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Lp-APPROXIMATION AND GENERALIZED GROWTH
OF GENERALIZED BIAXIALLY SYMMETRIC POTENTIALS

ON HYPER SPHERE

DEVENDRA KUMAR∗

Abstract. The generalized order of growth and generalized type of an entire
function Fα,β (generalized biaxisymmetric potentials) have been obtained in
terms of the sequence Epn(Fα,β ,Σα,βr ) of best real biaxially symmetric harmonic
polynomial approximation on open hyper sphere Σα,βr . Moreover, the results of
McCoy [8] have been extended for the cases of fast growth as well as slow growth.
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1. INTRODUCTION

Let Fα,β be a real valued regular solution to the generalized biaxisymmetric
potential equation(

∂2

∂x2 + ∂2

∂y2 + 2α+1
x

∂
∂x + 2β+1

y
∂
∂y

)
Fα,β = 0, α > β > −1

2 ,

where (α, β) are fixed in a neighbourhood of the origin and the analytic Cauchy
data Fα,βx (0, y) = Fα+β

y (x, 0) = 0 is satisfied along the singular lines in the
open hyper sphere Σα,β

r : x2 + y2 < r2. Such functions with even harmonic
functions are referred to as generalized biaxisymmetric potentials (GBASP ′s)
having local expansions of the form

Fα,β(x, y) =
∞∑
n=0

anR
α,β
n (x, y)

such that
Rα,βn (x, y) = (x2 + y2)nPα,βn (x2 − y2/x2 + y2)/Pα,βn (1), n = 0, 1, 2, . . .

where the Pα,βn are Jacobi polynomials [1], [18].
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Let K be a compact subset of the complex plane. Let the one to one
operator mapping between the space Lp(Σα,β

r ) of real valued GBASP’s with
finite p-norm

‖ · ‖p =
(

1
A

∫∫
Σα,βr
| · |pdxdy

)1
p
, p ∈ [1,∞),

‖ · ‖∞ = sup
Σα,βr
| · |, ‖1‖p = 1

and the space lp(K) of associated functions

f(z) =
∞∑
n=0

anz
2n, Rα,βn (z, 0) = z2n, n = 0, 1, 2, . . .

continuous on K with finite p-norm. Following McCoy [14] for Koornwinder’s
integral for Jacobi polynomials and the inverse operator have been defined as:

Fα,β(x, y) = Kα,β(f) =
∫ 1

0

∫ π

0
f(ζ)µα,β(t, s)dsdt

µα,β(t, s) = γα,β(1− t2)α−β−1t2β+1(sin s)2α

ζ2 = x2 − y2t2 − i2xyt cos s

γα,β = 2Γ(α+ 1)/Γ(1
2)Γ(α− β)Γ(β + 1

2),
and

f(z) = K−1
α,β(Fα,β) =

∫ 1

−1
Fα,β(rξ, r(1− ξ2)

1
2 )να,β((z/r2)2, ξ)dξ

να,β(τ, ξ) = Sα,β(τ, ξ)(1− ξ)α(1 + ξ)β

Sα,β(τ, ξ) = ηα,β
1−τ

(1+τ)α+β+2F
(
α+β+2

2 ; α+β+3
2 ;β + 1; 2τ(1+ξ)

(1+τ)2

)
ηα,β = Γ(α+ β + 2)/2α+β+1Γ(α+ 1)Γ(β + 1).

The normalizations Kα,β(1) = K−1
α,β(1) = 1 are taken. The kernel Sα,β(τ, ξ)

is analytic on ‖τ‖ < 1 for −1 ≤ ξ ≤ 1. The local function elements Fα,β and
f are continued harmonically/analytically by contour deformation using the
Envelope Method [3].

Let K be a compact subset of the complex plane with Card. K = 0 and let
u1, u2, . . . , un ∈ K. Following [4, p.285] we put

V (u1, u2, . . . , un) =
n∏

k,l(k<l)
(uk − ul),

Vn = max{|V (u1, u2, . . . , un)| : uk ∈ K, 1 ≤ k ≤ n}.
Set d = max{|z| : z ∈ K}. Also, let µn(z) = zn + a1z

n−1 + · · ·+ an denote
the Chebyshev polynomial for K such that all zeros of µn belong to K. We
set

m∗n = max{|µn(z)|, z ∈ K}.
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Then we have [4, pp. 287–289],

m∗n ≤
Vn+1
Vn
≤ (n+ 1)m∗n,

lim
n→∞

(
Vn+1
Vn

)1/n
= d̃,

where d̃ is the transfinite diameter of K.
Using the Koornwinder’s integral and inverse operator the information con-

cerning the approximation and growth of analytic functions can be transfer to
GBASP Fα,β.

