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APPROXIMATION THEOREMS FOR KANTOROVICH TYPE
LUPAŞ-STANCU OPERATORS BASED ON q-INTEGERS

SEVILAY KIRCI SERENBAY† and ÖZGE DALMANOĞLU∗

Abstract. In this paper, we introduce a Kantorovich generalization of q-Stancu-
Lupaş operators and investigate their approximation properties. The rate of
convergence of these operators are obtained by means of modulus of continuity,
functions of Lipschitz class and Peetre’s K-functional. We also investigate the
convergency of the operators in the statistical sense and give a numerical example
in order to estimate the error in the approximation.
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1. INTRODUCTION

For a function f(x) defined on the interval [0, 1], the linear operator Rn,q :
C[0, 1]→ C[0, 1] defined by

(1) Rn,q(f) = Rn(f, q;x) =
n∑
k=0

f
(

[k]
[n]

)
bnk(q;x)

where
(2) bn,k(q;x) =

[n
k

] qk(k−1)/2xk(1−x)n−k

(1−x+qx)...(1−x+qn−1x)

is called Lupaş operators [12]. For q > 0, Rn(f, q;x) are linear positive opera-
tors on C[0, 1] and for q = 1 they turn into the well known Bernstein operators.
The following identities hold for the Rn(f, q;x) operators:

Rn(e0, q;x) = 1
Rn(e1, q;x) = x(3)
Rn(e2, q;x) = x2 + x(1−x)

[n]

(
1−x+qnx
1−x+xq

)
.

Lupaş investigated the approximation properties of the operators on C[0, 1]
and estimated the rate of convergence in terms of modulus of continuity. In [14]
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the authors studied Voronovskaja type theorems for the q-Lupaş operators for
fixed q > 0. In [16], Ostrovska presented new results for the convergence of the
sequence Rn(f, qn;x) in C[0, 1]. She established approximation theorems for
the cases q ∈ (0, 1) and q ∈ (1,∞), respectively, and studied the convergence
of {Rn(f, qn;x)}, q 6= 1 is fixed, obtaining the limit operator of the Lupaş
q-analogue of the Bernstein operator. In [5], Doğru and Kanat considered
a King type modification of Lupaş operators and investigated the statistical
approximation properties of the operators. Very recently, Doğru et al. [7]
introduced a Stancu type generalization of q-Lupaş operators as

(4) Rα,βn (f ; q, x) = [n+ 1]
n∑
k=0

f
(

[k]+[α]
[n]+[β]

)
bn,k(q;x)

where bn,k(q;x) is given in (2). They studied the approximation properties
and also introduced the r-th generalization of these operators.

Since q-Bernstein operators has attracted a lot of interest, many generaliza-
tions of them have been discovered and studied by several authors. Here we
will mention some of them related to our study. For example in [13] an integral
modification, called Kantorovich type generalization of q-Bernstein operators,
have been studied. The authors constructed the operators as

B∗n,q(f ;x) :=
n∑
k=0

pn,k(q;x)
1∫

0

f
(

[k]+qkt
[n+1]

)
dqt

where f ∈ C[0, 1], 0 < q < 1 and

(5) pn,k(q;x) =
[n
k

]
xk(1− x)n−k

and studied some approximation properties of them. Özarslan and Vedi [17]
introduced q-Bernstein-Schurer-Kantorovich operators as

Kp
n(f ; q, x) :=

n+p∑
k=0

pn+p,k(q;x)
1∫

0

f
(

[k]+qkt
[n+1]

)
dqt.

Acu et al. [1] introduced a new q-Stancu-Kantorovich operators as

S∗(α,β)
n,q (f ;x) :=

n∑
k=0

pn,k(q;x)
1∫

0

f
(

[k]+qkt+α
[n+1]+β

)
dqt

where 0 ≤ α ≤ β, f ∈ C[0, 1] and pn,k(q;x) is given in (5). She also established
a q-analogue of Stancu-Schurer-Kantorovich operators in [2] where she gave
the convergence theorems both in classical and statistical sense and obtained
a Voronovskaya type result.
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For every n ∈ N and q ∈ (0, 1), Doğru and Kanat [6] defined the Kan-
torovich type modification of Lupaş operators as

(6) Rn(f, q;x) = [n+ 1]
n∑
k=0

 [k+1]/[n+1]∫
[k]/[n+1]

f(t)dqt

[nk] q−kqk(k−1)/2xk(1−x)n−k

(1−x+qx)...(1−x+qn−1x) .

