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APPROXIMATION THEOREMS FOR KANTOROVICH TYPE
LUPAS-STANCU OPERATORS BASED ON ¢-INTEGERS

SEVILAY KIRCI SERENBAY' and OZGE DALMANOGLU*

Abstract. In this paper, we introduce a Kantorovich generalization of ¢g-Stancu-
Lupag operators and investigate their approximation properties. The rate of
convergence of these operators are obtained by means of modulus of continuity,
functions of Lipschitz class and Peetre’s K-functional. We also investigate the
convergency of the operators in the statistical sense and give a numerical example
in order to estimate the error in the approximation.
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1. INTRODUCTION
For a function f(z) defined on the interval [0, 1], the linear operator R, :
C[0,1] — C]0, 1] defined by

n

(1) Rug(f) = Ru(f.2) = Y F () bus(ai )

k=0
where
" k(k—1)/2k (]_g)n—k
(2) bn,k(‘]§ T) = [kj (1q—x+qx)...(1(—x+;n—1x)

is called Lupas operators [12]. For ¢ > 0, R,,(f, ¢; x) are linear positive opera-
tors on C[0, 1] and for ¢ = 1 they turn into the well known Bernstein operators.
The following identities hold for the R, (f,q;z) operators:

Rn(e()v(J;x) =
) Ry(e1, ;) = =«
Rales,;2) = ot +2s) (dmatarn)

Lupas investigated the approximation properties of the operators on C[0, 1]
and estimated the rate of convergence in terms of modulus of continuity. In [14]
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2 Kantorovich type Lupas-Stancu operators 79

the authors studied Voronovskaja type theorems for the ¢-Lupasg operators for
fixed ¢ > 0. In [16], Ostrovska presented new results for the convergence of the
sequence R, (f,qn;x) in C[0,1]. She established approximation theorems for
the cases ¢ € (0,1) and g € (1, 00), respectively, and studied the convergence
of {R,(f,qn;x)}, ¢ # 1 is fixed, obtaining the limit operator of the Lupag
g-analogue of the Bernstein operator. In [5], Dogru and Kanat considered
a King type modification of Lupas operators and investigated the statistical
approximation properties of the operators. Very recently, Dogru et al. [7]
introduced a Stancu type generalization of ¢g-Lupag operators as

(4) RyP(fiq,@ Zf([le]ﬂ[gl) b (45 7)

where by, 1(q; ) is given in . They studied the approximation properties
and also introduced the r-th generalization of these operators.

Since g-Bernstein operators has attracted a lot of interest, many generaliza-
tions of them have been discovered and studied by several authors. Here we
will mention some of them related to our study. For example in [I3] an integral
modification, called Kantorovich type generalization of ¢-Bernstein operators,
have been studied. The authors constructed the operators as

1

n k
x) =Y poplg;a /f 'fl:’lt dqt

k=0 0

where f € C[0,1],0 < g < 1 and
(5) Prk(g; ) = [[]a® (1 —z)" "

and studied some approximation properties of them. Ozarslan and Vedi [17]
introduced g-Bernstein-Schurer-Kantorovich operators as

n—+p

1
k k
KP(f;q,2) an+p, (4@ /f ) dgt.
0

Acu et al. [I] introduced a new g-Stancu-Kantorovich operators as

1
k (0%
w@B)(f; ) ank% /f “f}ﬁi} dt
- 0

where 0 < o < 8, f € C[0,1] and p,, 1 (¢; =) is given in . She also established
a g-analogue of Stancu-Schurer-Kantorovich operators in [2] where she gave
the convergence theorems both in classical and statistical sense and obtained
a Voronovskaya type result.



80 Sevilay Kirci Serenbay and Ozge Dalmanoglu 3

For every n € N and ¢ € (0,1), Dogru and Kanat [6] defined the Kan-
torovich type modification of Lupag operators as

o 1)/t
- —kgk(k=1)/2,k(1_p\n—k
(6) Ru(f,q;7)=[n+1] Z f(t)dqt [k] ?1_§+qm)...(1_i+qn)71$)-
F=0 N [/ [n+1]

Recently, Agrawal et al. [3] studied the approximation properties of Lupas-
Kantorovich operators based on Pélya distribution.

