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GENERALIZATION OF JENSEN’S AND JENSEN-STEFFENSEN’S
INEQUALITIES AND THEIR CONVERSES BY LIDSTONE’S

POLYNOMIAL AND MAJORIZATION THEOREM

GORANA ARAS-GAZIĆ1, JOSIP PEČARIĆ2 and ANA VUKELIĆ3

Abstract. In this paper, using majorization theorems and Lidstone’s interpo-
lating polynomials we obtain results concerning Jensen’s and Jensen-Steffensen’s
inequalities and their converses in both the integral and the discrete case. We
give bounds for identities related to these inequalities by using Čebyšev func-
tionals. We also give Grüss type inequalities and Ostrowsky type inequalities for
these functionals. Also we use these generalizations to construct a linear func-
tionals and we present mean value theorems and n-exponential convexity which
leads to exponential convexity and then log-convexity for these functionals. We
give some families of functions which enable us to construct a large families of
functions that are exponentially convex and also give Stolarsky type means with
their monotonicity.
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1. INTRODUCTION

Majorization makes precise the vague notion that the components of a vector
x are “less spread out” or “more nearly equal” than the components of a vector
y. For fixed m ≥ 2 let

x = (x1, ..., xm) , y = (y1, ..., ym)
denote two m-tuples. Let

x[1] ≥ x[2] ≥ ... ≥ x[m], y[1] ≥ y[2] ≥ ... ≥ y[m],

x(1) ≤ x(2) ≤ ... ≤ x(m), y(1) ≤ y(2) ≤ ... ≤ y(m)
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be their ordered components.
Majorization: (see [12, p. 319]) x is said to majorize y (or y is said to be

majorized by x), in symbol, x � y, if

(1)
l∑

i=1
y[i] ≤

l∑
i=1

x[i]

holds for l = 1, 2, ...,m− 1 and
m∑
i=1

x[i] =
m∑
i=1

y[i].

Note that (1) is equivalent to
m∑

i=m−l+1
y(i) ≤

m∑
i=m−l+1

x(i)

holds for l = 1, 2, ...,m− 1.
There are several equivalent characterizations of the majorization relation x �
y in addition to the conditions given in definition of majorization. One is
actually the answer of the question posed and answered in 1929 by Hardy,
Littlewood and Polya in [7] and [8]: x majorizes y if

(2)
m∑
i=1

φ (yi) ≤
m∑
i=1

φ (xi)

for every continuous convex function φ. Another interesting characterization
of x � y, also by Hardy, Littlewood and Polya in [7] and [8], is that y = Px
for some double stochastic matrix P. In fact, the previous characterization
implies that the set of vectors x that satisfy x � y is the convex hull spanned
by the n! points formed from the permutations of the elements of x.

The following theorem is well-known as the majorization theorem and a
convenient reference for its proof is given by Marshall and Olkin in [11, p. 14]
(see also [12, p. 320]):

Theorem 1. Let x = (x1, ..., xm) , y = (y1, ..., ym) be two m-tuples such
that xi, yi ∈ [a, b] , i = 1, ...,m. Then

(3)
m∑
i=1

φ (yi) ≤
m∑
i=1

φ (xi)

holds for every continuous convex function φ : [a, b]→ R iff x � y holds.

The following theorem can be regarded as a generalization of Theorem 1
known as Weighted Majorization Theorem and is proved by Fuchs in [6] (see
also [11, p. 580] and [12, p. 323]).
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Theorem 2. Let x = (x1, ..., xm) , y = (y1, ..., ym) be two decreasing real
m-tuples with xi, yi ∈ [a, b] , i = 1, ...,m, let w = (w1, ..., wm) be a real m-tuple
such that

(4)
l∑

i=1
wiyi ≤

l∑
i=1

wixi, for l = 1, ...,m− 1

and

(5)
m∑
i=1

wiyi =
m∑
i=1

wixi.

Then for every continuous convex function φ : [a, b]→ R, we have

(6)
m∑
i=1

wiφ (yi) ≤
m∑
i=1

wiφ (xi) .

Bernstein has proved that if all the even derivatives are at least 0 in (a, b),
then f has an analytic continuation into the complex plane. Boas suggested to
Widder that this might be proved by use of the Lidstone series. This seemed
plausible because the Lidstone series, a generalization of the Taylor’s series,
approximates a given function in the neighborhood of two points instead of
one by using the even derivatives. Such series have been studied by G. J.
Lidstone (1929), H. Poritsky (1932), J. M. Wittaker (1934) and others (see
[3]).

Definition 3. Let φ ∈ C∞([0, 1]). Then the Lidstone series has the form
∞∑
k=0

(
φ(2k)(0)Λk(1− x) + φ(2k)(1)Λk(x)

)
,

where Λn is a polynomial of degree (2n+ 1) defined by the relations
Λ0(t) = t,

Λ′′n(t) = Λn−1(t),(7)
Λn(0) = Λn(1) = 0, n ≥ 1.

Other explicit representations of the Lidstone polynomial are given by [2]
and [14],

Λn(t) = (−1)n 2
π2n+1

∞∑
k=1

(−1)k+1

k2n+1 sin kπt,

Λn(t) = 1
6

[
6t2n+1

(2n+1)! −
t2n−1

(2n−1)!