Recently, Agrawal et al. [3] studied the approximation properties of Lupaş-
Kantorovich operators based on Pólya distribution.

In this paper we present a Kantorovich generalization of the Lupaş-Stancu
operators based on the q-integers. Our purpose is to study the local and
global approximation results for these operators. We also investigate statis-
tical approximation properties using Korovkin type statistical approximation
theorem.

2. CONSTRUCTION OF THE OPERATORS

Before proceeding further we recall some basic notations from q-calculus
(see [4] and [10]).

Let q > 0. For each nonnegative integer r, the q-integer [r], the q-factorial
[r]! and the q-binomial coefficient

[r
k

]
, (r ≥ k ≥ 0) are defined by

[r] := [r]q :=
{

1−qr
1−q , q 6= 1,
r, q = 1,

[r]! :=
{

[r][r − 1]...[1], q ≥ 1,
1, q = 1,

and [
r
k

]
:= [r]!

[r−k]![k]! , 0 ≤ k ≤ r,

respectively. The q-Jackson integral on the interval [0, b] is defined as

(7)
b∫

0

f(t)dqt = (1− q)b
∞∑
j=0

f(qjb)qj , 0 < q < 1,

provided that the series is convergent. The Newton’s binomial formula is given
by

(8) (1 + x)(1 + qx)...(1 + qn−1x) =
n∑
k=0

[n
k

]
qk(k−1)/2xk.

The Euler’s formula is

(9)
∞∑
k=0

qk(k−1)/2xk

(1−q)k[k]! =
∞∏
k=0

(1 + qkx)
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which can be derived from Newton’s binomial formula. Let 0 < q < 1. We
introduce the Kantorovich type q-Lupaş-Stancu operators as

(10) R(α,β)
n,q (f ;x) =

n∑
k=0

[n
k

] qk(k−1)/2xk(1−x)n−k

n−1∏
s=0

(1−x+qsx)

 1∫
0

f( [k]+qkt+α
[n+1]+β )dqt


where 0 ≤ α ≤ β and f ∈ C[0, 1].

Lemma 1. For all n ∈ N, x ∈ [0, 1] and 0 < q < 1, we have the following
equalities:
R(α,β)
n,q (1;x) = 1

R(α,β)
n,q (t;x) = [n]

[n+1]+β

{
x+ α

[n] + 1−x+qnx
[2][n]

}
= 1

[n+1]+β

(
2q
[2] [n]x+ α+ 1

[2]

)
(11)

R(α,β)
n,q (t2;x) = q

1−x+qx
[n][n−1]

([n+1]+β)2x
2 +

(
1 + 2q

[2]
1−x+qnx
1−x+qx + 2α

)
[n]

([n+1]+β)2x

+
(
α2 + 2α

[2] (1− x+ qnx) + 1
[3]

(1−x+qnx)(1−x+qn+1x)
1−x+qx

)
1

([n+1]+β)2

Proof. Taking x
1−x instead of x in (8) one gets the first equality of (11).

Taking qx
1−x and q2x

1−x instead of x in (8) we have
n∏
s=1

(1− x+ qsx) =
n∑
k=0

[n
k

]
qk(k−1)/2 (qx)k (1− x)n−k(12)

n+1∏
s=2

(1− x+ qsx) =
n∑
k=0

[n
k

]
qk(k−1)/2 (q2x

)k (1− x)n−k(13)

respectively. Using the definition of q-Jackson integral given in (7) and the
first equality of (3), we can write

R(α,β)
n,q (t;x) =

n∑
k=0

[n
k

] qk(k−1)/2xk(1−x)n−k

n−1∏
s=0

(1−x+qsx)

 1∫
0

[k]+qkt+α
[n+1]+β dqt


= 1

[n+1]+β

n∑
k=0

[n
k

] qk(k−1)/2xk(1−x)n−k

n−1∏
s=0

(1−x+qsx)

(
[k] + qk

[2] + α
)

= 1
[n+1]+β

[n]x
n−1∑
k=0

[n−1
k

] qk(k−1)/2(qx)k(1−x)n−k−1

n−1∏
s=0

(1−x+qsx)

+ 1
[2]

n∑
k=0

[n
k

] qk(k−1)/2(qx)k(1−x)n−k

n−1∏
s=0

(1−x+qsx)
+ α


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From the identity (12) we get the desired identity for R(α,β)
n,q (t;x).

