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SOME APPLICATIONS OF QUADRATURE RULES FOR MAPPINGS
ON Lp[u, v] SPACE VIA OSTROWSKI-TYPE INEQUALITY
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Abstract. Some Ostrowski-type inequalities are stated for Lp[u, v] space and
for mappings of bounded variations. Applications are also given for obtaining
error bounds of some composite quadrature formulae.
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1. INTRODUCTION

In 1938, Ostrowski introduced a bound for the absolute value of the differ-
ence of a function to its average over a finite interval. His well known result
named as Ostrowski’s inequality [10].

Proposition 1. Let g : [u, v]→ R be a differentiable function, also
|g′(z)| ≤M,

for some positive real constant M , for all z ∈ (u, v). Then the following
inequality holds for every z ∈ [u, v]∣∣∣∣g(z)− 1

v−u

∫ v

u
g(s)ds

∣∣∣∣ ≤ [1
4 + (z−u+v

2 )2

(v−u)2

]
(v − u)M,(1)

where the constant 1
4 is sharp.

Let g, h : [u, v] → R be two absolutely continuous functions such that
functions and their product are integrable, the Čebyšev functional [2] is defined
by

T (g, h) = 1
v−u

∫ v

u

(
g(z)− 1

v−u

∫ v

u
g(z)dz

)(
h(z)− 1

v−u

∫ v

u
h(z)dz

)
dz

= 1
v−u

∫ v

u
g(z)h(z)dz − 1

(v−u)2

(∫ v

u
g(z)dz

)(∫ v

u
h(z)dz

)
.

In 1934, the following result proved by Grüss [5] (see also [6]):
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Proposition 2. Let T (g, h) be as defined above, we have
|T (g, h)| ≤ 1

4(M1 −m1)(M2 −m2),(2)
where m1,m2,M1,M2 ∈ R and satisfy the conditions

m1 ≤ g(z) ≤M1 and m2 ≤ h(z) ≤M2, ∀ z ∈ [u, v].

By G.V. Milovanović in [8], an application of classical Ostrowski inequality
in quadrature formula was given for the very first time, also its generalization
to functions in several variables was given in this article.

A generalization of Ostrowski inequality developed by Milovanović and
Pečarić [9], which is stated as:

Proposition 3. Let g : R→ R be n(> 1) times differentiable function such
that |gn(z)| ≤M (∀z ∈ (u, v)). Then for every z ∈ [u, v]

(3)
∣∣∣ 1
n

(
g(z) +

n−1∑
k−1

Fk
)
− 1

v−u

∫ v

u
g(s)ds

∣∣∣ ≤ M
n(n+1)!

(z−u)n+1+(v−z)n+1

v−u

where Fk is defined by

Fk ≡ Fk(g;n; ξ, u, v) ≡ n−k
k!

gk−1(u)(z−u)k−gk−1(v)(z−v)k

v−u .

In 1997, Dragomir and Wang [3] proved the following proposition by using
(2) which is known as Ostrowski-Grüss inequality.

Proposition 4. If g : [u, v]→ R such that g′ is bounded and
m ≤ g′(z) ≤M,

for all z ∈ [u, v] and for real constants m and M , then

(4)
∣∣∣∣g(z)− g(v)−g(u)

v−u
(
z − u+v

2
)
− 1

v−u

∫ v

u
g(s)ds

∣∣∣∣ ≤ 1
4(v − u)(M −m).

In this paper, we first derive an integral identity for differentiable functions
by using the kernel (5). Then, we apply this equality to get our results for
functions whose first derivative is bounded. First section is based on intro-
duction and preliminaries. In the second and in the third section we prove
inequalities for absolutely continuous mappings in which g′ ∈ Lp[u, v] for p ≥ 1
and mappings of bounded variation, respectively. In the last section, we will
give some applications for composite quadrature rules.