]
−
n−2∑
k=0

2(22k+3−1)
(2k+4)! B2k+4

t2n−2k−3

(2n−2k−3)! , n = 1, 2, . . . ,

Λn(t) = 22n+1

(2n+1)!B2n+1
(

1+t
2

)
, n = 1, 2 . . . ,

where B2k+4 is the (2k + 4)-th Bernoulli number and B2n+1
(

1+t
2

)
is the

Bernoulli polynomial.
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In [15], Widder proved the fundamental lemma:

Lemma 4. If φ ∈ C(2n)([0, 1]), then

(8) φ(t) =
n−1∑
k=0

[
φ(2k)(0)Λk(1− t) + φ(2k)(1)Λk(t)

]
+
∫ 1

0
Gn(t, s)φ(2n)(s)ds,

where

(9) G1(t, s) = G(t, s) =
{

(t− 1)s, if s ≤ t,
(s− 1)t, if t ≤ s,

is the homogeneous Green’s function of the differential operator d2

ds2 on [0, 1],
and with the successive iterates of G(t, s)

(10) Gn(t, s) =
∫ 1

0
G1(t, p)Gn−1(p, s)dp, n ≥ 2.

The Lidstone polynomial can be expressed, in terms of Gn(t, s) as

Λn(t) =
∫ 1

0
Gn(t, s)s ds.(11)

Definition 5. Let φ be a real-valued function defined on the segment [a, b].
The divided difference of order n of the function φ at distinct points x0, . . . ,
xn ∈ [a, b] is defined recursively (see [4], [12]) by

φ[xi] = φ(xi), (i = 0, . . . , n)
and

φ[x0, . . . , xn] = φ[x1, . . . , xn]− φ[x0, . . . , xn−1]
xn − x0

.

The value φ[x0, . . . , xn] is independent of the order of the points x0, . . . , xn.
The definition may be extended to include the case that some (or all) of the
points coincide. Assuming that φ(j−1)(x) exists, we define

(12) φ[x, . . . , x︸ ︷︷ ︸
j−times

] = φ(j−1)(x)
(j − 1)! .

The notion of n-convexity goes back to Popoviciu [13]. We follow the
definition given by Karlin [9]:

Definition 6. A function φ : [a, b] → R is said to be n-convex on [a, b],
n ≥ 0, if for all choices of (n+1) distinct points in [a, b], the n-th order divided
difference of φ satisfies

φ[x0, ..., xn] ≥ 0.

In fact, Popoviciu proved that each continuous n-convex function on [a, b]
is the uniform limit of the sequence of n-convex polynomials. Many related
results, as well as some important inequalities due to Favard, Berwald and
Steffensen can be found in [10].
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In [1] the authors proved the following majorization theorems for (2n)-
convex function:

Theorem 7. Let n ∈ N, x = (x1, ..., xm), y = (y1, ..., ym) be two decreasing
real m-tuples with xi, yi ∈ [a, b] (i = 1, . . . ,m) and let w = (w1, ..., wm) be a
real m-tuple which satisfies (4) and (5).

(i) If n is odd, then for every (2n)-convex function φ : [a, b]→ R, it holds

m∑
i=1

wiφ(xi)−
m∑
i=1

wiφ(yi) ≥(13)

≥
n−1∑
k=1

(b− a)2kφ(2k)(a)
[
m∑
i=1

wiΛk
(
b−xi
b−a

)
−

m∑
i=1

wiΛk
(
b−yi
b−a

)]

+
n−1∑
k=1

(b− a)2kφ(2k)(b)
[
m∑
i=1

wiΛk
(
xi−a
b−a

)
−

m∑
i=1

wiΛk
(
yi−a
b−a

)]
.

(ii) If n is even, then for every (2n)-convex function φ : [a, b]→ R, it holds

m∑
i=1

wiφ(xi)−
m∑
i=1

wiφ(yi) ≤(14)

≤
n−1∑
k=1

(b− a)2kφ(2k)(a)
[
m∑
i=1

wiΛk
(
b−xi
b−a

)
−

m∑
i=1

wiΛk
(
b−yi
b−a

)]

+
n−1∑
k=1

(b− a)2kφ(2k)(b)
[
m∑
i=1

wiΛk
(
xi−a
b−a

)
−

m∑
i=1

wiΛk
(
yi−a
b−a

)]
.

In [3] using Lidstone’s interpolating polynomials and conditions on Green’s
functions, the authors present results for Jensen’s inequality and converses
of Jensen’s inequality for signed measure. In this paper we give generalized
results of Jensen’s and Jensen-Steffensen’s inequalities and their converses by
using majorization theorem and Lidstone’s polynomial for (2n)-convex func-
tions. Then we give bounds for identities related to these inequalities by using
Čebyšev functionals. We give Grüss type inequalities and Ostrowsky type in-
equalities for these functionals. We also use these generalizations to construct
a linear functionals and we present mean value theorems and n-exponential
convexity which leads to exponential convexity and then log-convexity. Finally,
we present several families of functions which construct to a large families of
functions that are exponentially convex. We give classes of Cauchy type means
and prove their monotonicity.
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2. GENERALIZATION OF JENSEN’S INEQUALITY

We will use the following notation for composition of functions:

(15) Λk
(
x−a
b−a

)
= Λ̃k(x), x ∈ [a, b], k = 0, 1, . . . , n− 1,

(16) Λk
(
b−x
b−a

)
= Λ̂k(x), x ∈ [a, b], k = 0, 1, . . . , n− 1.