R(α,β)
n,q (t2;x) =

= 1
([n+1]+β)2

n∑
k=0

[n
k

] qk(k−1)/2xk(1−x)n−k

n−1∏
s=0

(1−x+qsx)

 1∫
0

(
[k] + qkt+ α

)2
dqt


= 1

([n+1]+β)2

n∑
k=0

[n
k

] qk(k−1)/2xk(1−x)n−k

n−1∏
s=0

(1−x+qsx)

{
([k] + α)2 + 2qk

[2] (α+ [k]) + q2k

[3]

}

= 1
([n+1]+β)2

qx2[n][n− 1]
n−2∑
k=0

[n−2
k

] qk(k−1)/2(q2x)k(1−x)n−k−2

n−1∏
s=0

(1−x+qsx)

+ (2α+ 1) [n]x
n−1∑
k=0

[n−1
k

] qk(k−1)/2(qx)k(1−x)n−k−1

n−1∏
s=0

(1−x+qsx)

+α2 + 2α
[2]

n∑
k=0

[n
k

] qk(k−1)/2(qx)k(1−x)n−k

n−1∏
s=0

(1−x+qsx)

+ 2q
[2] [n]x

n−1∑
k=0

[n−1
k

] qk(k−1)/2(q2x)k(1−x)n−k−1

n−1∏
s=0

(1−x+qsx)

+ 1
[3]

n∑
k=0

[n
k

] qk(k−1)/2(q2x)k(1−x)n−k

n−1∏
s=0

(1−x+qsx)


Using the identities given in (12) and (13) we get

R(α,β)
n,q (t2;x) = 1

([n+1]+β)2

{
qx2[n][n−1]

1−x+qx (2α+ 1) [n]x+ α2 + 2α
[2] (1− x+ qnx)

+ 2q
[2] [n]x1−x+qnx

1−x+qx + 1
[3]

(1−x+qnx)(1−x+qn+1x)
(1−x+qx)

}
.

Arranging the terms we have the desired result. �

Remark 2. From Lemma 1 we have,

(14) R(α,β)
n,q (t− x;x) = −(qn+β)

[n+1]+β x+ 1
[n+1]+β

{
α+ 1−x+qnx

[2]

}

R(α,β)
n,q ((t− x)2 ;x) ≤

(
[n]

([n+1]+β) − 1
)2

+ (3 + 2α) [n]
([n+1]+β)2

+ (α+1)2

([n+1]+β)2 + 2(α+1)
([n+1]+β)(15)
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Proof. The identity (14) is obvious. For the inequality (15) we use the
following second central moment of the operator R(α,β)

n,q (f ;x).

R(α,β)
n,q ((t− x)2 ;x) =

= q
1−x+qx

[n][n−1]
([n+1]+β)2x

2

+
(
1 + 2q

[2]
1−x+qnx
1−x+qx + 2α

)
[n]

([n+1]+β)2x

+
{(
α2 + 2α

[2] (1− x+ qnx)
)

+ 1
[3]

(1−x+qnx)(1−x+qn+1x)
(1−x+qx)

}
1

([n+1]+β)2(16)

− 2x [n]
[n+1]+β

{
x+ α

[n] + 1−x+qnx
[2][n]

}
+ x2

For 0 < q < 1 and 0 ≤ x ≤ 1, we have q
1−x+qx ≤ 1. Also using the inequality

[n− 1] < [n] we can write(
q

1−x+qx
[n][n−1]

([n+1]+β)2 − 2 [n]
[n+1]+β + 1

)
x2 ≤

(
[n]

[n+1]+β − 1
)2
x2.