In this paper we present a Kantorovich generalization of the Lupas-Stancu
operators based on the g¢-integers. Our purpose is to study the local and
global approximation results for these operators. We also investigate statis-
tical approximation properties using Korovkin type statistical approximation
theorem.

2. CONSTRUCTION OF THE OPERATORS

Before proceeding further we recall some basic notations from g¢-calculus
(see [4] and [10]).

Let ¢ > 0. For each nonnegative integer r, the g-integer [r], the g-factorial
[r]! and the g-binomial coefficient [}], (r > k > 0) are defined by

] = [y = { = a2l

T, q=1,
e [r][r —1]...[1], qg>1,
! { N 5
and

respectively. The g-Jackson integral on the interval [0, b] is defined as

b
(7) /f dt_l—qbzfqﬂb L 0<gq<l,
0

provided that the series is convergent. The Newton’s binomial formula is given
by

n

(8) (1+2)(1+go)..(1+¢"2) = 3 [)g"E D72k,
k=0

The Euler’s formula is

gk (k- 1)/2 k e
9) Z TO—QF R — H(l + qu)

= k=0
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which can be derived from Newton’s binomial formula. Let 0 < ¢ < 1. We
introduce the Kantorovich type ¢-Lupas-Stancu operators as

o n GH =1 /2 gk (1 _gyn—k Kok tta
(10)  REP(fim) = 32 [ (/ Sl )

k=0 H (1—z+q°x)

where 0 < a < f and f € C[0,1].

LEMMA 1. For alln € N, z € [0,1] and 0 < g < 1, we have the following
equalities:

R (152) =1

o n 1—z+q"x
RP(t;x) = [n—l-[l}}-i-ﬁ {:r:+ ORIt }

1 2q
(11) = i (@l + o+ )
(B)(42. .y — __a [n][n—1] 2g 1—a+q"z [n]
RO (P0) = =g i ha® + (14 A + 20) e
1 (1 —x-l—q"x)(l—:c-f—q"Jrl ) 1
+ <C¥ + [2](1 —T+q 33) + [3} l1—z+qz ) ([n+1]+5)2

Proof. Taking = instead of z in one gets the first equality of ( .
Taking £ and % instead of x in . we have

(12) sgl(l —z+q¢'r) = i [b]a" =172 (qz)* (1 — 2)m =+
@ e = £ R @ o

respectively. Using the definition of ¢-Jackson integral given in and the
first equality of , we can write

N n P72k (1 gyn—F i o
Rgz,éﬁ)(t; x) :Z [k] o1 1-2) (/ [[l:ﬁ TB d t)

k=0 H (1—z+q°z)
s=0

k(k— 1)/2 k(1—g)n—k k
[n+1]+ﬁ Z ([k] + ([12*] + O‘)
H(l T+q°7)

s=0

n—1

17 =1 /2 (g Vk (1 —gyn—k—1
:m [n]xz[k]q n71(q)( )
k=0 H (1—z+q%x)
s=0

2] Z k(k— 1>/2(qa:) ( )nfk TLa
Tl (-etae2)

s=0
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From the identity (12)) we get the desired identity for R,(1 oB) (t;x).
R (5 2) =

n 1
GE = D/25k (1 _g)
= Grar 2 W (/ |+t +a) dqt)

k=0 H (1—z+g¢°2) 0

_ 1 Zn H gD 2k (1) F (K] + @) + E(a + k) + s
" 2 k n—1 2 3
([n+1]+8) = I (—atqwa) { 2] (3] }