Theorem 8. Let n ∈ N, x = (x1, ..., xm), and w = (w1, ..., wm) be m-tuples
such that xi ∈ [a, b], wi ∈ R , i = 1, ...,m, Wm =

∑m
i=1wi, x = 1

Wm

∑m
i=1wixi

and φ ∈ C(2n) [a, b] . Then

1
Wm

m∑
i=1

wiφ(xi)− φ(x) =

(17)

=
n−1∑
k=0

φ(2k)(a)(b− a)2k
[

1
Wm

m∑
i=1

wiΛ̂k(xi)− Λ̂k(x)
]

+
n−1∑
k=0

φ(2k)(b)(b− a)2k
[

1
Wm

m∑
i=1

wiΛ̃k(xi)− Λ̃k(x)
]

+ (b− a)2n−1
∫ b

a

[
1
Wm

m∑
i=1

wiGn
(
xi−a
b−a ,

t−a
b−a

)
−Gn

(
x−a
b−a ,

t−a
b−a

)]
φ(2n)(t) dt.

Proof. Consider

(18) 1
Wm

m∑
i=1

wiφ(xi)− φ(x).

By Widder’s lemma we can represent every function φ ∈ C(2n)([a, b]) in the
form:

φ(x) =
n−1∑
k=0

(b− a)2k
[
φ(2k)(a)Λ̂k(x) + φ(2k)(b)Λ̃k(x)

]
(19)

+ (b− a)2n−1
∫ b

a
Gn

(
x−a
b−a ,

t−a
b−a

)
φ(2n)(t)dt,(20)

where Λk is a Lidstone polynomial. Using (19) we calculate φ(xi) and φ(x)
and from (18) we obtain (17) �

Using Theorem 7 we give generalization of Jensen’s inequality for (2n)-
convex function:

Theorem 9. Let n ∈ N, x = (x1, ..., xm) be decreasing real m-tuple with
xi ∈ [a, b], i = 1, ...,m, let w = (w1, ..., wm) be positive m-tuple, Wm =∑m
i=1wi and x = 1

Wm

∑m
i=1wixi.
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(i) If n is odd, then for every (2n)-convex function φ : [a, b]→ R, it holds

1
Wm

m∑
i=1

wiφ(xi)− φ(x) ≥

≥
n−1∑
k=1

φ(2k)(a)(b− a)2k
[

1
Wm

m∑
i=1

wiΛ̂k(xi)− Λ̂k(x)
]

+
n−1∑
k=1

φ(2k)(b)(b− a)2k
[

1
Wm

m∑
i=1

wiΛ̃k(xi)− Λ̃k(x)
]
.(21)

Moreover, we define function F : [a, b]→ R, such that

(22) F (x) =
n−1∑
k=1

(b− a)2k
[
φ(2k)(a)Λ̂k(x) + φ(2k)(b)Λ̃k(x)

]
.

If F is convex function, then the right hand side of (21) is non-negative and

(23) 1
Wm

m∑
i=1

wiφ(xi)− φ(x) ≥ 0.

(ii) If n is even, then for every (2n)-convex function φ : [a, b]→ R, the reverse
inequality in (21) holds.
Moreover, if F is concave function, then the reverse inequality in (23) is valid.

Proof. For l = 1, ..., k, such that xk ≥ x we get
l∑

i=1
wix ≤

l∑
i=1

wixi.

If l = k + 1, ...,m− 1, such that xk+1 < x we have
l∑

i=1
wixi =

m∑
i=1

wixi −
m∑

i=l+1
wixi >

m∑
i=1

wix−
m∑

i=l+1
wix =

l∑
i=1

wix.

So,

(24)
l∑

i=1
wix ≤

l∑
i=1

wixi for all l = 1, . . . ,m− 1

and obviously

(25)
m∑
i=1

wix =
m∑
i=1

wixi.

Now, we put x = (x1, . . . , xm) and y = (x̄, . . . , x̄) in Theorem 7 to get inequal-
ity (21).
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For inequality (23) we use fact that for convex function F we have

1
Wm

m∑
i=1

wiF (xi)− F (x̄) ≥ 0. �

Remark 10. For x : [α, β] → R continuous decreasing function, such that
x([α, β]) ⊆ [a, b] and λ : [α, β]→ R increasing, bounded function with λ(α) 6=

λ(β) and x =
∫ β
α
x(t) dλ(t)∫ β
α
dλ(t)

, for x(γ) ≥ x, we have:

(26)
∫ γ

α
x(t) dλ(t) ≥

∫ γ

α
x(γ) dλ(t) ≥

∫ γ

α
x dλ(t), γ ∈ [α, β] .

If x(γ) < x we have∫ γ

α
x(t) dλ(t) =

∫ β

α
x(t) dλ(t)−

∫ β

γ
x(t) dλ(t)(27)

>

∫ β

α
x dλ(t)−

∫ β

γ
x dλ(t) =

∫ γ

α
x dλ(t), γ ∈ [α, β] .

Equality

(28)
∫ β

α
x(t) dλ(t) =

∫ β

α
xdλ(t)

obviously holds.

So, If n ∈ N is odd, then for every (2n)-convex function φ : [a, b] → R, we
obtain integral version of the inequality (21) from the above theorem∫ β

α φ (x(t)) dλ(t)∫ β
α dλ(t)

− φ(x) ≥

≥
n−1∑
k=1

φ(2k)(a)(b− a)2k
[∫ β

α Λ̂k(x(t))dλ(t)∫ β
α dλ(t)

− Λ̂k(x)
]

+
n−1∑
k=1

φ(2k)(b)(b− a)2k
[∫ β

α Λ̃k(x(t))dλ(t)∫ β
α dλ(t)

− Λ̃k(x)
]
,(29)

which is result proved in [3].
Moreover, for the convex function F defined in (22) the right hand side of (29)
is non-negative and

(30)
∫ β
α φ (x(t)) dλ(t)∫ β

α dλ(t)
− φ(x) ≥ 0.