Since max
0≤x≤1

(1−x+qnx)
(1−x+qx) = 1 and 1− x+ qnx ≤ 1 , we have,(

1 + 2q
[2]

1−x+qnx
1−x+qx + 2α

)
≤ 3 + 2α

and (
α2 + 2α

[2] (1− x+ qnx)
)

+ 1
[3]

(1−x+qnx)(1−x+qn+1x)
(1−x+qx) ≤ α2 + 2α+ 1

= (α+ 1)2 .

Using the above inequalities in (16) and keeping in mind that 0 ≤ x ≤ 1, we
finally get the desired result. �

3. DIRECT ESTIMATES

In this section, we give some direct theorems for the operators R(α,β)
n,q (f ;x).

In what follows we denote by ‖.‖ = ‖.‖C[0,1] the uniform norm on C[0, 1].

Theorem 3. Let f ∈ C[0, 1] and q := (qn) , 0 < qn < 1 be a sequence
satisfying the condition
(17) lim

n→∞
qn = 1.

Then we have
lim
n→∞

∥∥∥R(α,β)
n,qn (f ; .)− f(.)

∥∥∥ = 0.

Proof. From Lemma 1 and Korovkin’s theorem, the proof is obvious because
[n]qn →∞ as n→∞. �

Let f ∈ C[0, 1]. The modulus of continuity of f is defined by
w(f ; δ) = sup

t,x∈[0,1]
|t−x|≤δ

|f(t)− f(x)| .
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It is well known that for any δ > 0 and each t ∈ [0, 1]

(18) |f(t)− f(x)| ≤ w(f ; δ)
(
1 + |t−x|

δ

)
.

The next theorem gives us the rate of convergence of the operators R(α,β)
n,q (f ;x)

in terms of modulus of continuity.
Theorem 4. If 0 < q < 1 , then for any f ∈ C[0, 1], we have∥∥∥R(α,β)

n,q (f ;x)− f(x)
∥∥∥ ≤ 2w(f ;

√
δn,q)

where δn,q =
(

[n]
([n+1]+β) − 1

)2
+ (3 + 2α) [n]

([n+1]+β)2 + (α+1)2

([n+1]+β)2 + 2(α+1)
([n+1]+β) .

Proof. We have

|R(α,β)
n,q (f ;x)− f(x)| =

∣∣∣∣∣∣
n∑
k=0

bn,k (q;x)
1∫

0

(
f
(

[k]+qkt+α
[n+1]+β

)
− f(x)

)
dqt

∣∣∣∣∣∣
≤

n∑
k=0

bn,k (q;x)
1∫

0


∣∣∣ [k]+qkt+α

[n+1]+β −x
∣∣∣

δ + 1

w(f ; δ)dqt

Using Cauchy-Schwarz inequality we have,
1∫

0

∣∣∣ [k]+qkt+α
[n+1]+β − x

∣∣∣ dqt ≤


1∫
0

(
[k]+qkt+α
[n+1]+β − x

)2
dqt


1/2

from which we can write
n∑
k=0

bn,k (q;x)
1∫

0

(∣∣∣ [k]+qkt+α
[n+1]+β − x

∣∣∣ dqt) ≤ n∑
k=0

bn,k (q;x)


1∫

0

(
[k]+qkt+α
[n+1]+β − x

)2
dqt


1/2

Applying Cauchy-Schwarz inequality once more, the right hand side of the
above inequality becomes

n∑
k=0

bn,k (q;x)


1∫

0

(
[k]+qkt+α
[n+1]+β − x

)2
dqt


1/2

≤


n∑
k=0

bn,k (q;x)
1∫

0

(
[k]+qkt+α
[n+1]+β − x

)2
dqt


1/2 {

n∑
k=0

bn,k (q;x)
}1/2

.

Hence, by the first equality of (3) , we have

|R(α,β)
n,q (f ;x)− f(x)| ≤ w(f ; δ)

1 + 1
δ

 n∑
k=0

bn,k (q;x)
1∫

0

(
[k]+qkt+α
[n+1]+β − x

)2
dqt

1/2
= w(f ; δ)

{
1 + 1

δ

(
R(α,β)
n,q ((t− x)2 ;x)

)1/2
}
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Taking maximum of both sides over the interval [0, 1], we have∥∥∥R(α,β)
n,q (f ; .)− f(.)