s=0

n—2 _or P 1/2(g22) ¥ (1 _g)n—k—2
~ G | el = 1 Y [ e
k=0 I (1—z+gsx)
s=0

n—1

_ k n—k—
Qa4+ 1) [nfa Y [7f] e e

n—1

k=0 H (1—z+q%z)
s=0

o~ s 1)/2 2V (1— ) —F
+a? 4+ %2 [ } (g)*(1-2)

k=0 H (1—z+q°z)
2% n-1 — qk(k—l)/Z(qu)k(lix)n—k—l
+m[n]x Z [ k ] n—1
k=0 [[ t—a+goz)
s=0

grk— 1)/2 )k(lil.)nfk

312 e

Ho(l x+q5xT)
Using the identities given in and we get
R E50) = (o { Y (a4 1) o +0% 4 5 (1= 2 4470
+ Ylnjolztee 4 g Uoerdoete) |

Arranging the terms we have the desired result.

REMARK 2. From Lemma 1 we have,

a, (¢"+P) l1—z4+q"x
(14) Rt~ wi2) = Gfige + s {0+ 0

n 2 n
REP((t—2)30) < (b — 1) + (3 +20) 1

([n+1]+8)
(a+1)?2 2(a+1)
(15) T G T ria)
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Proof. The identity (14) is obvious. For the inequality we use the
following second central moment of the operator Rn ( f; :c)
2
Rt~ ) s) =

q [n][n—1] 2
“I-ater ([n+1]+8)2

2q 1—a+
+ (1 * ﬁ 1—I~'E+qqxaj + 20

[n]
) (482"

1—z+q"z)(1—z+q" 1z
(16) +{(a+[2](1:n+qzv)>+[:lﬂ( (1ot )} L

(1—z+qx) ([nJrl]JrB)2
[n] 1—x+q"x 2
it e+ g+ S e

For 0 < g<1land 0 <z <1, we have
[n — 1] < [n] we can write

[n][n—1] [n] 2 O 2,
(e (n+i+p7 ~ 2ries T 1) a? < (it —1) @

. 1—z+q"x)
Since max (=2Fd"2) _
0<z<1 (1—z+qx)

— 2r——

m < 1. Also using the inequality

land 1 — x4+ ¢"x <1, we have,

(1+2q1 x+q”f+2a) <342

2] T—z+qz
and
(a + [2] S(1—xz+gq m)) + ﬁ(l—z-Fq:le_)(x:;;-)i-qnﬁ—lx) <a’4+2+1
= (a+1)%
Using the above inequalities in and keeping in mind that 0 < z < 1, we
finally get the desired result. O

3. DIRECT ESTIMATES

In this section, we give some direct theorems for the operators Rn ( f;x).
In what follows we denote by ||.|| = ||.[[¢o,1; the uniform norm on C [0 1].

THEOREM 3. Let f € CI[0,1] and q := (qn),0 < g, < 1 be a sequence
satisfying the condition

(17) g, n =1
Then we have
hm HRn‘”‘qf) fi)— H =0.

Proof. From Lemma 1 and Korovkin’s theorem, the proof is obvious because
[n]g,, — 00 as n — oo. O

Let f € C[0,1]. The modulus of continuity of f is defined by
w(f;6) = sup [f(t) — f(2)].

t,ze(0,1]
i—r|<6
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It is well known that for any § > 0 and each t € [0, 1]
(18) £(t) = F(@)] < w(f;0) (1+152).

The next theorem gives us the rate of convergence of the operators Rn ( fiz)
in terms of modulus of continuity.