If n is even, then for every (2n)-convex function φ : [a, b] → R the reverse
inequality in (29) holds. Moreover, if F is concave function, then the reverse
inequality in (30) is also valid.
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Remark 11. Motivated by the inequalities (21) and (29), we define func-
tionals Θ1(φ) and Θ2(φ) by

Θ1(φ) = 1
Wm

m∑
i=1

wiφ(xi)− φ(x)(31)

−
n−1∑
k=1

φ(2k)(a)(b− a)2k
[

1
Wm

m∑
i=1

wiΛ̂k(xi)− Λ̂k(x)
]

−
n−1∑
k=1

φ(2k)(b)(b− a)2k
[

1
Wm

m∑
i=1

wiΛ̃k(xi)− Λ̃k(x)
]

and

Θ2(φ) =
∫ β
α φ (x(t)) dλ(t)∫ β

α dλ(t)
− φ(x)(32)

−
n−1∑
k=1

φ(2k)(a)(b− a)2k
[∫ β

α Λ̂k(x(t))dλ(t)∫ β
α dλ(t)

− Λ̂k(x)
]

−
n−1∑
k=1

φ(2k)(b)(b− a)2k
[∫ β

α Λ̃k(x(t))dλ(t)∫ β
α dλ(t)

− Λ̃k(x)
]
,

Similarly as in [3] we can construct new families of exponentially convex func-
tion and Cauchy type means by looking at these linear functionals. The
monotonicity property of the generalized Cauchy means obtained via these
functionals can be prove by using the properties of the linear functionals as-
sociated with this error representation, such as n-exponential and logarithmic
convexity.

3. GENERALIZATION OF JENSEN-STEFFENSEN’S INEQUALITY

Using majorization theorem for (2n)-convex function we give generalization
of Jensen-Steffensen’s inequality:

Theorem 12. Let n ∈ N, x = (x1, ..., xm) be decreasing real m-tuple
with xi ∈ [a, b], i = 1, ...,m, let w = (w1, ..., wm) be real m-tuple such
that 0 ≤ Wk ≤ Wm, k = 1, · · · ,m, Wm > 0, where Wk =

∑k
i=1wi and

x = 1
Wm

∑m
i=1wixi.

(i) If n is odd, then for every (2n)-convex function φ : [a, b] → R, the in-
equality (21) holds.
Moreover, for the convex function F defined in (22) the inequality (23) is also
valid.

(ii) If n is even, then for every (2n)-convex function φ : [a, b] → R, the
reverse inequality in (21) holds.
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Moreover, for the concave function F defined in (22) the reverse inequality in
(23) is also valid.

Proof. For l = 1, ..., k, such that xk ≥ x we have

(33)
l∑

i=1
wixi −Wlxl =

l−1∑
i=1

(xi − xi+1)Wi ≥ 0

and so we get
l∑

i=1
wix = Wlx ≤Wlxl ≤

l∑
i=1

wixi.

For l = k + 1, ...,m− 1, such that xk+1 < x we have

(34) xl (Wm −Wl)−
m∑

i=l+1
wixi =

m∑
i=l+1

(xi−1 − xi)(Wm −Wi−1) ≥ 0

and now

(35)
m∑

i=l+1
wix = (Wm −Wl)x > (Wm −Wl)xl ≥

m∑
i=l+1

wixi.

So, similarly as in Theorem 9, we get that conditions (4) and (5) for majoriza-
tion are satisfied, so inequalities (21) and (23) are valid. �

Remark 13. For x : [α, β] → R continuous, decreasing function, such
that x([α, β]) ⊆ [a, b] and λ : [α, β] → R is either continuous or of bounded

variation satisfying λ(α) ≤ λ(t) ≤ λ(β) for all x ∈ [α, β] and x =
∫ β
α
x(t) dλ(t)∫ β
α
dλ(t)

,

for x(γ) ≥ x, we have:∫ γ

α
x(t)dλ(t)− x(γ)

∫ γ

α
dλ(t) = −

∫ γ

α
x′(t)

(∫ t

α
dλ(x)

)
dt ≥ 0

and so
x

∫ γ

α
dλ(t) ≤ x(γ)

∫ γ

α
dλ(t) ≤

∫ γ

α
x(t)dλ(t).

If x(γ) < x we have

x(γ)
∫ β

γ
dλ(t)−

∫ β

γ
x(t)dλ(t) = −

∫ β

γ
x′(t)

(∫ β

t
dλ(x)

)
dt ≥ 0

and now

x

∫ β

γ
dλ(t) > x(γ)

∫ β

γ
dλ(t) ≥

∫ β

γ
x(t)dλ(t).

Similarly as in the Remark 10 we get that conditions for majorization are
satisfied, so inequalities (29) and (30) are valid.
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4. GENERALIZATION OF CONVERSE OF JENSEN’S INEQUALITY

Theorem 14. Let n ∈ N, x = (x1, ..., xr) be real r-tuple with xi ∈ [m,M ] ⊆
[a, b], i = 1, ..., r, let w = (w1, ..., wr) be positive r-tuple, Wr =

∑r
i=1wi and

x = 1
Wr

∑r
i=1wixi.