The essential properties of Fα,β ∈ Lp(Σα,β
r ) that are the restrictions of entire

GBASP functions are drawn from approximation on sets of polynomials

Pα,β2n = {Kα,β(h) : h ∈ p2n},

and

p2n =
{

n∑
k=0

akz
2k : ak - real, 0 ≤ k ≤ n

}
, n = 0, 1, 2, . . . .

It is the Bernstein limits of the optimal approximates,

Ep2n = Ep2n(Fα,β,Σα,β
r ) = min

{
‖Fα,β = H‖p : H ∈ Pα,β2n

}
,

and

ep2n = ep2n(f ; k) = min {‖f − h‖p : h ∈ p2n} ,

and provide the characterizations. The set p2n contains all real polynomials
of degree at most 2n and set Pα,β2n contains all real biaxisymmetric harmonic
polynomials of degree at most 2n. The operators Kα,β and K−1

α,β establish
one-one equivalence of sets p2n and Pα,β2n .

Several authors such as Harfaoui [5], Kumar [10], Harfaoui and Kumar [6]
and others obtained generalized characteristics of growth of entire functions
by using the best polynomial approximation and interpolation in Lp-norm.
The growth characteristics of solutions of certain linear partial differential
equations have been studied by Kumar and Basu [12], [13], Kumar [11], Khan
and Ali [9].

McCoy [15, Th. 2] obtained the necessary and sufficient conditions for the
entire GBASP Fα,β ∈ Lp(D), p ≥ 2 to be the restriction to D of order and type
in terms of the errors Epn(Fα,β), here D is parabolic convex set. To the best of
our knowledge, these characterizations leave an important class of growth of
entire function GBASP Fα,β such as fast and slow growth. In this paper we
have tried to fill this gap. Moreover, we have extended the results of McCoy
to generalized orders and generalized types which will cover the cases of fast
growth as well as slow growth. Here we replace D by open hypersphere Σα,β

r .
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2. GENERALIZED ORDER AND GENERALIZED TYPE

Seremeta [17] defined the generalized order and generalized type with the
help of general functions as follows.

Let L0 denote the class of functions h satisfying the following conditions:
(i) φ(x) is defined on [a,∞) and is positive, strictly increasing, differen-

tiable and tends to ∞ as x→∞.
(ii) It holds

lim
x→∞

φ
{(

1+ 1
ϕ(x)

)
(x)
}

φ(x) = 1

for every function ϕ(x) such that ϕ(x)→∞, as x→∞.
Let ∆ denote the class of functions φ satisfying condition (i) and

the following:
(iii) It holds

lim
x→∞

φ(cx)
φ(x) = 1

for every c > 0, that is, φ(x) is slowly increasing.
For an entire function f(z) and functions α(x) ∈ ∆, β(x) ∈ L0,

Seremeta [10, Th. 1] proved that

ρ(α, β, f) = lim sup
r→∞

α[logM(r,f)]
β(log r) = lim sup

n→∞
α(n)

β
(
− 1
n log |an|

) .
Further, for α(x) ∈ L0, β−1(x) ∈ L0 and γ(x) ∈ L0, we have

T (α, β, f) = lim sup
r→∞

α[logM(r,f)]
β[(γ(r))ρ] = lim sup

n→∞

α(n
ρ

)

β

[
γ(e

1
ρ |an|−

1
n )
]ρ ,

where 0 < ρ <∞ is a fixed number.
The above relations were obtained under certain conditions which

do not hold if α = β. In 1968, Seremeta [16] obtained the results
connected with slow growth of entire functions. The characteristic for
slow growth entire functions f(z) =

∑∞
k=0 ck(f)zk has the following

form:

ρα = lim sup
n→∞

α (log logM(r, f))
α(log log r) ,

where M(r, f) = max|z|=r |f(z)| and a function α ∈ ∆. Let us define
F (x, c) = α−1(cα(x)), where c ∈ (0,∞) is any constant. It was shown
in [16] that if for any c ∈ (0,∞) the inequality

0 ≤ dF (x,c)
dx ≤ A

(
exp(F (x, c))B

)
is realized for any x ≥ x1, where A and B are some constants (0 <
A,B <∞), then we obtain

ρα = max(ρ′α, 1).
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Here

ρ′α = lim sup
k→∞

α(log k)
α(log( 1

k
log |ck(f)|−1)) .