2. THE CASE WHERE g′ ∈ Lp[u, v], p ≥ 1

In order to prove our main results, we need the following lemma from [7]:

Lemma 5. Let g : [u, v]→ R be a function. Then for the kernel P (z, s) on
[u, v] given as

P (z, s) =
{
s− z + v−u

2 , if s ∈ [u, z],
s− z − v−u

2 , if s ∈ (z, v],
(5)
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the following identity holds

(6) 1
v−u

∫ v

u
P (z, s)g′(s)ds = g(z) − g(v)−g(u)

v−u
(
z − u+v

2
)
− 1

v−u

∫ v

u
g(s)ds.

In this section, we are going to present Ostrowski-type integral inequality
for g′ ∈ Lp[u, v].

Theorem 6. Let g : I → R be an absolutely continuous mapping on Io,
the interior of the interval I, where u, v ∈ I with u < v. If g′ ∈ Lp[u, v], for
p ≥ 1, then we get the following inequality∣∣∣∣g(z)− g(v)−g(u)

v−u
(
z − u+v

2
)
− 1

v−u

∫ v

u
g(s)ds

∣∣∣∣ ≤(7)

≤ ‖g′‖p

(v−u)(q+1)
1
q

[(
u+v

2 − z
)q+1 +

(
z − u+v

2
)q+1 + 2

(
v−u

2
)q+1] 1

q .

Proof. Using the Hölder inequality in (6), for any z ∈ [u, v], we get∣∣∣∣g(z)− g(v)−g(u)
v−u

(
z − u+v

2
)
− 1

v−u

∫ v

u
g(s)ds

∣∣∣∣ =

= 1
v−u

∣∣∣∣∫ v

u
P (z, s)g′(s)ds

∣∣∣∣
≤ 1

v−u

(∫ v

u
|P (z, s)|qds

) 1
q
(∫ v

u
|g′(s)|pds

) 1
p

= 1
v−u

[∫ z

u

∣∣s− (z − v−u
2
)∣∣q ds+

∫ v

z

∣∣s− (z + v−u
2
)∣∣q ds] 1

q

‖g′‖p

= ‖g′‖p

(v−u)(q+1)
1
q

[(
u+v

2 − z
)q+1 +

(
z − u+v

2
)q+1 + 2

(
v−u

2
)q+1] 1

q .

�

Remark 7. If we substitute q = 1 (and p = ∞) in (7), then we get the
following Corollary. �

Corollary 8. Let g : I → R be an absolutely continuously mapping on Io,
the interior of the interval I, where u, v ∈ I with u < v. If g′ is bounded on
[u, v], then the following inequality holds for any z ∈ [u, v]
(8)∣∣∣∣g(z)− g(v)−g(u)

v−u
(
z− u+v

2
)
− 1
v−u

∫ v

u
g(s)ds

∣∣∣∣ ≤ [1
4 + (z−u+v

2 )2

(v−u)2

]
(v − u)‖g′‖∞.

Remark 9. The inequality (8) is the generalization of Ostrowski inequality
which is presented in Proposition 5, i.e., by replacing g(u) = g(v) in (8), we
get (3) and also by choosing ‖g′‖∞ = M we get (1). �

Remark 10. If we replace z = u+v
2 in (8), then we get the following mid-

point inequality∣∣∣∣g (u+v
2
)
− 1

v−u

∫ v

u
g(s)ds

∣∣∣∣ ≤ 1
4(v − u)‖g′‖∞,(9)



144 Nazia Irshad and Asif R. Khan 4

where the constant 1
4 is sharp. �

Remark 11. By replacing z = u or z = v in (8), we get the trapezoidal
inequality

�(10)
∣∣∣∣g(u)+g(v)

2 − 1
v−u

∫ v

u
g(s)ds

∣∣∣∣ ≤ 1
2(v − u)‖g′‖∞.

Corollary 12. Let g be a function as defined in Theorem 7.
1) If we replace z = u+v

2 in (7), then we get the midpoint inequality ∀ p ≥ 1:∣∣∣∣∣g (u+v
2
)
− 1

v−u

∫ b

u
g(s)ds

∣∣∣∣∣ ≤ 1
2

[
(v−u)
(q+1)

] 1
q ‖g′‖p(11)

where the constant 1
2

[
(v−u)
(q+1)

] 1
q is sharp.