∥∥∥ ≤ w(f ; δ)
{

1 + 1
δ (δn,q)1/2

}
Choosing δ = (δn,q)1/2 we get the result. �

For 0 < α ≤ 1, a function f ∈ C[0, 1] belongs to LipM (α) if
|f(t)− f(x)| ≤M |t− x|α

is satisfied for some M > 0 and for all t, x ∈ [0, 1]. The following theorem
gives us the rate of convergence of the operators in terms of the functions of
Lipschitz class.

Theorem 5. Let f ∈ LipM (α) and q := (qn), 0 < qn < 1, be a sequence
satisfying the conditions given in (17) . Then∥∥∥R(α,β)

n,q (f ; .)− f(.)
∥∥∥ ≤M (δn,q)α/2

where (δn,q) is given in Theorem 4.

Proof. By linearity and positivity of the operator and using the condition
f ∈ LipM (α) , we have

(19) |R(α,β)
n,q (f ;x)− f(x)| ≤M

n∑
k=0

bn,k (q;x)
1∫

0

∣∣∣ [k]+qkt+α
[n+1]+β − x

∣∣∣α dqt.
The Hölder’s inequality with p = 2

α and q = 2
2−α gives us

|R(α,β)
n,q (f ;x)− f(x)| ≤M

n∑
k=0

bn,k (q;x)

 1∫
0

(
[k]+qkt+α
[n+1]+β − x

)2
dqt

α/2

.

Applying the Hölder’s inequality once more for the sum term, we obtain

|R(α,β)
n,q (f ;x)− f(x)| ≤

≤M

 n∑
k=0

bn,k (q;x)
1∫

0

(
[k]+qkt+α
[n+1]+β − x

)2
dqt

α/2 (
n∑
k=0

bn,k (q;x)
)(2−α)/2

=M
(
R(α,β)
n,q ((t− x)2 ;x)

)α/2

Taking maximum of both sides of the above inequality over [0, 1], we get the
desired result. �

Lastly, we will study the rate of convergence of the operators R(α,β)
n,q (f ;x)

by means of Peetre’s K-functionals. Remember that the Peetre’s K-functional
is defined by
(20) K2(f ; δ) = inf

g∈C2[0,1]

{
‖f − g‖+ δ

∥∥g′′∥∥} .
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Recall that the second modulus of a function is defined by
w2(f ; δ) = sup

0≤h≤δ
sup
x∈[0,1]

|f(x+ 2h)− 2f(x+ h) + f(x)| .

It is known [11, p. 177, Th. 2.4] that there exists a positive constant C > 0
such that
(21) K2(f ; δ) ≤ Cw2(f ;

√
δ).

We need the following Lemma for the proof of the theorem on Peetre’s K-
functional.

Lemma 6. For f ∈ C[0, 1] and x ∈ [0, 1] one has∣∣∣R(α,β)
n;q (f, x)

∣∣∣ ≤ ‖f‖
Proof. The proof follows from the linearity of the operator R(α,β)

n,q (f, x) and
from the first identity of Lemma 1. �

Theorem 7. Let f ∈ C[0, 1], x ∈ [0, 1] and 0 < q < 1. Then there exist a
positive constant C such that∣∣∣R(α,β)

n;q (f, x)− f(x)
∣∣∣ ≤ Cw2(f ;√αn,q) + w(f ;βn,q(x))

where αn,q = δn,q + 2
([n+1]+β)2

{
3 ([2]β + 1)2 + 2q2n+2

}
and

βn,q(x) =
∣∣∣ 1

[n+1]+β

(
2q
[2] [n]x+ α+ 1

[2]

)
− x

∣∣∣.
Proof. Consider the following auxiliary operators R̃(α,β)

n;q (f, x) defined by

(22) R̃(α,β)
n;q (f, x) = R(α,β)

n;q (f, x) + f(x)− f
(

1
[n+1]+β

(
2q
[2] [n]x+ α+ 1

[2]

))
Since R(α,β)

n;q is linear, from Lemma 1,

R̃(α,β)
n;q (t− x; q, x) = 0.