To refine this scale, Kapoor and Nautiyal [7] introduced a new class
of functions as follows: A function φ(t) ∈ Ω if φ(t) satisfies (ii) and:

(iv) There exists a function δ(t) ∈ ∆ and t0,K1 and K2 such that for all
t > t0

0 < K1 ≤ d(φ(t))
d(δ(log t)) ≤ K2 <∞.

Further a function φ(t) ∈ Ω if φ(t) satisfies (ii) and
(v)

lim
t→∞

d(φ(t))
d(log(t)) = K, 0 < K <∞.

Kapoor and Nautiyal [7, p. 66] showed that Ω,Ω ⊆ ∆ and Ω∩Ω = Φ.
Let α(t) ∈ Ω or Ω. Then following Kapoor and Nautiyal [7, p. 66], for
entire GBASP Fα,β and associate we define the generalized order and
generalized type as

(2.1) ρ = ρ(α, α, f) = lim sup
r→∞

α(logM(R,f))
α(log r)

(2.2) T = T (α, α, f) = lim sup
r→∞

α[logM(r,f)]
[α(log r)ρ]

(2.3) ρ∗ = ρ∗(α, α, Fα,β) = lim sup
r→∞

α(logM(r,Fα,β))
α(log r)

(2.4) T ∗ = T ∗(α, α, Fα,β) = lim sup
r→∞

α[logM(r,Fα,β)]
[α(log r)ρ] ,

where

M(r, f) = max
|z|=r

|f(z)|,M(r, Fα,β) = max
x2+y2=r2

|Fα,β(x, y)|.

Let Kr be the largest equipotential curve of K defined by Kr =
{z ∈ C : |γ(z)|d = r}, where w = γ(z) is holomorphic and maps the
unbounded component of the complement of K on |w| > 1 such that
γ(∞) = ∞ and γ′(∞) > 0. When r = d = 1,Kr = K. So we take
r > d, r > 1. We set M(r, Fα,β) = supz∈Kr |F

α,β(z, o)| for r > 1.
McCoy [14] proved the following result:

Theorem 2.1. For each GBASP Fα,β regular in the hyper sphere Σα,β
r

there is a unique Kα,β associated even function f analytic in the disk Dr and
conversely.

Now we prove the following Lemmas:
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Lemma 2.1. Let Fα,β be real valued entire function GBASP with Kα,β as-
sociate f . Then the generalized order and generalized type of Fα,β respectively
are identical.

Proof. Let us consider the relation Fα,β(x, y) = Kα,β(f). The nonnegativity
and the normalization of the measure leads directly to the bound
(2.5) M(r, Fα,β) ≤M(r, f).

The inverse relation
f(z) = K−1

α,β(Fα,β)
leads to the inequality

|f(z)| ≤M(r, Fα,β)Nα,β(τ), τ =
(
z
r

)2
,

where
Nα,β(τ) = max{η−1

α,β|Sα,β(τ, ξ)|;−1 ≤ ξ ≤ 1}.

However, for z = εreiθ(ε real),
M(εr, f) ≤M(r, Fα,β)Nα,β(τ)

it gives
(2.6) M(r, f) ≤M(ε−1r, Fα,β)Nα,β(ε2).

Using inequalities (2.5), (2.6) and definitions (2.1)–(2.4), the proof is com-
pleted. �

Lemma 2.2. Let Fα,β be a real entire function GBASP of generalized order
and generalized type. Then

(2.7) ρ = lim sup
r→∞

α(logM(r,Fα,β))
α(log r)

(2.8) T = lim sup
r→∞

α[logM(r,Fα,β)]
[α(log r)ρ].