2) If we replace z = u or z = v in (7), we get the trapezoidal inequality ∀
p ≥ 1:

(12)∣∣∣∣g(u)+g(v)
2 − 1

v−u

∫ v

u
g(s)ds

∣∣∣∣ ≤ 1
(v−u)(q+1)

1
q

[(
v−u

2
)q+1 + 3

(
v−u

2
)q+1] 1

q ‖g′‖p.

a) If q is odd, then∣∣∣∣g(u)+g(v)
2 − 1

v−u

∫ v

u
g(s)ds

∣∣∣∣ ≤ 1
2

(
2(v−u)
q+1

) 1
q ‖g′‖p.(13)

b) If q is even, then∣∣∣∣g(u)+g(v)
2 − 1

v−u

∫ v

u
g(s)ds

∣∣∣∣ ≤ 1
2

(
v−u
q+1

) 1
q ‖g′‖p. �(14)

Remark 13. By the inequality (9) we retrieve the result of Corollary 5 and
the inequality (11) gives us the result of Corollary 8 of M. W. Alomari paper
[1], respectively. �

3. THE CASE WHERE g IS OF BOUNDED VARIATION

Theorem 14. Let g : [u, v] → R be a function of bounded variation. Then
the following inequality holds for any z ∈ [u, v]:

(15)
∣∣∣∣g(z)− g(v)−g(u)

v−u
(
z − u+v

2
)
− 1
v−u

∫ v

u
g(s)ds

∣∣∣∣ ≤ 1
2 max

{∣∣∣u+v−2z
v−u

∣∣∣ , 1} v∨
u

g

where
v∨
u

g is the total variation of g over [u, v] and the constant 1
2 is sharp.
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Proof. Recalling the definition from [1], for a continuous function p : [c, d]→
R and a function ν : [c, d] → R of bounded variation, the following inequality
holds: ∣∣∣∣∣

∫ d

c
p(s)dν(s)

∣∣∣∣∣ ≤ sup
s∈[c,d]

|p(s)|
d∨
c

ν.(16)

Now using Lemma 6 with the inequality (16) for p(s) = P (z, s), and ν(s) =
g(s), s ∈ [u, v], we get∣∣∣∣ 1

v−u

∫ v

u
P (z, s)dg(s)

∣∣∣∣ ≤
≤ 1

v−u

∣∣∣∣∫ z

u
P (z, s)dg(s)

∣∣∣∣+ 1
v−u

∣∣∣∣∫ v

z
P (z, s)dg(s)

∣∣∣∣
≤ 1

v−u sup
s∈[u,z]

|P (z, s)|
z∨
u

g + 1
v−u sup

s∈(z,v]
|P (z, s)|

v∨
z

g

= 1
v−u max

{∣∣u+v
2 − z

∣∣ , v−u2
} z∨
u

g + 1
v−u max

{∣∣u+v
2 − z

∣∣} v∨
z

g := M(z).

We notice that

M(z) ≤ 1
v−u max

{∣∣u+v
2 − z

∣∣ , v−u2
} [ z∨

u

g +
v∨
z

g
]

= 1
2 max

{∣∣∣u+v−2z
v−u

∣∣∣ , 1} v∨
u

g

which proves the inequality (15).
To prove that the constant 1

2 in inequality (15) is sharp, we suppose that
the inequality (15) is valid for a constant K > 0, i.e.,
(17)∣∣∣∣g(z)− g(v)−g(u)

v−u
(
z − u+v

2
)
− 1
v−u

∫ v

u
g(s)ds

∣∣∣∣≤ K max
{∣∣∣u+v−2z

v−u

∣∣∣ , 1} v∨
u

g

for any z ∈ [u, v].
Consider the mapping g : [u, v]→ {0, 1} is defined as

g(s) =
{

0, s ∈ (u, v)
1, s ∈ {u, v}.

For z = u, we have ∫ v

u
g(s)ds = 0 and

v∨
u

g = 2.