THEOREM 4. If0 < g <1, then for any f € C[0,1], we have
| R (fi2) = F(@)| < 20(F54/60)

(I q)? [n] (a+1)? 2(art1)
where oy 4 = (([n+1]+ﬂ) 1) + (3+2a) (it 1+5)2 + (14572 T nti+8)

Proof. We have

n

S bak (o) [ (F (BEGER) - F() dt

1
Xt |
1 ( e )
R e R
0
Using Cauchy-Schwarz inequality we have,

1 1 , 1/2
[k]+q*t+a [k]+ ktta
/ [n-&-ql]-&-ﬂ - {/ [n+q1 43 ) dqt}
0 0

from which we can write
1

1 1/2
n n 2
,; Obmk (¢; :U)/ (’7[’?1:11?12@ — x‘ dqt) < kE Obn,k (¢; ) {/ (7%&&??5& — 33) dqt}
— 0 — 0

Applying Cauchy-Schwarz inequality once more, the right hand side of the
above inequality becomes

1 1/2
n koo 2
> bnk (q32) {/ (7[14[:3:11]% —x) dqt}
=0 )
1

1/2
L kito 2 n 1/2
S {Z bn,k (Q; .’13) / (% - 1.) dqt} {kzo bn,k (Q; .’13)} .
k=0 2 =

Hence, by the first equality of , we have
1 1/2
[k]+qkt+a 2
Z b (452 / NCESIE: ) dqt]
k=0 0

= (o) {1+ (R0 - 0 i)

RO (fi2) = fla)] =

AN
]
k4
Bl
=
o

IR (fro) — f(@)] < w(f;0) 1+
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Taking maximum of both sides over the interval [0, 1], we have
|RED (£ = £ < w(r:0) {1+ % (0ng) /)
Choosing 0 = (9, 4) /2 we get the result. O
For 0 < a <1, a function f € C[0, 1] belongs to Lip,, («) if
f@) = fl@)| < M|t — 2|
is satisfied for some M > 0 and for all ¢,z € [0,1]. The following theorem

gives us the rate of convergence of the operators in terms of the functions of
Lipschitz class.

THEOREM 5. Let f € Lipy, (a) and q = (qn),0 < ¢, < 1, be a sequence
satisfying the conditions given in . Then

R0 = 50 < M G
where (On,q) s given in Theorem 4.

Proof. By linearity and positivity of the operator and using the condition
f € Lipy, (o), we have

1
k a (07
(19) RO (f0) = fla |<Mank G / Mt ) dyt.
0

The Holder’s inequality with p = & and g = ﬂ gives us

1 CY/Q
“ k kt+o 2
R (fs0) — F@) < MY bus (o) | [ (B0 —0) at)
k=0 0
Applying the Holder’s inequality once more for the sum term, we obtain

IR (fr2) = f(w)] <
1 /2
[K+d*t+a 2 n (2—a)/2

= 0

o a/2
=M (R;,(; ((t— =) ;x>)
Taking maximum of both sides of the above inequality over [0, 1], we get the
desired result. g

Lastly, we will study the rate of convergence of the operators Rn (2.8) (f;x)
by means of Peetre’s K-functionals. Remember that the Peetre’s K- funct10na1
is defined by

20 Ks(f:0) = inf gl lg" -
(20) 2(f:0) = b AIF —gll+3lg"ll}
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Recall that the second modulus of a function is defined by

wa(f;0) = sup sup [f(z+2h) = 2f(z+h)+ f(z).
0<h<8 z€[0,1]

It is known [I1) p. 177, Th. 2.4] that there exists a positive constant C' > 0
such that

(21) Ks(f30) < Cwa(f; V).

We need the following Lemma for the proof of the theorem on Peetre’s K-
functional.

LEMMA 6. For f € C[0,1] and x € [0,1] one has
R ()| < If]
Proof. The proof follows from the linearity of the operator Rfﬁf )( f,x) and
from the first identity of Lemma 1. 0

THEOREM 7. Let f € C[0,1],z € [0,1] and 0 < ¢ < 1. Then there ezist a
positive constant C' such that

RGP (f,2) = £(@)] < Cusl(f; /mg) + w(f; Bng())
_ 2 2 2n+2
where o, g = 0 q + CISEE {3 ([2]8+1)° + 2q } and
2
na(w) = | st (Blnle + ot ) =],
Proof. Consider the following auxiliary operators Eﬁﬁ‘f )( f,x) defined by
D Oé,ﬁ — OlyB 1 2 1
(22)  REP(f,0) = RGP (f2) + (@) — f (s (Ble + o+ )
Since Rﬁf}f ) is linear, from Lemma 1,
E%?éﬂ) (t —z;q,2) = 0.

