1.26(-09) 2.17(-064) 9.62(-0448) 6.96 7.00 6.96 7.00
3 9.22(-02) 2.14(-12) 9.57(-108) 6.74(-0966) 8.96 9.00 8.96 9.00
1 9.22(-02) 2.70(-07) 2.76(-040) 3.13(-0238) 5.96 6.00 5.96 6.00

(C) 2 9.22(-02) 5.57(-11) 1.87(-084) 2.96(-0672) 7.97 8.00 7.97 8.00
3 9.22(-02) 9.48(-14) 2.74(-133) 1.12(-1328) 9.97 10.00 9.97 10.00

Table 5.2. Example 1b. x∗ = −0.4077767 . . .

Method k |x∗ − x0| |x∗ − x1| |x∗ − x2| |x∗ − x3| dx2 dx3 ρτ2 ρτ3

1 5.49(-01) 1.11(-02) 2.18(-07) 1.71(-021) 2.77 3.00 2.77 3.00
(A) 2 5.49(-01) 1.73(-03) 2.73(-13) 1.71(-052) 3.92 4.00 3.92 4.00

3 5.49(-01) 5.18(-05) 1.76(-24) 7.93(-122) 4.84 5.00 4.84 5.00
1 5.49(-01) 4.63(-04) 1.16(-18) 1.12(-091) 4.75 5.00 4.75 5.00

(B) 2 5.49(-01) 6.44(-06) 1.90(-39) 3.62(-274) 6.80 7.00 6.80 7.00
3 5.49(-01) 6.17(-08) 3.33(-69) 1.29(-620) 8.81 9.00 8.81 9.00
1 5.49(-01) 4.84(-05) 1.41(-28) 8.72(-170) 5.80 6.00 5.80 6.00

(C) 2 5.49(-01) 6.65(-07) 3.21(-53) 9.36(-424) 7.83 8.00 7.83 8.00
3 5.49(-01) 6.42(-09) 6.22(-87) 4.48(-867) 9.84 10.00 9.84 10.00

Table 5.3. Example 2. x∗ = 1.021689 . . .

All numerical calculations were performed using Maple 16 system. Also, to
study the convergence of iterations (3.1), (A), (B) (C) and (D), we compute
the computational order of convergence dxn using the formulae [14]

dxn = ln
(
|xn+1−x∗|/|xn−x∗|

)
ln
(
|xn−x∗|/|xn−1−x∗|

) ,(5.1)

where xn+1, xn, xn−1 are three consecutive approximations. In numerical
examples we also check out the computational order of convergence (COC) of
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Method |x∗ − x1| |x∗ − x2| |x∗ − x3| dx3

h(t) = 1 + 4t
2−5t , β = 3 in [1, (14)] 1.83(-5) 3.15(-34) 2.45(-264) 7.99986

h(t) = 1
1−2t−t2+t3 , β = 3 in [1, (14)] 6.02(-6) 7.91(-38) 6.99(-293) 8.00007

ψ(t) = 5−2t+t2
5−12t in [12, (12)] 6.12(-5) 1.11(-29) 1.34(-224) 7.99947

ψ(t) = 1
1−2t−t2 in [12, (12)] 6.01(-5) 9.29(-30) 3.02(-228 ) 8.00050

(D), α = 0 2.18(-5) 1.12(-34) 5.40(-269) 7.99999
(D), α = 0.5 2.14(-5) 2.25(-34) 3.39(-266) 8.00003
(D), α = 1 2.89(-5) 2.45(-33) 6.63(-258) 7.99999

Table 5.4. Example 3. x∗ = 2

τn by formula [14]

ρτn = ln |(τn+1−1)/(τn−1)|
ln |(τn−1)/(τn−1−1)| ,(5.2)

which is included in the presented tables (see Tables 5.1–5.3) and agrees with
the conjecture.

Comparisons of the convergence of the iterations (A), (B) and (C) are given
in Tables 5.1–5.3. The third, fourth, fifth and sixth columns show the abso-
lute errors |x∗ − xn| in the first four iterations. The last four columns display
the computational order of convergence dx2 , dx3 , ρτ2 and ρτ3 , respectively.
The factor l in the brackets denotes 10l. As expected, the convergence of the
proposed methods was remarkably fast. A comparison of the convergence of
(D) iteration with other optimal order iterations with eighth order of con-
vergence [1, 12] is given in Table 5.4. From the Tables we see that the COC
perfectly coincides with the theoretical order.

CONCLUSIONS

We propose a new acceleration procedure for Newton-type methods. The
effect of the acceleration is more perceptible when k increases. The proposed
accelerating procedure allows us to derive high and optimal order iteration
methods. Numerical results clear demonstrate the theoretical analysis (speed
of convergence, and effect of acceleration). Moreover, our acceleration proce-
dure can also be applied to any iteration and systems of nonlinear equations,
to which a forthcoming paper will be devoted.
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