By using (17), we obtain,

1 ≤ 2K or 1
2 ≤ K,

and thus it is proved that the constant 1
2 is sharp. �
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Corollary 15. Let g be a function as defined in Theorem 15.
1) If we replace z = u+v

2 in (15), then we get the midpoint inequality∣∣∣∣g (u+v
2
)
− 1

v−u

∫ v

u
g(s)ds

∣∣∣∣ ≤ 1
2

v∨
u

g(18)

where the constant 1
2 is sharp.

2) If we replace z = u or z = v in (15), then we get the trapezoidal inequality∣∣∣∣g(u)+g(v)
2 − 1

u−v

∫ v

u
g(s)ds

∣∣∣∣ ≤ 1
2

v∨
u

g(19)

where the constant 1
2 is sharp.

Remark 16. The inequalities (18) and (19) are the results of Corollary 2
of M.W. Alomari paper [1] and the Corollaries 2.6 and 2.4 of S.S. Dragomir
paper [4], respectively. �

4. APPLICATIONS TO NUMERICAL QUADRATURE RULES

Now, we are going to discuss some applications in numerical quadrature
rules, which can be used to get some sharp bounds.

Let In : u = z0 < z1 < · · · < zn = v be a partition of the interval [u, v] and
let ∆zk = zk+1 − zk, k ∈ {0, 1, 2, · · · , n− 1}. Then

n−1∑
k=0

1
∆zk

∫ zk+1

zk

g(s)ds = Qn(In, g) +Rn(In, g)(20)

Consider a general quadrature formula

Qn(In, g) :=
n−1∑
k=0

[
g(ξk)− g(zk+1)−g(zk)

∆zk

(
ξk − zk+1+zk

2

)]
(21)

for all ξk ∈ [a, b].

Theorem 17. Let g be defined as in Theorem 7. Then (20) holds where
Qn(In, g) is given by formula (21) and the remainder Rn(In, g) satisfies the
estimates

|Rn(In, g)| ≤

(22)

≤ 1
∆zk

(
1
q+1

) 1
q
n−1∑
k=0

[(
zk+zk+1

2 − ξk
)q+1

+
(
ξk − zk+zk+1

2

)q+1
+2

(
∆zk

2

)q+1
] 1

q

‖g′‖p

for all ξk ∈ [zk, zk+1].

Proof. Applying inequality (7) on the intervals, [zk, zk+1], we can state that

Rk(Ik, g) = 1
∆zk

∫ zk+1

zk

g(s)ds− g(ξk)− g(zk+1)−g(zk)
∆zk

(
ξk − zk+zk+1

2

)
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we sum the inequalities presented above over k from 0 to n− 1. This gives

Rn(In, g) =
n−1∑
k=0

1
∆zk

∫ zk+1

zk

g(t)dt−
n−1∑
k=0

[
g(ξk)− g(zk+1)−g(zk)

∆zk

(
ξk − zk+zk+1

2

)]
.

It follows from (7) that
|Rn(In, g)| =

=
∣∣∣∣∣
n−1∑
k=0

1
∆zk

∫ zk+1

zk

g(s)ds−
n−1∑
k=0

[
g(ξk)− g(zk+1)−g(zk)

∆zk

(
ξk − zk+zk+1

2

)]∣∣∣∣∣
≤ 1

∆zk

(
1
q+1

) 1
q
n−1∑
k=0

[(
zk+zk+1

2 − ξk
)q+1

+
(
ξk − zk+zk+1

2

)q+1
+ 2

(
∆zk

2

)q+1
] 1

q

‖g′‖p.

Corollary 18. Let q = 1 (and p =∞) in (22). Then (20) holds, where
Qn(In, g) is given by formula (21) and the remainder Rn(In, g) satisfies the
estimate

|Rn(In, g)| ≤
n−1∑
k=0

∆zk
[

1
4 +

(
ξk−

zk+zk+1
2

)2

(∆zk)2

]
‖g′‖∞(23)

for all ξk ∈ [zk, zk+1].