Proof. Using the definitions of generalized order and generalized type of
entire GBASP and proof proceeds on the lines of Lemma 1 [6]. �

Lemma 2.3. Let α(x) ∈ Ω and K ⊆ C be an arbitrary compact set with
cardK = ∞. Let f ∈ Lp(K), 1 ≤ p ≤ ∞, be an entire function. Then f has
generalized order ρ(f), 1 ≤ ρ(f) ≤ ∞, if and only if,
(2.9) ρ(f) = Θ(L(f)),
where
(2.10) L(f) = lim sup

n→∞
α(n)

α[log{epn(f,K)/m∗n+1}
− 1
n ]
,

and

Θ(L(f)) =
{

max{1, L(f)}, if α(x) ∈ Ω,
1 + L(f), if α(x) ∈ Ω.
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Proof. Let d = max{|z|; z ∈ K}. From the definition of epn(f,K), since
h ∈ pn, we have

(2.11) epn(f,K) ≤ ‖f − h‖p ≤ A
1
p max
z∈K
|f(z)− h(z)| = A

1
p en(f,K),

where A is the area of K.
Now using Lemma 2 [2, p. 923], it has been shown that for R > d,

(2.12) en(f,K) ≤ Rm∗n+1
(R−d)n+2

1
2π

∫ 2π

0
|f(Reiθ)|dθ.

Using (2.12) in (2.11) we get

(2.13) epn(f,K)/m∗n+1 ≤ A
1
pR(R− d)−(n+2)M(R, f).

Suppose α(x) ∈ Ω and ρ <∞. Then by the definition of ρ, we have for any
given ε > 0 and R > R0(ε), R(ε) ∈ (0,∞),
(2.14) α(logM(R, f)) ≤ α(logR)ρ, ρ = ρ+ ε.

In view of (2.13) and (2.14) we have

(2.15) epn(f,K)/m∗n+1 < A
1
pR(R− d)−(n+2) exp[α−1{ρα(logR)}].

Since d is finite and fixed and the above inequality holds for all R > R0(ε),
we can choose

R = R(n) = exp
[
α−1

{
α(n)
ρ−1

}]
= exp

[
F
(
n, 1

ρ−1
)]
.

Substituting this value of R in (2.15), we obtain

epn(f,K)/m∗n+1 < A
1
p exp

[
−(n+ 1)F

(
n, 1

ρ−1
)]

exp
[
α−1

{
ρ+ α(n)

ρ−1

}]
< A

1
p exp

[
−n

{
F
(
n, 1

ρ−1
)
− 1

}]
,

since F
(
n, 1

ρ−1
)
→∞ as n→∞. Hence

log
[{
epn(f,K)/m∗n+1

}− 1
n

]
>

> F
(
n, 1

ρ−1
)
− 1− 1

np logA

= α−1
{
α(n)
ρ−1

}{
1−

(
F
(
n, 1

ρ−1
))−1 [

1 + 1
np logA

]}
> α(n)

ρ−1 .

Since α(x) ∈ Ω, as n→∞, we have

(2.16) ρ(f) ≥ 1 + lim sup
n→∞

α(n)
α
[

log[epn(K,f)/m∗n+1]−
1
n
] .

In order to prove reverse inequality, let us put

(2.17) lim sup
n→∞

α(n)
α
[

log{epn(f,K)/m∗n+1}
− 1
n
] = L(f).

Suppose L(f) <∞. Then for given ε > 0 and all n > n0(ε), we have
epn(f,K) < m∗n+1 exp

[
− nF

(
n, 1

L(f)
)]
, L(f) = L(f) + ε.
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Now we consider the function

h∗(z) =
∞∑

n=n0

an+1
n+1,R0

zn+1 exp
[
− nF

(
n, 1

L(f)

)]
where R0 > d and

an+1,R0 =
{(

1 + d
R0

)n+2
[

2(n+2)
1− d

R0

]} 1
(n+1)

.

Suppose {pn(z)}∞0 be the best polynomial approximating for the function f
on K. Let DR denote the disk of radius R centered at the origin and ΓR be
the boundary of DR. Let

(2.18) S(z) =
∞∑
n=0
{pn+1(z)− pn(z)}+ p0(z).