(i) If n is odd, then for every (2n)-convex function φ : [a, b]→ R, it holds

1
Wr

r∑
i=1

wiφ(xi) ≤

(36)

≤ x−m
M−mφ (M) + M−x

M−mφ (m)

−
n−1∑
k=1

φ(2k)(a)(b− a)2k
[
x−m
M−m Λ̂k (M) + M−x

M−m Λ̂k (m)− 1
Wr

r∑
i=1

wiΛ̂k(xi)
]

−
n−1∑
k=1

φ(2k)(b)(b− a)2k
[
x−m
M−m Λ̃k (M) + M−x

M−m Λ̃k (m)− 1
Wr

r∑
i=1

wiΛ̃k(xi)
]
.

Moreover, for the convex function F defined in (22), we have

(37) 1
Wr

r∑
i=1

wiφ(xi) ≤ x−m
M−mφ (M) + M−x

M−mφ (m) .

(ii) If n is even, then for every (2n)-convex function φ : [a, b]→ R, the reverse
inequality in (36) holds.
Moreover, for the concave function F defined in (22) the reverse inequality in
(37) is also valid.

Proof. Using inequality (21) we have

1
Wr

r∑
i=1

wiφ(xi) =

= 1
Wr

r∑
i=1

wiφ
(
xi−m
M−mM + M−xi

M−mm
)

≤ x−m
M−mφ (M) + M−x

M−mφ (m)

−
n−1∑
k=1

φ(2k)(a)(b− a)2k
[
x−m
M−m Λ̂k (M) + M−x

M−m Λ̂k (m)− 1
Wr

r∑
i=1

wiΛ̂k(xi)
]

−
n−1∑
k=1

φ(2k)(b)(b− a)2k
[
x−m
M−m Λ̃k (M) + M−x

M−m Λ̃k (m)− 1
Wr

r∑
i=1

wiΛ̃k(xi)
]
.

Hence, for any odd n and (2n)-convex function φ we get (36).
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For inequality (37) we use the fact that for convex function F we have

1
Wr

r∑
i=1

wiF (xi) ≤ x−m
M−mF (M) + M−x

M−mF (m) .

(ii) Similar to the part (i) �

Corollary 15. Let n ∈ N, x = (x1, ..., xr) be real r-tuple with xi ∈ [m,M ],
let w = (w1, ..., wr) be positive r-tuple, Wr =

∑r
i=1wi and x = 1

Wr

∑r
i=1wixi.

If n is odd then for every (2n)-convex function φ : [m,M ]→ R it holds

(38)
r∑
i=1

wiφ(xi) ≤
n−1∑
k=0

(M −m)2k
r∑
i=1

wi
[
φ(2k)(m)Λ̂k(xi) + φ(2k)(M)Λ̃k(xi)

]
.

If n is even, reverse inequality in (38) is valid.

Proof. We use inequality (36) for m = a and M = b and (7). �

Remark 16. For x : [α, β]→ R continuous function, such that x([α, β]) ⊆
[m,M ] ⊆ [a, b] and λ : [α, β] → R increasing, bounded function with λ(α) 6=

λ(β) and x =
∫ β
α
x(t) dλ(t)∫ β
α
dλ(t)

, similarly as in Theorem 14 we get integral version

of converse of Jensen’s inequality.
For odd n ∈ N and for every (2n)-convex function φ : [a, b]→ R we have:

∫ β
α φ(x(t))dλ(t)∫ β

α dλ(t)
≤

(39)

≤ x−m
M−mφ (M) + M−x

M−mφ (m)

−
n−1∑
k=1

φ(2k)(a)(b− a)2k
[
x−m
M−m Λ̂k (M) + M−x

M−m Λ̂k (m)−
∫ β
α Λ̂k(x(t))dλ(t)∫ β

α dλ(t)

]

−
n−1∑
k=1

φ(2k)(b)(b− a)2k
[
x−m
M−m Λ̃k (M) + M−x

M−m Λ̃k (m)−
∫ β
α Λ̃k(x(t))dλ(t)∫ β

α dλ(t)

]
,

which is result proved in [3].
Moreover, for the convex function F defined in (22) we have

(40)
∫ β
α φ(x(t))dλ(t)∫ β

α dλ(t)
≤ x−m

M−mφ (M) + M−x
M−mφ (m) .

If n is even, then for every (2n)-convex function φ : [a, b] → R, the reverse
inequality in (39) holds.
Moreover, for the concave function F defined in (22) the reverse inequality in
(40) is also valid.
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Remark 17. Motivated by the inequalities (36) and (39), we define func-
tionals Θ3(φ) and Θ4(φ) by

Θ3(φ) =

= 1
Wr

r∑
i=1

wiφ(xi)− x−m
M−mφ (M)− M−x

M−mφ (m)

+
n−1∑
k=1

φ(2k)(a)(b− a)2k
[
x−m
M−m Λ̂k (M) + M−x

M−m Λ̂k (m)− 1
Wr

r∑
i=1

wiΛ̂k(xi)
]

+
n−1∑
k=1

φ(2k)(b)(b− a)2k
[
x−m
M−m Λ̃k (M) + M−x

M−m Λ̃k (m)− 1
Wr

r∑
i=1

wiΛ̃k(xi)
]
,

and

Θ4(φ) =

=
∫ β
α φ(x(t))dλ(t)∫ β

α dλ(t)
− x−m

M−mφ (M)− M−x
M−mφ (m)

+
n−1∑
k=1

φ(2k)(a)(b− a)2k
[
x−m
M−m Λ̂k (M) + M−x

M−m Λ̂k (m)−
∫ β
α Λ̂k(x(t))dλ(t)∫ β

α dλ(t)

]

+
n−1∑
k=1

φ(2k)(b)(b− a)2k
[
x−m
M−m Λ̃k (M) + M−x

M−m Λ̃k (m)−
∫ β
α Λ̃k(x(t))dλ(t)∫ β

α dλ(t)

]
.