Theorem 19. Let g be a function as defined in Theorem 15. Then (20)
holds, where Qn(In, g) is given by formula (21) and the remainder satisfies the
estimate

|Rn(In, g)| ≤
n−1∑
k=0

1
2 max

{∣∣∣ zk+zk+1−2ξk

zk+1−zk

∣∣∣ , 1} zk+1∨
zk

g(24)

for all ξk ∈ [zk, zk+1].

Proof. Applying inequality (15) on the intervals, [zk, zk+1], we can state
that

Rk(Ik, g) = 1
∆zk

∫ zk+1

zk

g(s)ds− g(ξk)− g(zk+1)−g(zk)
∆zk

(
ξk − zk+zk+1

2
)
.

We sum the inequalities presented above over k from 0 to n− 1. This gives

Rn(In, g) =
n−1∑
k=0

1
∆zk

∫ zk+1

zk

g(s)ds−
n−1∑
k=0

[
g(ξk) + g(zk+1)−g(zk)

∆zk

(
ξk − zk+zk+1

2

)]
.

It follows from (15) that

|Rn(In, g)| =
∣∣∣∣∣
n−1∑
k=0

1
∆zk

∫ zk+1

zk

g(s)ds−
n−1∑
k=0

[
g(ξk) + g(zk+1)−g(zk)

∆zk

(
ξk− zk+zk+1

2

)]∣∣∣∣∣
≤

n−1∑
k=0

1
2 max

{∣∣∣ zk+zk+1−2ξk

∆zk

∣∣∣ , 1} zk+1∨
zk

g. �
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If we choose,
ξk = zk+zk+1

2
in (21), then quadrature formula becomes:

Qn(In, g) :=
n−1∑
k=0

[
g
(
zk+zk+1

2

)]
.(25)

Remark 20. If (20) holds and Qn(In, g) is given by formula (25).
1) Let g be as in Theorem 7 where the remainder Rn(In, g) from (11) and

(9) becomes respectively

|Rn(In, g)| ≤ 1
2

(
1
q+1

) 1
q
n−1∑
k=0

[∆zk]
1
q ‖g′‖p

and

|Rn(In, g)| ≤ 1
4

n−1∑
k=0

[∆zk] ‖g′‖∞.

2) Let g be as in Theorem 15 where the remainder Rn(In, g) from (18)
becomes

|Rn(In, g)| ≤ 1
2

n−1∑
k=0

zk+1∨
zk

g. �

If we choose, ξk = zk or ξk = zk+1 in (21), then quadrature formula becomes:

Qn(In, g) :=
n−1∑
k=0

[
g(zk)+g(zk+1)

2

]
.(26)

Remark 21. If (20) holds and Qn(In, g) is given by formula (26).
1) Let g be as in Theorem 7 where the remainder Rn(In, g) from (12),

(13), (14) and (10) becomes respectively

|Rn(In, g)| ≤ 1
(q+1)

1
q

n−1∑
k=0

1
∆zk

[(
−∆zk

2

)q+1
+ 3

(
∆zk

2

)q+1
] 1

q

‖g′‖p,

|Rn(In, g)| ≤ 1
2

(
2
q+1

) 1
q
n−1∑
k=0

(∆zk)
1
q ‖g′‖p,

|Rn(In, g)| ≤ 1
2

(
1
q+1

) 1
q
n−1∑
k=0

(∆zk)
1
q ‖g′‖p

and

|Rn(In, g)| ≤ 1
2

n−1∑
k=0

[∆zk] ‖g′‖∞.
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2) Let g be as in Theorem 15 where the remainder Rn(In, g) from (19)
becomes

|Rn(In, g)| ≤ 1
2

n−1∑
k=0

zk+1∨
zk

g. �

5. CONCLUSION

We have given some remarks on Ostrowski type inequalities for absolutely
continuous functions in which g′ ∈ Lp space. Using the results of Lp space, we
have also given some special results for L∞ space. Our Corollary 9 of Theorem
7 is the generalization of Ostrowski inequality[10] which is presented in 1938
by A. M Ostrowski. Furthermore, by putting suitable substitutions we get
midpoint and trapezoidal rules which are presented in [1, 4]. At the end we
have also given some applications for numerical integration.
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