In view of proof of [2, Th. 1, p. 924], it can be easily seen that the series
(2.18) is uniformly convergent on ΓR for any arbitrary R > 0. Thus the sum
represent an entire function. Now

S(z) = lim
n→∞

{
n∑

m=0
{pm+1(z)− pm(z)}

}
+ p0(z),

= lim
n→∞

pn+1(z) = f(z).

On K ⊆ C we have the inequality

‖pn+1(z)− pn(z)‖p ≤ ‖pn+1(z)− f(z)‖p + ‖pn(z)− f(z)‖p
≤ 2epn(f,K).

Dovgoshei [2, p. 924] shown that

max
z∈ΓR

|pn+1(z)− pn(z)|
1
n ≤

[
[Rn+1e∞n (f,K)/m∗n+1]

] 1
n

·
[
2(n+ 2) (1+( d

R
))n+2

1− d
R

] 1
n

.

For 1 ≤ p ≤ ∞, we have

‖pn+1(z)− pn(z)‖p ≤
[
2ARn+1(n+ 2)

(
1+( d

R
)
)n+2

m∗n+1(1− d
R

)

] 1
np

[epn(f,K)]
1
n

leading to the relation

max
z∈ΓR

|h∗(z)| =
∞∑

n=n′
an+1
n+1,R0

Rn+1 exp
[
− nF

(
n, 1

L(f)
)]

≥ max
z∈ΓR

|S(z)− pn′(z)| ≥ A
−1
p ‖S(z)− pn′(z)‖p.
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From the last inequality, using [7, Th. 4], the relationship between general-
ized order ρ for α(x) ∈ Ω and the Taylor coefficients of the function h∗(z), we
obtain generalized order of h∗(z) ≥ generalized order of f .

If ρ1 denotes the generalized order of h∗(z) then

ρ1 = 1 + lim sup
n→∞

α(n+1)

α

[
log
{∣∣an+1

n+1,R0

∣∣ exp
{
−nF

(
n, 1
L(f)

)}}− 1
(n+1)

] .
Since

log(an+1,R0) = n+2
n+1 log(1 + d

R0
) + 1

n+1 log
(

2(n+1)
1− d

R0

)
= O(1), as n→∞.

Hence

log
{
|an+1
n+1,R0

| exp
{
− nF

(
n, 1

L(F )
)}}− 1

(n+1) =

= − 1
n+1 log

[
exp

(
− nF

(
n, 1

L(F )
))]
−O(1)

= n
n+1F

(
n, 1

L(f)
)
' α−1

[
α(n)
L(f)

]
−O(1).

Since α(x) ∈ Ω, we finally get

ρ1 = 1 + lim sup
n→∞

α(n+1)L(f)
α(n) = 1 + L(f) = 1 + L(f) + ε.

Since ε was arbitrary, we get ρ1 ≥ ρ(f). Combining this with (2.16) we get
(2.9). �

Lemma 2.4. Let α(x) ∈ Ω and K ⊆ C be an arbitrary compact set with
Card. K =∞. Let f ∈ Lp(K), 1 ≤ p ≤ ∞, be an entire function. Then f has
generalized order ρ(f) and finite generalized type T (f) if, and only if,

(2.19) T = T (f) = lim sup
n→∞

α(logM(R,f))
[α(logR)]ρ = lim sup

n→∞

α(n
ρ

){
α
[

ρ
ρ−1 log

[
e
p
n(f,K)
m∗
m+1

]− 1
n
]}ρ+1

provided d[α−1{(T+ε)[α(x)]T/ρ}]
d(log x) = O(1) as x→∞, for T, 0 < T <∞.

Proof. First we assume that f is of generalized type T with respect to the
finite number ρ i.e., ρ < ∞ and α(x) ∈ Ω. Let T < ∞. Then for arbitrary
ε > 0 and R > R′(ε),

M(R, f) < exp[α−1{T [α(logR)]ρ}].
Using (2.13), we get
(2.20)
epn(f,K)/m∗n+1 ≤ A1/pR(R− d)−(n+2) exp[α−1{T [α(logR)]ρ}, T = T + ε.