By Taylor’s theorem we have

g(t) = g(x) + g′(x)(t− x) +
t∫
x

(t− u)g′′(u)du.

Applying R̃(α,β)
n;q to the both side of the above equality, we get

R̃(α,β)
n;q (g;x)− g(x) =

= R̃(α,β)
n;q

 t∫
x

(t− u)g′′(u)du; q, x


= R(α,β)

n;q

 t∫
x

(t− u)g′′(u)du

−
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−

1
[n+1]+β

( 2q
[2] [n]x+α+ 1

[2]

)∫
x

(
1

[n+1]+β

(
2q
[2] [n]x+ α+ 1

[2]

)
− u

)
g′′(u)du

Hence we have

∣∣∣R̃(α,β)
n;q (g;x)− g(x)

∣∣∣ ≤ ∥∥g′′∥∥
R(α,β)

n;q

∣∣∣∣∣∣
t∫
x

(t− u)du

∣∣∣∣∣∣ ;x


+

∣∣∣∣∣∣∣∣
1

[n+1]+β

( 2q
[2] [n]x+α+ 1

[2]

)∫
x

(
1

[n+1]+β

(
2q
[2] [n]x+ α+ 1

[2]

)
− u

)
du

∣∣∣∣∣∣∣∣


≤
∥∥g′′∥∥{R(α,β)

n;q

(
(t− x)2;x

)
+
(

1
[n+1]+β

(
2q
[2] [n]x+ α+ 1

[2]

)
− x

)2
}

(23)

For the last term of the above inequality we can write

(
1

[n+1]+β

(
2q
[2] [n]x+ α+ 1

[2]

)
− x

)2
≤

≤ 2
{(

2q[n]
[2]([n+1]+β) − 1

)2
x2 +

(
α+ 1

[2]
[n+1]+β

)2}

= 2
[2]2([n+1]+β)2

{(
1 + qn+1 + [2]β

)2
x2 + ([2]α+ 1)2

}

Since 0 ≤ x ≤ 1 and α ≤ β, we have

(
1

[n+1]+β

(
2q
[2] [n]x+ α+ 1

[2]

)
− x

)2
≤

≤ 2
[2]2([n+1]+β)2

{
2
(
([2]β + 1)2 + q2n+2

)
+ ([2]β + 1)2

}
from which we get
(24)∣∣∣R̃(α,β)

n;q (g;x)− g(x)
∣∣∣ ≤ ∥∥g′′∥∥{δn,q + 2

([n+1]+β)2

{
3 ([2]β + 1)2 + 2q2n+2

}}
by (23) . On the other hand from (22) and Lemma 6, we have

∣∣∣R̃(α,β)
n;q (f ;x)

∣∣∣ ≤ ∣∣∣R(α,β)
n;q (f ;x)

∣∣∣+ 2 ‖f‖
≤ 3 ‖f‖ .
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Thus, from (22) and (24) we can write∣∣∣R(α,β)
n;q (f ;x)− f(x)

∣∣∣ ≤
≤
∣∣∣R̃(α,β)

n;q (f ;x)− f (x)
∣∣∣+
∣∣∣f (x)− f

(
1

[n+1]+β

(
2q
[2] [n]x+ α+ 1

[2]

))∣∣∣
≤
∣∣∣R̃(α,β)

n;q (f − g;x)
∣∣∣+ |(f − g) (x)|+

∣∣∣R̃(α,β)
n;q (g;x)− g (x)

∣∣∣
+
∣∣∣f (x)− f

(
1

[n+1]+β

(
2q
[2] [n]x+ α+ 1

[2]

))∣∣∣
≤ 4 ‖f − g‖+ ‖g′′‖αn,q +

∣∣∣f (x)− f
(

1
[n+1]+β

(
2q
[2] [n]x+ α+ 1

[2]

))∣∣∣
Taking the infimum on the right hand side over all g ∈ C2[0, 1] and using (20)
and (21) we get∣∣∣R(α,β)

n;q (f ;x)− f(x)
∣∣∣ ≤ 4K2(f ;αn,q) + w(f ;βn,q(x))
≤ Cw2(f ;√αn,q) + w(f ;βn,q(x)).

which completes the proof. �

Remark 8. For qn → 1 as n→∞, we have αn,qn → 0 and βn,qn(x)→ 0.