Now, we can observe the same results which are mentioned in Remark 11.

5. BOUNDS FOR IDENTITIES RELATED TO GENERALIZATION

OF MAJORIZATION INEQUALITY

For two Lebesgue integrable functions f, h : [a, b]→ R we consider Čebyšev
functional

Ω(f, h) = 1
b−a

∫ b

a
f(t)h(t)dt− 1

b−a

∫ b

a
f(t)dt 1

b−a

∫ b

a
h(t)dt.(41)

In [5], the authors proved the following theorems:

Theorem 18. Let f : [a, b] → R be a Lebesgue integrable function and h :
[a, b]→ R be an absolutely continuous function with (.−a)(b−.) [h′]2 ∈ L [a, b] .
Then we have the inequality

| Ω(f, h) |≤ [Ω(f,f)]
1
2√

2
1√
b−a

(∫ b

a
(x− a)(b− x)

[
h′(x)

]2
dx

) 1
2

.(42)

The constant 1√
2 in (42) is the best possible.
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Theorem 19. Assume that h : [a, b] → R is monotonic nondecreasing on
[a, b] and f : [a, b] → R is absolutely continuous with f ′ ∈ L∞ [a, b] . Then we
have the inequality

| Ω(f, h) |≤ 1
2(b−a) ‖ f

′ ‖∞
∫ b

a
(x− a)(b− x)dh(x).(43)

The constant 1
2 in (43) is the best possible.

In the sequel we use the above theorems to obtain generalizations of the
results proved in the previous sections.

For m-tuples w = (w1, ..., wm), x = (x1, ..., xm) with xi ∈ [a, b], wi ∈ R,
i = 1, ...,m, x = 1

Wm

∑m
i=1wixi and function Gn as defined in (10), we denote

Υ(t) = 1
Wm

m∑
i=1

wiGn
(
xi−a
b−a ,

t−a
b−a

)
−Gn

(
x−a
b−a ,

t−a
b−a

)
.(44)

Similarly for x : [α, β] → [a, b] continuous function, λ : [α, β] → R as defined
in Remark 10 or in Remark 13 and for all s ∈ [a, b] denote

Υ̃(s) =
∫ β
α Gn

(
x(t)−a
b−a , s−ab−a

)
dλ(t)∫ β

α dλ(t)
−Gn

(
x−a
b−a ,

s−a
b−a

)
.(45)

We have the Čebyšev functionals defined as:

Ω(Υ,Υ) = 1
b−a

∫ b

a
Υ2(t)dt−

(
1
b−a

∫ b

a
Υ(t)dt

)2

,(46)

Ω(Υ̃, Υ̃) = 1
b−a

∫ b

a
Υ̃2(s)ds−

(
1
b−a

∫ b

a
Υ̃(s)ds

)2

.(47)

Theorem 20. Let φ : [a, b] → R be such that φ ∈ C(2n) [a, b] for n ∈ N
with (. − a)(b − .)

[
φ(2n+1)

]2
∈ L [a, b] and xi ∈ [a, b], wi ∈ R, i = 1, 2, ...,m,

x = 1
Wm

∑m
i=1wixi and let the functions Gn, Υ and Ω be defined in (10), (44)

and (46). Then

1
Wm

m∑
i=1

wiφ(xi)− φ(x) =
n−1∑
k=1

φ(2k)(a)(b− a)2k
[

1
Wm

m∑
i=1

wiΛ̂k(xi)− Λ̂k(x)
](48)

+
n−1∑
k=1

φ(2k)(b)(b− a)2k
[

1
Wm

m∑
i=1

wiΛ̃k(xi)− Λ̃k(x)
]

+ (b− a)2n−1
(
φ(2n−1)(b)− φ(2n−1)(a)

)
×
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×
{

1
Wm

m∑
i=1

wi
[
Λ̃n (xi) + Λ̂n (xi)

]
−
[
Λ̃n (x) + Λ̂n (x)

]}
+H1

n(φ; a, b),

where the remainder H1
n(φ; a, b) satisfies the estimation

(49)

| H1
n(φ; a, b) |≤ (b−a)2n− 1

2√
2 [Ω(Υ,Υ)]

1
2

∣∣∣∣∣
∫ b

a
(t− a)(b− t)

[
φ(2n+1)(t)

]2
dt

∣∣∣∣∣
1
2

.

Proof. If we apply Theorem 18 for f → Υ and h→ φ(2n) we obtain∣∣∣∣∣ 1
b−a

∫ b

a
Υ(t)φ(2n)(t)dt− 1

b−a

∫ b

a
Υ(t)dt · 1

b−a

∫ b

a
φ(2n)(t)dt

∣∣∣∣∣ ≤
≤ 1√

2 [Ω(Υ,Υ)]
1
2 1√

b−a

∣∣∣∣∣
∫ b

a
(t− a)(b− t)

[
φ(2n+1)(t)

]2
dt

∣∣∣∣∣
1
2

.