The above inequality holds for all n and R > R′(ε). To minimize the right
hand side of (2.20) taking R = R(n) to be the unique root of the equation

n = ρ
logR(α−1{T [α(logR)]ρ}), n = 2, 3, . . . ,
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or

logR = α−1[( 1
T
α(nρ ))

1
(ρ−1) ] and (R− d)−n ∼= R−n,

substituting these values in (2.20), we get

log(epn(f,K)/m∗n=1) ≤ −nα−1[( 1
T
α(nρ ))

1
(ρ−1) ] + n

ρα
−1[( 1

T
α(nρ))

1
(ρ−1) ]

or
ρ
ρ−1 log(epn(f,K)/m∗n+1)

1
n ≥ α−1[(

α(n
ρ

)
T

)
1

(ρ−1) ]
or

T ≥
α(n

ρ
)

[α( ρ
ρ−1 log(epn(f,K)/m∗n+1)−

1
n )]ρ−1

.

Since α(x) ∈ Ω, as n→∞, we have

(2.21) T ≥ lim sup
n→∞

α(n
ρ

)

[α( ρ
ρ−1 log(epn(f,K)/m∗n+1)−

1
n )]ρ−1

.

To prove the reverse inequality, we follow the method of proof of Lemma 2.3.
Hence let

lim sup
n→∞

α(n
ρ

)

[α( ρ
ρ−1 log(epn(f,K)/m∗n+1)

1
n )]ρ−1

= σ∗.

Then for a given ε > 0 and all n > n0(ε), we have

epn(f,K) < m∗n+1 exp{−n
ρ (ρ− 1)α−1([

α(n
ρ

)
σ∗ ]

1
(ρ−1) )}, σ∗ = σ∗ + ε.

Now consider the function g(z) defined by the infinite series

g(z) =
∞∑

n=n0

an+1
n+1,R0

zn+1 exp{−n
ρ (ρ− 1)α−1([

α(n
ρ

)
σ∗ ]

1
(ρ−1) )},

=
∞∑

n+n0

bn+1z
n+1, say,

where the sequence {an+1
n+1,R0

} is as defined before. Since α−1{[α−1(σα(x))]
1
ρ } →

∞ as x→∞, we get

lim sup
n→∞

[an+1
n+1,R0

exp{−nρ (ρ− 1)α−1([
α(n

ρ
)

σ∗ ]
1

(ρ−1) )}]
1
ρ = 0

and therefore g(z) represents an entire function. Now

max
z∈ΓR

|g(z)| =
∞∑

n=n0

an+1
n+1,R0

Rn+1 exp{−n
ρ (ρ− 1)α−1([

α(n
ρ

)
σ∗ ]

1
(ρ−1) )}

≥
∞∑

n=n0

an+1
n+1,R0

Rn+1epn(f,K)/m∗n+1

≥ A
1
p ‖S(z)− pn′(z)‖p.
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Hence if g(z) is an entire function of generalized type T ′ with respect to the
finite number ρ then from above the entire function g(z), we have

(2.22) T ′ = lim sup
n→∞

α(n
ρ

)[
α
(

ρ
ρ−1 log |bn|−

1
n
)]ρ−1 .

Now

|bn|
1
n ' (an+1,R0) exp{ρ−1

ρ α−1([
α(n

ρ
)

σ∗ ]
1

(ρ−1) )},
ρ
ρ−1 log |bn|−

1
n ' α−1([

α(n
ρ

)
σ∗ ]

1
(ρ−1) )(1 +O(1))

[α
( ρ
ρ−1 log |bn|−

1
n
)
]ρ−1 '

α(n
ρ

)
σ∗ .

Putting these values in (2.22), we get T ′ = σ∗+ ε. As stated above we have
T ∗ ≥ T . Hence we get for arbitrary ε > 0, σ∗+ε ≥ T , i.e., T ≤ σ∗. Combining
this with (2.21), the proof is immediate. �

3. MAIN RESULTS

Now we shall prove our main results.
Following on the lines of proof of [15, Th. 1] we obtain the following in-

equalities for 1 ≤ p ≤ ∞,

‖Fα,β −H‖p ≤ w
1
p ‖f − h‖p, w = w(α, β, p;K),

‖f − h‖p ≤ δ
1
p ‖Fα,β −H‖p, δ = δ(α, β, p;K)

for H ∈ Pα,β2n and each h ∈ K−1
α,β(H) ∈ p2n, n = 0, 1, 2, . . . .