4. STATISTICAL CONVERGENCE PROPERTIES

Before proceeding further let us recall the concept of statistical conver-
gence, which was first introduced by H. Fast [8] in 1951 and has been studied
frequently in approximation theory for the last two decades.

The natural density of a set K ⊆ N is defined by

δ(K) = lim
n

1
n |{k : k ≤ n, k ∈ K}|

provided the limit exists (see [15]); here |A| denotes the cardinality of the set
A. A sequence x = (xk) is called statistically convergent to a number L if, for
every ε > 0

δ{k : |xk − L| ≥ ε} = 0
and it is denoted as st− lim

k
xk = L.

A.D. Gadjiev and C. Orhan [9] proved the following Bohman-Korovkin type
approximation theorem using the concept of the statistical convergence.

Theorem A. [9] If the sequence of linear positive operators An : C[a, b]→
C[a, b] satisfies the conditions,

st− lim
n
‖An(eν ; .)− eν(.)‖C[a,b] = 0 , eν(t) = tν

for ν = 0, 1, 2, then for any function f ∈ C[a, b],

st− lim
n
‖An(f ; .)− f(.)‖C[a,b] = 0.
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Theorem 9. Let (qn), 0 < qn < 1, be a sequence satisfying

(25) st− lim
n
qn = 1 and st− lim

n
qnn = c ∈ (0, 1).

Then for all f ∈ C[0, 1], the operator R(α,β)
n;qn satisfies

st− lim
n
‖R(α,β)

n;qn (f, .)− f(.)‖ = 0.

Proof. It is enough to prove that

st− lim
n
‖R(α,β)

n;qn (ei; .)− ei(.)‖ = 0,

for ei(t) = ti, i = 0, 1, 2, then the proof follows from Theorem A.
For i = 0, it is clear from the first identity of Lemma 1 that

(26) st− lim
n
‖R(α,β)

n;qn (e0; .)− e0(.)‖ = 0.

For i = 1, again Lemma 1 implies,

R(α,β)
n,q (e1, x)− e1(x) =

(
2q
[2]

[n]
[n+1]+β − 1

)
x+

(
α+ 1

[2]
[n+1]+β

)
from which we can write

(27) |R(α,β)
n,q (e1, x)− e1(x)| ≤ 1+qn+1+[2]β

[2]([n+1]+β) x+
α+ 1

[2]
[n+1]+β

Now for a given ε > 0, let us define the following sets:

T := {n : ‖R(α,β)
n,qn (e1, .)− e1(.)‖ ≥ ε},

T1 := {n : 1+qn+1+[2]β
[2]([n+1]+β) ≥

ε
2}.

T2 := {n :
α+ 1

[2]
[n+1]+β ≥

ε
2}.

From (27) it is clear that T ⊆ T1 ∪ T2. So we can write,

(28) δ (T ) ≤ δ (T1) + δ (T2)

From the conditions (25), we have

st− lim
n

1+qn+1+[2]β
[2]([n+1]+β) = 0 and st− lim

n

α+ 1
[2]

[n+1]+β = 0

which implies that the right hand side of the inequality (28) is zero. Therefore
we have,

δ{n : ‖R(α,β)
n,qn (e1, .)− e1(.)‖ ≥ ε} = 0

which implies

(29) st− lim
n
‖R(α,β)

n,qn (e1, .)− e1(.)‖ = 0.
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Lastly for i = 2 we can write

|R(α,β)
n,q (e2, x)− e2(x)| =

(
1− q

1−x+qx
[n][n−1]

([n+1]+β)2

)
x2

+
(
1 + 2q

[2]
1−x+qnx
1−x+qx + 2α

)
[n]

([n+1]+β)2x

+
(
α2 + 2α

[2] (1− x+ qnx) + 1
[3]