Therefore we have

(b− a)2n−1
∫ b

a
Υ(t)φ(2n)(t)dt =

= (b− a)2n−2
(
φ(2n−1)(b)− φ(2n−1)(a)

) ∫ b

a
Υ(t)dt+H1

n(φ; a, b),

where the remainder H1
n(φ; a, b) satisfies the estimation (49). Now from iden-

tity (17) and fact that Λn(1 − t) =
∫ 1

0 Gn(t, s)(1 − s)ds (see [2]) we obtain
(48). �

Integral case of the above theorem can be given:

Theorem 21. Let φ : [a, b]→ R be such that φ ∈ C(2n) [a, b] for n ∈ N with
(.− a)(b− .)

[
φ(2n+1)

]2
∈ L [a, b], let x : [α, β]→ R continuous functions such

that x([α, β]) ⊆ [a, b] and λ : [α, β] → R be as defined in Remark 10 or in

Remark 13 and x =
∫ β
α
x(t) dλ(t)∫ β
α
dλ(t)

. Let the functions Gn, Υ̃ and Ω be defined in

(10), (45) and (47). Then

∫ β
α φ(x(t))dλ(t)∫ β

α dλ(t)
− φ(x) =

n−1∑
k=1

φ(2k)(a)(b− a)2k
[∫ β

α Λ̂k(x(t))dλ(t)∫ β
α dλ(t)

− Λ̂k(x)
](50)

+
n−1∑
k=1

φ(2k)(b)(b− a)2k
[∫ β

α Λ̃k(x(t))dλ(t)∫ β
α dλ(t)

− Λ̃k(x)
]

+ (b− a)2n−1
(
φ(2n−1)(b)− φ(2n−1)(a)

)
×
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×


∫ β
α

[
Λ̃n (x(t)) + Λ̂n (x(t))

]
dλ(t)∫ β

α dλ(t)
−
[
Λ̃n (x) + Λ̂n (x)

]+ H̃1
n(φ; a, b),

where the remainder H̃1
n(φ; a, b) satisfies the estimation

| H̃1
n(φ; a, b) |≤ (b−a)2n− 1

2√
2

[
Ω(Υ̃, Υ̃)

] 1
2

∣∣∣∣∣
∫ b

a
(s− a)(b− s)

[
φ(2n+1)(s)

]2
ds

∣∣∣∣∣
1
2

.

Using Theorem 19 we also get the following Grüss type inequality.

Theorem 22. Let φ : [a, b]→ R be such that φ ∈ C(2n) [a, b] for n ∈ N and
φ(2n+1) ≥ 0 on [a, b] and let the function Υ be defined in (44). Then we have
the representation (48) and the remainder H1

n(φ; a, b) satisfies the bound
(51)
|H1

n(φ; a, b)| ≤ (b− a)2n−1‖Υ′‖∞
{
φ(2n−1)(b)+φ(2n−1)(a)

2 − φ(2n−2)(b)−φ(2n−2)(a)
b−a

}
.

Proof. Applying Theorem 19 for f → Υ and h→ φ(2n) we obtain∣∣∣∣∣ 1
b−a

∫ b

a
Υ(t)φ(2n)(t)dt− 1

b−a

∫ b

a
Υ(t)dt · 1

b−a

∫ b

a
φ(2n)(t)dt

∣∣∣∣∣ ≤
≤ 1

2(b−a)‖Υ
′‖∞

∫ b

a
(t− a)(b− t)φ(2n+1)(t)dt.(52)

Since ∫ b

a
(t− a)(b− t)φ(2n+1)(t)dt =

=
∫ b

a
[2t− (a+ b)]φ(2n)(t)dt

= (b− a)
[
φ(2n−1)(b) + φ(2n−1)(a)

]
− 2

(
φ(2n−2)(b)− φ(2n−2)(a)

)
,

using the identity (17) and (52) we deduce (51). �

Integral version of the above theorem can be given as:

Theorem 23. Let φ : [a, b]→ R be such that φ ∈ C(2n) [a, b] for n ∈ N and
φ(2n+1) ≥ 0 on [a, b] and let the function Υ̃ be defined in (45). Then we have
the representation (50) and the remainder H̃1

n(φ; a, b) satisfies the bound

| H̃1
n(φ; a, b) |≤ (b− a)2n−1‖Υ̃′‖∞

{
φ(2n−1)(b)+φ(2n−1)(a)

2 − φ(2n−2)(b)−φ(2n−2)(a)
b−a

}
.

We also give the Ostrowsky type inequality related to the generalization of
majorization inequality.

Theorem 24. Let xi ∈ [a, b], wi ∈ R, i = 1, 2, ...,m, x = 1
Wm

∑m
i=1wixi and

let (p, q) be a pair of conjugate exponents, that is 1 ≤ p, q ≤ ∞ and 1
p + 1

q = 1.
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Let φ ∈ C(2n) [a, b] be such that
∣∣∣φ(2n)

∣∣∣p : [a, b]→ R is an R-integrable function
for some N. Then we have

∣∣∣∣ 1
Wm

m∑
i=1

wiφ(xi)− φ(x)−
n−1∑
k=1

φ(2k)(a)(b− a)2k
[

1
Wm

m∑
i=1

wiΛ̂k(xi)− Λ̂k(x)
](53)

−
n−1∑
k=1

φ(2k)(b)(b− a)2k
[

1
Wm

m∑
i=1

wiΛ̃k(xi)− Λ̃k(x)
]∣∣∣∣ ≤

≤ (b− a)2n−1‖φ(2n)‖p

(∫ b

a

∣∣∣∣ 1
Wm

m∑
i=1

wiGn
(
xi−a
b−a ,

t−a
b−a

)
−Gn

(
x−a
b−a ,

t−a
b−a

) ∣∣∣∣qdt
) 1
q

.