By Taylor’s theorem we have

9(t) = 9(2) + ¢'(@)(t — 2) + [t — w)g"(u)du.

T

Applying fz,({?f ) to the both side of the above equality, we get
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wrires (B e+t )

-] (e ) )
B (g:0) = gl \<H9”H{ 53"5)(

1 2 1
EESERe (ﬁ ["]“0‘*@)

+ (m (%[n]m—i—a%—ﬁ)—u) du

T

@) <101 {Re (1t~ 0%52) + (ks (B + o+ ) =)'}

Hence we have

t

/(t —u)du

xT

For the last term of the above inequality we can write

( +1+ﬁ (7q x+0‘+[2}) w)ZS
2q(n] 2 o 2
<2 ([2}([n+1}+ﬁ) 1) vt (Wl“ﬁ) }

= B {(1 T [208) % + (2o + 1)2}

Since 0 <z <1 and a < 3, we have

([n+h+ﬁ ([2][ Jz+ o+ [2}) x>2 <
< gy (2 (294D + ™) + (25 417}

A

from which we get
(24)

‘Efﬁ‘q’ﬁ) (g;2) — g(x)] < |lg"[| {6nq + (CESTE {3(28+1) +2¢2}}

by . On the other hand from and Lemma 6, we have

R (Fo)| < RGP (Fso)| + 2010
< 3061
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Thus, from and we can write
\R%‘?“q’ﬁ)(f;x) - ()] <
G (fi2) = £ @)+ | @)~ £ (s (Blnle +a+ )|
R (f = gia)| +1(F = 9) @)+ | Ry (g3) = 9 (@)
17 @)~ f (petres (Bl +o 4 7))
<4lIf = gl + 9" ang +|F @) = £ (s (Blnle+a+ )|

Taking the infimum on the right hand side over all g € C2[0, 1] and using
and we get

’Rﬁﬁ‘gﬁ)(f;:c)—f(fv)‘ < AKy(f; omg) + w(f; Bng(2))

sz(f; vV an,q) + w(f; ﬁn,q(ﬂj))
which completes the proof. ]

<|R

<

IN

REMARK 8. For g, — 1 as n — 0o, we have oy, 4, — 0 and S, 4, (z) — 0.

4. STATISTICAL CONVERGENCE PROPERTIES

Before proceeding further let us recall the concept of statistical conver-
gence, which was first introduced by H. Fast [§] in 1951 and has been studied
frequently in approximation theory for the last two decades.

The natural density of a set K C N is defined by

5(K)—hm Hk: k<n, ke K}

provided the limit exists (see [15]); here |A| denotes the cardinality of the set
A. A sequence x = (xy) is called statistically convergent to a number L if, for
every € >0

Mk: |ap — L > €} =0

and it is denoted as st — lilgn xr = L.

A.D. Gadjiev and C. Orhan [9] proved the following Bohman-Korovkin type
approximation theorem using the concept of the statistical convergence.

THEOREM A. [9] If the sequence of linear positive operators Ay, : Cla,b] —
Cla,b] satisfies the conditions,

st — lign [An(ev;.) —ev(lclay =0, e(t) =¢"
forv=0,1,2, then for any function f € Cla,b],
st —lim [[A,(f;.) = F()llcfan = 0.
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THEOREM 9. Let (qy), 0 < ¢, < 1, be a sequence satisfying
(25) st—limg, =1 and st —lim q, =c€(0,1).
Then for all f € C[0,1], the operator R qn) satisfies

~lim RS (f,) — £0)] = 0.