Hence we get optimal approximates

E
p/2n
2n (Fα,β,Σα,β

r ) ≤ w
1

(2np) e
p

(2n)
2n (f,K),(3.23)

and

e
p

(2n)
2n (f,K) ≤ δ

1
(2np)E

p
(2n)
2n (F,Σα,β

r ).(3.24)

Theorem 3.1. Let α(x) ∈ Ω. For fixed p ≥ 1, let the Fα,β ∈ Lp(Σα,β
r ) be the

restriction to Σα,β
r of an entire GBASP function. Then Fα,β has generalized

order ρ if, and only if,

ρ = Θ(L∗)

where

(3.25) L∗ = lim sup
n→∞

α(2n)

α(log[Ep2n(Fα,β ,Eα,βr )/m∗2n+2]
− 1

(2n) )

and Θ(L∗) is defined as in Lemma 3.
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Proof. Let F ∈ Lp(Σα,β
r ) be the restriction to Σα,β

r of an entire GBASP
function of generalized order ρ and let ε > 0 be given. From (2.10), the
appraisal

(3.26) L(f)− ε < α(2n)

α(log[ep2n(f,K)/m∗2n+2]
− 1

(2n) )
< L(f) + ε,

applies to the Kα,β associate with the lower bound holding for n ∈ n1(ε), an
infinite sequence of indices, and the upper bound for n ∈ n2(ε), as sequence
of all but a finite number of indices. From (3.24), we have

(3.27) α(2n)

α(log[δ1/pEp2n(Σα,βr )/m∗2n+2]
− 1

(2n) )
> α(2n)

α(log[ep2n(f,K)/m∗2n+2]
− 1

(2n) )
> L(f)− ε,

n ∈ n1(ε). For an upper estimates, (3.23) gives

L(f) + ε > α(2n)

α(log(w
1
p ep2n(f,K)/m∗2n+2)

− 1
(2n) )

> α(2n)

α(log(Ep2n(Fα,β ,Σα,βr )/m∗2n+2)
− 1

(2n) )
, n ∈ n2(ε).(3.28)

Thus,

L(f)− ε ≤ lim sup
n→∞

α(2n)

α(log(Ep2n(Fα,β ,Σα,βr )/m∗2n+2)
− 1

(2n) )
≤ L(f) + ε.

Hence the proof is immediate. �

Theorem 3.2. Let α(x) ∈ Ω. For fixed p ≥ 1, let the Fα,β ∈ Lp(Σα,β
r ) be the

restriction to Σα,β
r of an entire GBASP function. Then Fα,β has generalized

order ρ and finite generalized type T (Fα,β) if, and only if,

T = lim sup
n→∞

α( 2n
ρ

)

{α[ ρ
ρ−1 log{Ep2n(Fα,β ,Σα,βr )/m∗2n+2}

− 1
(2n) ]}ρ−1

provided
d(α−1{(T + ε)[α(x)]T/ρ})

d(log x) = O(1), as x→∞, for T, 0 < T <∞.

Proof. From Lemma 4, for ε > 0 given,

T − ε <
α( 2n

ρ
){

α
[

ρ
ρ−1 log

( ep2n(f,K)
m∗2n+2

)− 1
(2n)
]}ρ−1 < T + ε

with the lower bound for n ∈ n1(ε) and the upper bound for n ∈ n2(ε). Now,
using (3.24) we get

T − ε <
α( 2n

ρ
)

{α[ ρ
ρ−1 log{

e
p
2n(f,K)
m∗2n+2

}
− 1

(2n) ]}ρ−1

<
α( 2n

ρ
)

{α[ ρ
ρ−1 log{δ1/pEp2n(Fα,β ,Σα,βr )/m∗2n+2}

− 1
(2n) ]}ρ−1

(3.29)
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for n ∈ n1(ε). The upper bound can be found by using (3.23)
α( 2n

ρ
)

{α[ ρ
ρ−1 log{Ep2n(Fα,β ,Σα,βr )/m∗2n+2}

− 1
(2n) ]}ρ−1

<

<
α( 2n

ρ
)

{α[ ρ
ρ−1 log{w1/pep2n(f,K)/m∗2n+2}

− 1
(2n) ]}ρ−1

(3.30)

< T + ε.

Taking limit supremum and combining (3.29) and (3.31) we get the required
result. �
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