The constant on the right hand side of (53) is sharp for 1 < p ≤ ∞ and the
best possible for p = 1.

Proof. Let’s denote

Ψ(t) = (b− a)2n−1
[

1
Wm

m∑
i=1

wiGn
(
xi−a
b−a ,

t−a
b−a

)
−Gn

(
x−a
b−a ,

t−a
b−a

)]
.

Using the identity (17) and applying Hölder’s inequality we obtain∣∣∣∣ 1
Wm

m∑
i=1
wiφ(xi)− φ(x)−

n−1∑
k=0

φ(2k)(a)(b− a)2k
[

1
Wm

m∑
i=1
wiΛ̂k(xi)− Λ̂k(x)

]
−

n−1∑
k=0

φ(2k)(b)(b− a)2k
[

1
Wm

m∑
i=1
wiΛ̃k(xi)− Λ̃k(x)

]∣∣∣∣ =

=
∣∣∣∣∣
∫ b

a
Ψ(t)φ(2n)(t)dt

∣∣∣∣∣ ≤ ||φ(2n)||p

(∫ b

a
|ψ(t)|qds

)1/q

.

For the proof of the sharpness of the constant
(∫ b
a |Ψ(t)|q dt

)1/q
let us find a

function φ for which the equality in (53) is obtained.
For 1 < p <∞ take φ to be such that

φ(2n)(t) = sgn Ψ(t) |Ψ(t)|
1
p−1 .

For p =∞ take φ(2n)(t) = sgn Ψ(t).
For p = 1 we prove that

(54)
∣∣∣∣∣
∫ b

a
Ψ(t)φ(2n)(t)dt

∣∣∣∣∣ ≤ max
t∈[a,b]

|Ψ(t)|
(∫ b

a

∣∣∣φ(2n)(t)
∣∣∣ dt)

is the best possible inequality. Suppose that |Ψ(t)| attains its maximum at
t0 ∈ [a, b]. First we assume that Ψ(t0) > 0. For ε small enough we define φε(t)



18 Generalization of Jensen’s and Jensen-Steffensen’s inequalities 23

by

φε(t) =


0, a ≤ t ≤ t0,

1
ε n!(t− t0)n, t0 ≤ t ≤ t0 + ε,

1
(n−1)!(t− t0)n−1, t0 + ε ≤ t ≤ b.

Then for ε small enough∣∣∣∣∣
∫ b

a
Ψ(t)φ(2n)(t)dt

∣∣∣∣∣ =
∣∣∣∣∫ t0+ε

t0
Ψ(t)1

εdt

∣∣∣∣ = 1
ε

∫ t0+ε

t0
Ψ(t)dt.

Now from the inequality (54) we have

1
ε

∫ t0+ε

t0
Ψ(t)dt ≤ Ψ(t0)

∫ t0+ε

t0

1
εdt = Ψ(t0).

Since
lim
ε→0

1
ε

∫ t0+ε

t0
Ψ(t)dt = Ψ(t0)

the statement follows. In the case Ψ(t0) < 0, we define φε(t) by

φε(t) =


1

(n−1)!(t− t0 − ε)
n−1, a ≤ t ≤ t0,

− 1
εn!(t− t0 − ε)

n, t0 ≤ t ≤ t0 + ε,

0, t0 + ε ≤ t ≤ b,
and the rest of the proof is the same as above. �

Integral version of the above theorem can be stated as:

Theorem 25. Let x : [α, β]→ R be continuous functions such that x([α, β])
⊆ [a, b], λ : [α, β] → R be as defined in Remark 10 or in Remark 13, x =∫ β
α
x(t) dλ(t)∫ β
α
dλ(t)

and let (p, q) be a pair of conjugate exponents, that is 1 ≤ p, q ≤ ∞

and 1
p + 1

q = 1. Let φ ∈ C(2n) [a, b] be such that
∣∣∣φ(2n)

∣∣∣p : [a, b] → R is an
R-integrable function for some n ∈ N. Then we have

∣∣∣∣∣
∫ β
α φ(x(t))dλ(t)∫ β

α dλ(t)
− φ(x)−

n−1∑
k=1

φ(2k)(a)(b− a)2k
[∫ β

α Λ̂k(x(t))dλ(t)∫ β
α dλ(t)

− Λ̂k(x)
](55)

−
n−1∑
k=1

φ(2k)(b)(b− a)2k
[∫ β

α Λ̃k(x(t))dλ(t)∫ β
α dλ(t)

− Λ̃k(x)
]∣∣∣∣∣ ≤

≤ (b−a)2n−1‖φ(2n)‖p

∫ b

a

∣∣∣∣
∫ β
α Gn

(x(t)−a
b−a , s−ab−a

)
dλ(t)∫ β

α dλ(t)
−Gn

(
x−a
b−a ,

s−a
b−a

) ∣∣∣∣qds
 1

q

.

The constant on the right hand side of (55) is sharp for 1 < p ≤ ∞ and the
best possible for p = 1.
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inequality by Lidstone’s polynomial and related results, Math. Ineq. Appl. 16 (2013) no.
4, 1243–1267.

[4] K.E. Atkinson, An Introduction to Numerical Analysis, 2nd ed., Wiley, New York,
1989.

[5] P. Cerone and S.S. Dragomir, Some new Ostrowsky-type bounds for the Čebyšev
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