Proof. 1t is enough to prove that

st — lim [ R (e53.) — ex()]| = 0,

for e;(t) = t*,i = 0,1,2, then the proof follows from Theorem A.
For i = 0, it is clear from the first identity of Lemma 1 that

(26) st—hm HRn o (eo;.) —eo(L)]| =0.
For ¢ = 1, again Lemma 1 implies,
o, 2 n atg
e o) = a0 = (s = 1) o+ (sl

from which we can write

N ntl at
(27) |R( B(er,z) — e (z)] < l[gg[mﬁfz]a):” + [n+1][3]rﬂ

Now for a given € > 0, let us define the following sets:

Ti={n: R (er,.) — ()] = e,

T,qn
1+g" 1428
={n: 2] q[n—‘,—l J[r/]a) > 5}
g . ot
To:={n: s = 51
From it is clear that 7" C 17 UT5. So we can write,
(28) §(T) <0 (T1) + 6 (T2)
From the conditions , we have
. 14g 4218 atn
St—llmm Oand st — hmm—o

which implies that the right hand side of the inequality is zero. Therefore
we have,

6{n: | R (er,) —er()] 2 e} =0

which implies

(29) st —lm||R{,7 (er,.) — ea()] = 0.
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Lastly for ¢ = 2 we can write

’R(a lea,x) — ea(z)] = (1 = ([ﬁ[ﬁ;g)z) v

29 1—z+q"x [n]
(1 T B T-ata +2a) 182"

2, 2001 _ n 1 (l1—z+q™ :c)(l—a:+q"+133) 1
+ <a + m(l r+q"x) + Bl I—z+qz ([n+1]+8)?

from which we have

a,3) _ _ ,_[nlln—1]
IR (e0,) = e2()]] < (1 — allntls)

_ M 2a 1
(30) +(3420) piltan + (08 + 3 + &) Gy

Now, for a given € > 0, let us define the following sets:
= {TL HRTL n (627 ) - 62()” > 6}7
(- (1 _ g [lln—1]
Kl.—{n.(l a7 )_3}

n+1]+8)*

Ky :={n: (3+2a)m > 5}

K3 :={n: (on—I—%]W—ﬁ)mZ%}
From it is clear that K C K7 U Ky U K3. Therefore we have,
(31) 6 (K) < 0(K1)+6(Kz)+0(Ks).
Taking the conditions given in into account, one has

stfliy(lfq%) = 0

(32) st —lim (3 + 20) m =0

st=lim (o + 5 + ) e = O

From the right hand side of (31)) becomes zero and hence we get
o{n: | R (e2,.) —ex()] 2 e} =0
ie.,
(33) st — hm HRn o (62, ) —ea(.)]] =0.
Now by , and (33]) we conclude from Theorem A that for all f € C|0, 1]
st — hm HR e (f, J—=fO)|=0.
O

ExAMPLE 10. Taking f(x) = 22, (curve 4), we compute the error estimation
of g—Lupag Kantorovich operators given by for ¢ = 0.5 (curve 3), ¢ = 0.7
(curve 2) and ¢ = 0.85 (curve 1).
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X Error bound for ¢ = 0.5 | Error bound for ¢ = 0.7 | Error bound for ¢ = 0.85
0 0.6574686544 0.6508325077 0.4855162530
0.3 | 0.0569703701 0.3717804595 0.2747085315
0.5 | 0.1057573294 0.0748125294 0.0569703701
0.8 | 0.0476530351 0.0418758717 0.0211787652
1 0.1345946106 0.1266259064 0.05804583687

1]
2]

3]

(4]

Table 1. Error estimates of Rfﬁ(}f)( f,x) for different values of q. (n =
30, a=1and g =4.)

0.8
064
/"f
. /
044 -
. ‘_,-’—‘
- -
- - -
. - e
. - -
O T i
021 el
0 SR T T T T T T T T 1
0 02 04 06 0.8 1
be
‘——Cur\'el == Curve 2 Curvelderee Curvle|

Fig. 1. Estimation of the ¢-Lupag-Kantorovich operators to the func-
tion f(x) = 22 for ¢ = 0.5;0.7 and 1.
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