(1−x+qnx)(1−x+qn+1x)
1−x+qx

)
1

([n+1]+β)2

from which we have
‖R(α,β)

n,q (e2, .)− e2(.)‖ ≤
(
1− q [n][n−1]

([n+1]+β)2

)
+ (3 + 2α) [n]

([n+1]+β)2 +
(
α2 + 2α

[2] + 1
[3]

)
1

([n+1]+β)2(30)

Now, for a given ε > 0, let us define the following sets:
K := {n : ‖R(α,β)

n,qn (e2, .)− e2(.)‖ ≥ ε},

K1 := {n :
(
1− q [n][n−1]

([n+1]+β)2

)
≥ ε

3}

K2 := {n : (3 + 2α) [n]
([n+1]+β)2 ≥ ε

3}

K3 := {n :
(
α2 + 2α

[2] + 1
[3]

)
1

([n+1]+β)2 ≥ ε
3}

From (30) it is clear that K ⊆ K1 ∪K2 ∪K3. Therefore we have,
(31) δ (K) ≤ δ (K1) + δ (K2) + δ (K3) .
Taking the conditions given in (25) into account, one has

st− lim
n

(
1− q [n][n−1]

([n+1]+β)2

)
= 0

st− lim
n

(3 + 2α) [n]
([n+1]+β)2 = 0(32)

st− lim
n

(
α2 + 2α

[2] + 1
[3]

)
1

([n+1]+β)2 = 0

From (32) the right hand side of (31) becomes zero and hence we get

δ{n : ‖R(α,β)
n,qn (e2, .)− e2(.)‖ ≥ ε} = 0

i.e.,
(33) st− lim

n
‖R(α,β)

n,qn (e2, .)− e2(.)‖ = 0.

Now by (26), (29) and (33) we conclude from Theorem A that for all f ∈ C[0, 1]

st− lim
n
‖R(α,β)

n,qn (f, .)− f(.)‖ = 0.

�

Example 10. Taking f(x) = x2, (curve 4), we compute the error estimation
of q−Lupaş Kantorovich operators given by (10) for q = 0.5 (curve 3), q = 0.7
(curve 2) and q = 0.85 (curve 1).
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x Error bound for q = 0.5 Error bound for q = 0.7 Error bound for q = 0.85
0 0.6574686544 0.6508325077 0.4855162530
0.3 0.0569703701 0.3717804595 0.2747085315
0.5 0.1057573294 0.0748125294 0.0569703701
0.8 0.0476530351 0.0418758717 0.0211787652
1 0.1345946106 0.1266259064 0.05804583687

Table 1. Error estimates of R(α,β)
n,qn (f, x) for different values of q. (n =

30, α = 1 and β = 4.)

Fig. 1. Estimation of the q-Lupaş-Kantorovich operators to the func-
tion f(x) = x2 for q = 0.5; 0.7 and 1.
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tion of Lupaş operators, Comput. Math. Appl., 64 (2012) pp. 511–517.

https://doi.org/10.1007/s1221
https://doi.org/10.1007/s1221
https://doi.org/10.1007/s1221
https://doi.org/10.1016/j.camwa.2011.12.033
https://doi.org/10.1016/j.camwa.2011.12.033


92 Sevilay Kirci Serenbay and Özge Dalmanoğlu 15
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[12] A. Lupaş, A q-analogue of the Bernstein operator, University of Cluj-Napoca, Seminar
on Numerical and Statistical Calculus, 9 (1987), pp. 85–92.

[13] N.I. Mahmudov and P. Sabancıgil, Approximation theorems for q-Bernstein-
Kantorovich operators, Filomat 27:4 (2013) pp. 721–730.

[14] N.I. Mahmudov and P. Sabancıgil, Voronovskaja type theorem for the Lupaş q-
analogue of the Bernstein operators, Math. Commun. 17, (2012) pp. 83–91.

[15] Niven I. , Zuckerman H.S. and Montgomery H., An Introduction to the Theory of
Numbers, 5th edition, Wiley, New York, 1991.

[16] S. Ostrovska, On the Lupaş q-analogue of the Bernstein operator, Rocky Mountain J.
Math., 36 5 (2006), pp. 1615–1629.
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